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ABSTRACT: Alterations to the gut microbiome and exposure to metals during pregnancy have been suggested to impact
inflammatory bowel disease. Nonetheless, how prenatal exposure to metals eventually results in long-term effects on the gut
microbiome, leading to subclinical intestinal inflammation, particularly during late childhood, has not been studied. It is also
unknown whether such an interactive effect drives a specific subgroup of children toward elevated susceptibility to intestinal
inflammation. We used an amalgamation of machine-learning techniques with a regression-based framework to explore if children
with distinct sets of gut microbes and certain patterns of exposure to metals during pregnancy (metal−microbial clique signature)
had a higher likelihood of intestinal inflammation, measured based on fecal calprotectin (FC) in late childhood. We obtained
samples from a well-characterized longitudinal birth cohort from Mexico City (n = 108), Mexico. In the second and third trimesters
of pregnancy, 11 metals were measured in whole blood. Gut microbial abundances and FC were measured in stool samples from
children 9−11 years of age. Elevated FC was defined as having FC above 100 μg/g of stool. We identified subgroups of children in
whom microbial and metal−microbial clique signatures were associated with elevated FC (false discovery rate (FDR) < 0.05). In
particular, we found two metal−microbial clique signatures significantly associated with elevated FC: (1) low cesium (Cs) and
copper (Cu) in the third trimester and low relative abundance of Eubacterium ventriosum (OR [95%CI]: 10.27 [3.57,29.52], FDR <
0.001) and (2) low Cu in the third trimester and high relative abundances of Roseburia inulinivorans and Ruminococcus torques (OR
[95%CI]: 7.21 [1.81,28.77], FDR < 0.05). This exploratory study demonstrates that children with specific gut microbes and specific
exposure patterns to metals during pregnancy may have higher fecal calprotectin levels in late childhood, denoting an elevated risk of
intestinal inflammation.
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■ INTRODUCTION
Preclinical and early life environmental signatures of inflamma-
tory bowel disease (IBD), an immune-mediated disease of the
intestinal tract, are increasingly being recognized.1 Recent
literature suggests that preclinical IBD can occur at least two
years prior to IBD diagnosis and could be identified using
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subclinical inflammation markers.2 Identifying preclinical
markers of IBD can help with diagnosis, treatment, and disease
monitoring.3 Biomarkers of preclinical IBD include intestinal
inflammation and distinct gut microbiome perturbations.1

Raygoza Garay et al. reported that, among first-degree relatives
of individuals with Crohn’s disease (CD) (a subtype of IBD), a
microbiome risk score (MRS) based on specific taxonomic
features was predictive of subsequent CD diagnosis.4 The group
also reported elevated fecal calprotectin (FC) as a marker of
subclinical intestinal inflammation preceding CD diagnosis.1

Offspring of women with IBD possess distinct microbiome
features with loss of bacterial diversity and elevated FC
compared to offspring of women without IBD.5,6 This indicates
that programming of the gut microbiome, intestinal health, and
IBD risk in childhood may occur during the prenatal period.
However, the impact of gut microbiome signatures on
preclinical intestinal inflammation has not been well charac-
terized. Mapping these relationships is pertinent to under-
standing IBD risk factors and pathways and for prediction and
prevention.
Metal exposures during the prenatal period have been

hypothesized to be particularly important in the programming
of later gut microbiome function, intestinal inflammation, and
IBD risk.7,8 Transition metals (iron, zinc, copper, manganese,
molybdenum, etc.) are biologically necessary for humans as part
of the immune system and are used during inflammation to fight
infections, both by limiting bacterial access to these essential
metals and by employing metal toxicity to kill invading
bacteria.9,10 This process of controlling infection through
immune-mediated metal availability and toxicity is called
nutritional immunity.11 As part of nutritional immunity,
neutrophils produce and secrete calprotectin, which serves as a
high-affinity manganese/zinc binding protein, limiting the
availability of the metals to bacteria within the gut micro-
biome.12 Metal withholding by calprotectin is likely to have a
negative impact on both commensal and pathogenic bacteria.13

Both high and low essential metal exposures have been shown to
influence the gut microbiome diversity and have been correlated
with gut inflammation. Likewise, toxic metