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Abstract

We present a fast, accurate and robust parallel Levenberg-Marquardt minimization optimizer, GPU-LMFit, which is
implemented on graphics processing unit for high performance scalable parallel model fitting processing. GPU-LMFit can
provide a dramatic speed-up in massive model fitting analyses to enable real-time automated pixel-wise parametric
imaging microscopy. We demonstrate the performance of GPU-LMFit for the applications in superresolution localization
microscopy and fluorescence lifetime imaging microscopy.
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Introduction

Biophysical and biomedical data often have to be fitted to

known models to extract the parameters that are of interest, and

quantitative parametric imaging techniques have been increasing-

ly utilized. For example, in magnetic resonance imaging (MRI),

the relaxation time images are created by fitting the measured

magnetic resonance signal data of each pixel to theoretical

relaxation models [1]; in superresolution localization microscopy

(SRLM) or single-particle tracking microscopy, the positions of

tens to hundreds of single particles need be determined for an

image by generally fitting two-dimensional (2D) single particle

images to the point spread function (PSF) of imaging system [2,3];

and similarly, in fluorescence lifetime imaging microscopy (FLIM)

using the time-correlated single-photon counting (TCSPC) tech-

nique, a widely used method to extract the fluorescence lifetime at

each image pixel is a nonlinear model fitting method that involves

iterative re-convolution of the instrument response function (IRF)

and single or multiple exponential functions [4,5]. For all these

techniques, fast and accurate model fitting is often a crucial step

towards real-time automated pixel-wise parametric imaging,

because the calculation procedure of the model fitting has to be

repeated tens of thousands of times for an image, and the total

analysis tends to be rather slow.

In various scientific disciplines, the Levenberg-Marquardt (LM)

method [6] has become a standard technique for nonlinear

minimization problems, and it is widely adopted for dealing with

model fitting applications. Although there have been a large

number of minimization optimizers available now, they are often

highly tuned for specific applications, and many of them have to

been modified before they can be applied for a new fitting function

[3,4]. Among the large number of existing LM minimization

optimizers, MPFit [7] was developed by Dr. Craig Markwardt

(University of Wisconsin, WI) based on an early minimization

routines library Minpack [8], and has been recently reported

[1,2,9–20] as an efficient and robust optimizer for a variety of

fitting functions in various applications and in many disciplines.

MPFit was found to be most frequently used in astrophysical

research, for example, to analyze the SOPHIE spectra observed

from DI Herculis [9], and to derive the shape of the x-ray

spectrum obtained from of Mercury’s Surface by the MESSEN-

GER spacecraft [10]. In biophysical and biomedical science,

MPFit has also often been used, for example, in the applications of

magnetic resonance imaging [1,11–15], optical particle tracking

[2,16,17] and small-angle X-ray scattering [18,19]. In addition, in

environmental science, MPFit was reported to be used to analyze

the normalized difference vegetation index time series data from

satellite moderate resolution imaging spectroradiometer [20].

Motivated by the applications towards real-time automated

pixel-wise parametric imaging microscopy, we applied parallel

computing algorithms to MPFit. We have achieved a new LM

minimization optimizer, which is implemented on graphics

processing unit (GPU) and we call GPU-LMFit. The parallel

computing model of GPU-LMFit follows NVIDIA (http://www.

nvidia.com/) compute unified device architecture (CUDA). With

GPU-LMFit, one LM data fitting procedure is completed in one

CUDA block by tens to hundreds of threads running in parallel. A

GPU device can allow multiple CUDA blocks and thus a number

of LM model fittings executing concurrently to realize a dramatic

increase in speed of massive model fittings analyses.

Here we demonstrate the performance of GPU-LMFit for the

applications in SRLM and FLIM. Two software tools called

GPU2DGaussFit and GPUFLIMFit have been made respectively

for single-molecule localization analysis in SRLM and TCSPC
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histogram fitting analysis in FLIM by using GPU-LMFit

implemented with a modified maximum likelihood estimator

(MLE), because MLE is better in terms of precision than

traditional least-squares estimator in the data fitting analysis in

both SRLM [3] and FLIM [4]. The fitting precision is measured

as the standard deviation of the estimates of the parameters

resolved from the fittings in a simulation. The CUDA C libraries

of GPU-LMFit, the source code of GPU2DGaussFit and the

Matlab (The Mathworks, Natick, MA) simulation programs for the

performance tests of both GPU2DGaussFit and GPUFLIMFit are

available in File S1.

Methods

The Architecture of GPU-LMFit
For pixel-wise parametric imaging techniques using the LM

method, the calculation procedure of a LM fitting algorithm is

implemented for each image pixel, so it has to be repeated tens of

thousands of times for the entire image, and thus the total analysis

tends to be rather slow. To enable real-time automated parametric

imaging microscopy, we developed a parallel LM minimization

optimizer, GPU-LMFit, for high performance scalable processing

of massive model fittings. Generally a parallel computer program

is more difficult to write than a sequential one [21], because

communication and synchronization between the different threads

are typically some of the greatest obstacles to obtain good parallel

program performance, and concurrency can introduce some new

classes of potential software bugs, of which race conditions are the

most common.

As with MPFit, GPU-LMFit is to find a vector solution b for the

fitting parameters that give a local minimum to the sum S of

squares of a user-defined fitting function F :

S bð Þ~
Xm
i~1

Fi
2 bð Þ~ Fk k2 ð1Þ

where Fk k represents the Euclidean norm of the vector of the

fitting function values. Here vectors and matrices are denoted by

bold letters. In Equation (1), F can be generally found in the form

of

Figure 1. The architecture of massive parallel model fittings with GPU-LMFit. In pixel-wise parametric imaging applications, a large amount
of experimental data for all image pixels are first collected and saved in host computer memory and then passed to the GPU global memory for
efficient parallel model fitting analyses with GPU-LMFit using NVIDIA CUDA, which has a generic C-like language interface and it offers a data parallel
programming model that is supported on NVIDIA GPUs. In CUDA, the host program launches kernel functions running on the GPU. A kernel function
is organized as a hierarchy of threads. GPU Threads are grouped into blocks, and blocks are grouped into a grid. For each fitting, the parallel
algorithms in GPU-LMFit, user-defined fitting function and/or Jacobian function are implemented in a single CUDA block by more than tens of GPU
threads, which can synchronize and share data with each other and are all executed on a single GPU multiprocessor (MP). A GPU MP allows multiple
GPU blocks running concurrently and a GPU device can have a number of GPU MPs, so using GPU-LMFit, a large number of LM model fittings can
execute concurrently in a GPU, and each of the fittings is performed with parallel algorithms by many GPU threads in parallel.
doi:10.1371/journal.pone.0076665.g001
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F~fi bð Þ{gi ð2Þ

for least-squares estimator (LSE). In Equation (2), fi bð Þ and gi
represent the model function and the experimental data,

respectively. The subscript i~1, . . . ,m refers to the index of the

data point, and m is the number of data points. Since it has been

found [3,4] that minimizing MLE for Poisson distributed data can

yield better precision of the parameters determined in data fitting,

we took the fitting function F as xMLE in Equation (6) to use the

MLE derived by Laurence et al [4] for light microscopy data.

A standard LM algorithm [7] is used in MPFit and it is an

iterative procedure and searches for the solution b starting with an

initial guess b0. In the k-th iteration step, b is updated by a new

estimate bzd, and the increment d is determined by solving the

equations [22,23]

JTJzlDTD
� �

d~{JTF ð3Þ

where the scalar l is the damping factor and controls both the

magnitude and direction of d; J denotes Jacobian matrix of F and

the superscript T denotes matrix transpose; D is the diagonal

Figure 2. An example of scalable parallel reduction in GPU-LMFit: the computation of the Euclidean norm Vk k~
Pm{1

i~0 v2i

� �1=2

of a
vector V~ v0,v1, . . . ,vm{1f g. Scalable parallel reductions in GPU-LMFit need to be implemented by all threads of a CUDA block using GPU shared
memory, and it also requires that the number L of total threads of the CUDA block must be power of 2, and the shared memory must be configured
for the storage of at least 2L elements data. Here we assume that an array named SVec is created in the shared memory to store the intermediate
results for scalable parallel reduction. The computational implementation consists of two phases: in the first phase, each thread first stepwisely
calculates the sum of the squares of vtidx and every other 2L elements in the vector, and writes the results to SVec tidx½ �, where tidx is the index
(0,1, . . . ,L{1) of the thread in the block and SVec tidx½ � denotes tidx- indexed element of SVec. Next, each thread calculates the sum of the squares
of vtidxzL and every other 2L elements in the vector, and the results are written to SVec tidxzL½ �, so after the first phase, each element of SVec

contains the partial sum SVec ið Þ~
P

j, iz2jLð Þv m{1ð Þ viz2jL

� �2
of the vector element squares; in the second phase, the parallel sum reduction is

implemented to SVec by all threads following the above algorithmic pattern (sum reduction tree). This sum reduction tree is not an actual data
structure, but to show the concept we use to determine what each thread does at each step of the traversal. The numbers in the square leaves on the
tree represent the index of element of SVec. In every step, each thread updates the value of SVec tidx½ � with two SVec element connected with

arrows, and all threads are synchronized at the end of each step, so that after log2 Lð Þ steps, the value of squares of Vk k2 is obtained in SVec 0½ �.
Therefore, using the scalable parallel reduction in GPU-LMFit, the computation of Vk k is accomplished through maximum qm=L r square operations,
qm=L rzlog2 Lð Þ{1 addition operations, and one square root operation per thread, where qm=L r is the smallest integer not less than m=L .
doi:10.1371/journal.pone.0076665.g002
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scaling matrix, which accounts for the problems from the poorly

scaled models in which the fitting parameters differ by several

orders of magnitude. The scaling matrix D is determined by the

diagonal elements of JTJ. The default for the scaling matrix D is

the square root of the diagonal of JTJ. Equations (3) are just the

normal equations for the linear least-squares minimization

problem:

Jffiffiffi
l

p
D

� �
d%

F

0

� �
ð4Þ

Using the QR factorization JP~QR, Equations (4) can be solved

iteratively as

Rffiffiffi
l

p
PTDP

� �
PTd~{

QTF

0

" #
ð5Þ

where P, Q and R are the permutation matrix, the orthogonal

matrix and the upper trapezoid matrix [23].

As discussed above, the LM algorithm has at least two main

computational tasks, which are 1) the QR factorization of Jacobian

matrix J and 2) the determination of LM damping factor l. If
there is not an analytical Jacobian available for the user-defined

fitting function, a third computational task that must be performed

is to compute an approximation to the Jacobian, and this is

computed in MPFit using a forward-difference approach [8], in

which many independent computations are involved and are very

appropriate for parallel programming. The QR factorization is

computed in MPFit by using Householder transformation [24].

Among all three abovementioned major computational tasks, we

have found that the QR factorization of Jacobian usually

dominates the total computational cost, and it can account for

60–80% of computational time of a fitting process, because it

involves a large amount of matrix and vector operations, which

are, however, also very appropriate for high-performance parallel

linear algebra computation at which GPU technology excels.

GPU-LMFit uses a scalable parallel LM algorithm that we

developed and optimized for using NVIDIA CUDA. Figure 1

Figure 3. The performance of the implementation of GPU-LMFit in SRLM. (a) The model fitting precisions of our GPU2DGaussFit
implemented with GPU-LMFit are compared with those of Smith’s GPU based SRLM software. Both GPU2DGaussFit and Smith’s software have nearly
the same localization precisions, which are in excellent agreement with the theoretical predictions by the CRLB approach. Similar results were found
for the y-Cartesian coordinates yc. (b) Our GPU2DGaussFit can work much more efficiently than Smith’s GPU based SRLM software to fit the relatively
large size SRLM images to 2D Gaussian. Insets, a synthetic fluorescence single-molecule image (right) and its model (left) with a total of 100 photons
in the simulation. (c) Computational speed comparison of GPU2DGaussFit and CPU2DGaussFit.
doi:10.1371/journal.pone.0076665.g003
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Figure 4. The performance of the implementation of GPU-LMFit in FLIM. (a) A synthetic TCSPC histogram (black bars) with a total of 102
photons and 64 data points, and its fitting curve (green line) from our GPUFLIMFit implemented with GPU-LMFit. (b-c) Both GPUFLIMFit and
Laurence’s software show nearly identical fitting precisions for the fluorescence lifetimes t (b) and amplitudes A2 (c) in the model function, i.e.,
Equation (8). (d) Our GPUFLIMFit for TCSPC FLIM can work ,49 times faster than Laurence’s software to fit the TCSPC histograms with different
numbers of data points.

Figure 5. An example of fast automated experimental FLIM imaging using GPUFLIMFit. (a) An experimental confocal fluorescence
intensity image of a cross-section of the rhizome of Convallaria taken with a multiphoton FLIM microscope. The image size is 40640 mm2, 2566256
pixels. (b) The corresponding fluorescence lifetime image of (a) was generated in 0.6 seconds by using GPUFLIMFit implemented with GPU-LMFit.
doi:10.1371/journal.pone.0076665.g005
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presents the architecture of the implementation of GPU-LMFit on

massive parallel model fittings. As shown in Figure 1, each fitting is

processed by many GPU threads in parallel. Many codes in the

sequential LM algorithm have been developed and optimized for

GPU-LMFit to use the efficient scalable parallel reduction [25],

which converts certain sequential computations for associative and

commutative operations in a collection of data into equivalent, but

parallel, computations and can finally reduce the data set to get a

single value. Figure 2 presents a typical example for scalable

parallel reduction, which is the computation of the Euclidean

norm of a vector and used extensively in GPU-LMFit. For

example, the computation of the Euclidean norm Vk k of a 200

elements vector V requires 200 square operations, 199 addition

operations and one square root operations in a sequential

computation. In GPU-LMFit, Vk k is computed by all CUDA

threads of a CUDA block in parallel using the scalable parallel

reduction. As described in Figure 2, if a CUDA block for GPU-

LMFit is configured to have 128 threads, then the computation of

Vk k in GPU-LMFit will take only the maximum computation

time in which a thread can complete 2 square operations, 8

addition operations and one square root operations. Therefore,

the parallel LM algorithm that we developed in GPU-LMFit can

be much more efficient for a single fitting than the traditional

sequential algorithm. In addition, as in Figure 1, a number of

fittings using GPU-LMFit can execute concurrently in a single

GPU device, and this makes an ideal method for efficient

automated massive parametric imaging techniques, where the

fitting procedure has to been repeated independently for each

image pixel to fit the measured data in the pixel to a numerical

model to resolve the parameters that are of interest.

Another important feature of the architecture of GPU-LMFit in

Figure 1 is that it can allow multiple GPUs applications, where the

measured experimental data in the host computer memory is

separately passed to the global memories of multiple GPUs, and

then the host program launches the kernel functions on each GPU

device. Therefore, the multiple GPUs application can further

improve the efficiency of the LM model fittings with GPU-LMFit,

and enable real time automated massive parametric analyses for

the microscopy methods using new detector technologies with the

rising rate of data output.

An obvious advantage of the use of GPU for real-time model

fitting analyses in parametric imaging microscopy is that GPU-

based computations can reduce the usage of central processing

unit (CPU) resources. As shown in Figure 1, after a host CPU

passes the experimental data to a GPU device and launches kernel

functions on the GPU, the GPU runs independently and the CPU

is free to continue communications with other hardware, so this

can be very helpful for the applications where a fast data

acquisition is needed. When the host program needs the data

analyses results from the GPU, the CPU can communicate with

the GPU again to transfer the result data from the global memory

on the GPU to the hose memory when the GPU has completed

the required computations.

A Modified Maximum Likelihood Estimator for GPU-LMFit
It has been well-known that MLE is better in terms of precision

than LSE in the data fitting analysis in both SRLM [3] and FLIM

[4]. Laurence et al. [4] reported an efficient MLE formula

x2mle~2
P

fi bð Þ{gið Þ{2
P

gi=0 gi ln fi bð Þ=gið Þ, in which b de-

notes the fitting parameters, fi bð Þ and gi represent the model

function and the experimental data, respectively, and the subscript

i refers to the index of the data point. As with MPFit, GPU-LMFit

is designed for directly using LSE in that it is to find a minimum of

the sum of squares of the user-defined fitting function, so we

simply modified Laurence’s MLE as follows:

xMLE

~
Dfi bð Þ{gi{gi ln fi bð Þ=gið ÞD1=2 fi bð Þw0 and gi=0

Dfi bð Þ{gi D1=2 fi bð Þƒ0 or gi~0

(
ð6Þ

where gi is required to be nonnegative and D:D denotes absolute

value. We used xMLE as the fitting function (i.e., F~xMLE in

Equation (1)) of GPU-LMFit to implement MLE fitting in both

SRLM and FLIM.

GPU2DGaussFit – A Massive Single-molecule Localization
Program using GPU-LMFit in Superresolution Localization
Microscopy
SRLM allows optical imaging in the far field beyond the

diffraction limit and it dramatically improves the spatial resolution

of optical microscopy to a few nanometers [26]. This technique

relies on the precise localization measurements of single-molecules

at the nanoscale. The localization analyses are generally

performed by using model fitting technique to fit diffraction-

limited single-molecule images with the theoretical PSF of the

imaging system, which is commonly approximated as a two-

dimensional (2D) Gaussian:

f A1,xc,yc,s,bð Þ

~A1
: exp { x{xcð Þ2=2s2{ y{ycð Þ2=2s2

h i
zb

ð7Þ

where b is the background offset, A1 is the amplitude, s is the waist

width and xc,ycð Þ are the PSF center coordinates along x- and
y-axis, respectively.

We have made an efficient program called GPU2DGaussFit to

demonstrate how to use GPU-LMFit to fit massive single-molecule

diffraction-limited images to a fitting function with Equations (6)

and (7) for efficient localization analyses in SRLM. GPU2D-

GaussFit was coded with CUDA C/C++ code and compiled in

Microsoft Visual Studio 2010 to a Matlab mex function, so

GPU2DGaussFit can be called in Matlab to pass the experimental

or simulated single-molecule images as arrays to the global

memory of GPU, and then it launches three kernel functions in

sequence to complete sets of 2D Gaussian fittings. The first kernel

function is to initialize all fitting parameters in Equation (7) using a

general method as follows: the maximum image intensity and the

indices of the maximum intensity pixel are used as the initial values

of the parameters A1 and xc,ycð Þ in a fit, respectively, while the

initial value of the parameter b is the minimum image intensity

and if the minimum image intensity is zero, a small intensity of 0.1

is added to each pixel of the image to avoid potential singular

problems in optimization routine. The initial value of the

parameter s is used the true value which is used to generate the

synthetic images in the simulation. The second kernel function is

to call and execute GPU-LMFit. The fitting function is Equation

(6) to use the modified Laurence’s MLE for best localization

precision, and the model function fi bð Þ is Equation (7). The fitting

function is implemented with parallel computing and it is passed to

GPU-LMFit through a C-style pointer. The third kernel function

is to correct the fitted parameter b if the small intensity of 0.1 is

added to the image by the first kernel function.

Efficient Parallel Model Fitting
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GPUFLIMFit – an Efficient Fluorescence Lifetime Fitting
Program using GPU-LMFit for Fluorescence Lifetime
Imaging Microscopy
FLIM is a valuable and versatile tool for the investigation of the

molecular environment of fluorophores in living cells by measuring

the excited state lifetimes of interested fluorescence samples [5].

The lifetime of the fluorophore, rather than its fluorescence

intensity, is used to create the image in FLIM, and this has the

advantage of minimizing the effect of variations in fluorophore

concentration, illumination intensity and photodynamic processes

such as photobleaching, and visualizing the state of the environ-

ment around the fluorophore that affects the fluorophore lifetime

properties. The TCSPC technique is a popular method to measure

fluorescence lifetimes in the time domain. Using the TCSPC

technique, fluorescence is excited by a high repetition rate pulsed

laser. The arrival times of individual photons after laser pulses are

recorded over many excitation and fluorescence cycles to create a

TCSPC histogram. Fluorescence lifetime imaging using the

TCSPC technique relies on the efficient and precise analysis of

the lifetime estimation from the TCSPC histogram measured at

each image pixel.

A widely used method is to use the model fitting technique [4]

accomplished by a nonlinear model fitting procedure that involves

iterative re-convolution of the IRF and single or multiple

exponential functions. For example, a TCSPC histogram fitting

program (Laurence’s software) with Laurence’s MLE formula x2mle

has been previously reported by Laurence and Chromy [4], and it

can precisely fit TCSPC histogram to the following model:

f A2,tð Þ~A2 e{t=t eT=m:t {1
� �

= 1{e{T=t
� �h i

6IRF tð Þ ð8Þ

Here t is the lifetime, A2 is the amplitude which is equal to the

number of photons of the curve, T is the time window between

laser pulses, and m is the number of time bins in the time window

T . The time t is calculated as t~iT=m , where i is integer from 1

to m, and represent the index of each time bin. The symbol 6

denotes convolution, which can be calculated efficiently using fast

Fourier transform (FFT) algorithms as in Laurence et al [4]. Using

GPU-LMFit, we made an efficient fluorescence lifetime fitting

routine, called GPUFLIMFit, with a fitting function using

Equations (6) and (8). Due to the lack of a GPU device callable

FFT function in CUDA, the discrete convolution in Equation (8) is

computed as Cauchy product [27] in parallel by all threads within

a CUDA block. Laurence’s software is only executable on CPU

and it was provided as a dynamic-link library (DLL) for Microsoft

Windows operating systems and has an interface to LabVIEW

(National Instruments, Austin, TX) so that it can be called from

LabVIEW. Our GPUFLIMFit was also programed to have an

interface to LabVIEW in order to compare the performance with

Laurence’s software in the same computer system. In the

simulations for the performance comparison of Laurence’s

software and our GPUFLIMFit, the simulated TCSPC FLIM

data were created in Matlab as described below, and then the data

were read in LabVIEW to implement model fittings separately by

using Laurence’s software and our GPUFLIMFit.

Results

The Performance of GPU2DGaussFit
GPU2DGaussFit uses GPU-LMFit to fit massive single-mole-

cule images in SRLM to a 2D Gaussian. Previously, Smith et al.

[3] reported an efficient GPU-based fitting software (Smith’s

software) for SRLM, and importantly, Smith’s software can

achieve the theoretical precision predicated by the Cramér-Rao

lower bound (CRLB) approach [3] and ,80-fold increase in speed

by comparing with different minimization routines executed on

CPU. Smith’s software is an ideal model program to which our

GPU2DGaussFit can be compared for performance evaluation on

the same GPU device, because the fitting speed and precision

comparison between the programs running separately on GPU

and CPU will depend not only on the algorithms used in the

programs, but also on the hardware performance of the used GPU

and CPU.

Both Smith’s software and our GPU2DGaussFit were built with

a Matlab interface, so it is easy to conduct simulations in Matlab

for the performance comparison between Smith’s software and

GPU2DGaussFit. Figure 3 shows the results from two numerical

simulations for the fitting speed and precision comparison between

Smith’s software and GPU2DGaussFit, respectively. In the

simulations, 5000 square single-molecule images were first

numerically generated using the PSF function – Equation (7)

and Poisson distributed shot noise was added using the function

poissrnd from Matlab Statistics Toolbox. The synthetic images were

passed into GPU memory, and then Smith’s software and

GPU2DGaussFit were separately implemented on the same

GPU device (NVIDIA Quadro 4000) to resolve the position of

the single-molecule in each image. In Figure 3(a), the same

parameters settings (i.e., b~1, s~1 pixel, image size 767 pixels)

as for Fig. 1 in Smith et al. [3] were used for the image generation,

and total number of photons in each image was determined by

N~2pA1s
2. Smith’s software was set to output the theoretical

localization precisions predicted by the CRLB approach [3] for

both xc and yc and fit the synthetic SRLM images to the PSF

function with the parameter s fixed. As shown in Figure 3(a),

GPU2DGaussFit works as precisely as Smith’s software does, and

it also achieves CRLB predicted precisions for the images over a

wide range of signal to noise ratios (SNRs), so this can indicate that

GPU-LMFit is a precise optimizer for SRLM. The other

simulation for Figure 3(b) compares the fitting speed of both

Smith’s software and GPU2DGaussFit. In this simulation, the size

D of each dimension of the synthetic square images varied as

shown on the x-axis of Figure 3(b); other parameters for the

synthetic images are s~D=7 and N~100s2, so that the SNRs

and thus the resulting localization precisions (data not shown) of all

images are the same as those of the images with N~100 in

Figure 3(a). In general, the more fitting parameters are free to be

fit, the lower fitting speed is expected from an optimizer. Smith’s

software in the simulation for Figure 3(b) was set to not output the

CRLB precision but resolve all five parameters in the PSF

function, which gives an equal number of fitting parameters in

GPU2DGaussFit. Importantly, as shown in Figure 3(b), GPU2D-

GaussFit can perform faster than Smith’s software when the image

size is larger than 10610 pixels, and very intriguingly, GPU2D-

GaussFit can be more than 106 faster than Smith’s software for

the images with more than 20620 pixels, and this can indicate that

the algorithms in GPU-LMFit has higher scalability and better

parallel computing capability than those in Smith’s software.

We used MPFit to create a CPU version program called

CPU2DGaussFit for 2D Gaussian function fittings in SRLM to

compare the performance with GPU2DGaussFit. We included

CPU2DGaussFit in the simulations in Figure 3. CPU2DGaussFit

was implemented on an Intel eight-core CPU processor (W3550,

8M Cache, 3.06 GHz) and the computer has 16 gigabytes of

physical memory. From the simulations, we have found that

CPU2DGaussFit gives the same localization precisions (data not

shown) for the images over the same range of SNRs in Figure 3(a)

Efficient Parallel Model Fitting
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as GPU2DGaussFit does. Figure 3(c) shows that, as expected,

GPU2DGaussFit can perform much faster than CPU2DGaussFit,

especially for the synthetic single-molecule images with a larger

dimension size. Therefore, we can conclude that the parallel LM

algorithm in GPU-LMFit has much higher efficiency than the

sequential LM algorithm in MPFit for the image in which each

pixel contains large amount of independent data points involved in

the fitting.

We have also validated GPU2DGaussFit with some previous

experimental data [28] of single-molecule fluorescent quantum

dots imaging with a total internal reflection fluorescence micro-

scope. We compared the performance of GPU2DGaussFit in the

localization analysis of the single-molecule quantum dots with a

previously used Matlab program using the optimizer fminunc or

lsqnonlin in the optimization toolbox in Matlab. From the

comparison, we found that GPU2DGaussFit can perform as

accurately as the Matlab program can, but not surprisingly,

GPU2DGaussFit can run hundreds of times faster on the same

computer used for Figure 3.

The Performance of GPUFLIMFit
The fitting speed and precision of Laurence’s software and our

GPUFLIMFit were compared in the numerical simulations, which

were performed on simulated single exponential convolved with a

Gaussian IRF:

IRF tð Þ~ e{ t{t0ð Þ2=2s2
� 	

=
Xm
i~1

e{ t{t0ð Þ2=2s2 ð9Þ

where t0~2 ns and s~250 ps are used. In the simulations, 65,536

TCSPC histograms (corresponding to a 2566256 pixels TCSPC

FLIM image) were created using Equations (8) and (9). In

Equation (8), we took t~1:5 ns and T~12:5 ns in the simulation.

The simulated TCSPC histograms were added Poisson distributed

shot noise using the function poissrnd in Matlab and saved to data

files, which were then read in LabVIEW and passed to Laurence’s

software and our GPUFLIMFit to resolve the fluorescence

lifetimes and intensity amplitudes.

Figure 4 demonstrates that GPUFLIMFit implemented with

GPU-LMFit accelerates the fluorescence lifetime fitting analysis in

TCSPC FLIM. Figure 4(a) shows an example of fitting a synthetic

TCSPC histogramwith a total of 102 photons and 64 data points to

the model – Equations (8) and (9). The first simulation for the fitting

precision comparison was performed with the simulated 64 points

TCSPC histograms in which the number of photons on each curve

varies as indicatedon thex-axisofFigures4(b–c).Figures4(b–c) show
thatbothLaurence’s softwareandGPUFLIMFitgivenearly identical

precisionsof the fitted lifetimestandamplitudesA2 in this simulation,

evidencing that GPU-LMFit can also be a precise optimizer for

TCSPCFLIM.Theother simulation for the fitting speedcomparison

in Figure 4(d) was performedwith the simulatedTCSPChistograms,

eachofwhichhas100photons andavaryingnumberofdatapoints as

indicatedon thex-axisof the figure. InFigure4(d), ourGPUFLIMFit

can perform averagely 496faster than Laurence’s CPU software on

the computer, in which the GPU device is a NVIDIAQuadro 4000

graphic card, and an Intel eight-core CPU processor (W3550, 8 M

Cache, 3.06 GHz) and 16 Gbytes memory are installed.

Figure 5 shows an implementation of our GPUFLIMFit on the

experimental FLIM imaging data of a cross-section of the rhizome

of Convallaria (Lily of the Valley). The image data was taken using

a multiphoton fluorescence confocal microscope which was

developed based on an ISS Alpha FCS microscope (ISS,

Champaign, IL) and upgraded with a TCSPC card and a two-

photon excitation at 800 nm of the pulsed laser beam. Figure 5(a)

is the fluorescence intensity image, which has 2566256 pixels and

at each pixel a TCSPC histogram was measured with 64 channels

(i.e., 64 data point per TCSPC histogram) by using a TCSPC card

equipped with the microscope. Using GPUFLIMFit, the genera-

tion of the fluorescence lifetime image in Figure 5(b) was

accomplished in ,0.6 seconds. An intensity threshold of 400

counts was used in the calculation of the lifetimes so that a total of

42834 pixels were involved in the calculation.

Limitations of the Study, Open Questions, and Future
Work
The LM algorithm is an iterative procedure. Before the

procedure can begin, one needs to estimate an initial value for

each fitting parameter. For a complete new model, if one cannot

be sure whether the initial values are correct, it will require the

user to graph the curve defined by some estimated initial values. If

the resulting curve comes close to the data, the parameter values

can be chosen to start the fitting process. However, for the massive

parallel model fitting processes in GPU-LMFit, it is necessary that

the program can automatically compute the initial values. In our

two application examples in SRLM and FLIM, the initial

estimates of some fitting parameters including b, A1, xc and yc
in Equation (7) as well as A2 in Equation (8) can be calculated from

the experimental data; other fitting parameters have physically

limited small value ranges – the parameter s in Equation (7) ranges

in practice from half a pixel to a few pixels and the parameter t in
Equation (8) is generally from hundreds of picoseconds to ,10 ns.

The LM algorithm has been proved very robust and stable, and

we found that it can work well if the parameter s or t is simply

initialized with a constant value in its physical value range.

GPU2DGaussFit fits massive single-molecule images to Equa-

tion (7) to retrieve the positions of single-molecules, and in SRLM

this is a conventional single-molecule fitting method, which is

known not as accurate for high molecular density SRLM images as

for low molecular density images. This is because the single-

molecule signals can overlap in a high molecular density image,

and Equation (7) cannot be the good model for this type of images.

A number of methods [29] have been reported to be suitable for

high molecular density images, but they are usually found to be

less accurate for low molecular density image than single-molecule

fitting methods.

Astigmatic imaging [26] is one of several existing methods for

three-dimensional (3D) SRLM. It is achieved by adding a

cylindrical lens to the imaging path to make the axial symmetry

of the PSF image of each emitter dependent on its axial position.

The z-coordinate for each emitter can be retrieved by using a

predetermined astigmatic calibration curve of the optical system. It

has been reported [30] that fast anisotropic 2D Gaussian fitting

can accelerate the 3D post-acquisition reconstruction analysis in

3D SRLM using astigmatic imaging. Following the method in

[30], some simple modifications can also be made on GPU2D-

GaussFit to enable the use of GPU-LMFit for fast 3D astigmatic

imaging. For example, the fitting function, i.e., Equation (7),

should be replace with an anisotropic 2D Gaussian.

For most applications in SRLM and FLIM, both GPU2D-

GaussFit and GPUFLIMFit can allow the generation of paramet-

ric imaging microscopy images much faster than the image data

acquisition, so the model fitting speed is generally to be sufficient

for real-time data analysis. As discussed in Figure 1, the

architecture of GPU-LMFit is also suitable to directly use multiple

GPUs to further increase the efficiency of GPU-LMFit for the

applications with the continuously increased rate of data output in

new microscopy methods using new detector technologies.
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A variety of methods have been developed to extract the single-

molecule positions from SRLM data [3,29,31] and the lifetimes

from FLIM data [4,32,33]. Some [29,33] of these methods are not

model fitting methods, and the performance comparison of the

different methods is out of the scope of this paper, while others

[4,31] compare only the different fitting model functions. In this

work, we focus on the performance optimization of the LM

optimizer and provide GPU-LMFit to achieve efficient and

accurate massive parallel model fitting computations for real-time

automated parametric imaging microscopy.

Conclusions

We applied high performance scalable parallel computing

technique based on GPU implementation to the LM algorithm

and provide an accurate, robust and very efficient minimization

optimizer, GPU-LMFit. We demonstrate the performance of

GPU-LMFit in the massive model fitting applications in SRLM

and FLIM, and found that GPU-LMFit is an efficient optimizer

that can enable real-time automated pixel-wise parametric

imaging microscopy. It can be concluded that GPU-LMFit should

be directly useful in a wide variety of automated pixel-wise

parametric imaging microscopy techniques and many other fields

where experimental data analyses rely on model fitting techniques.

Supporting Information

File S1 Supplementary Software. The complete package

includes a user’s manual, the 32-bit CUDA C libraries of GPU-

LMFit, the example source code of GPU2DGaussFit and the

Matlab simulation programs for the performance tests of both

GPU2DGaussFit and GPUFLIMFit.
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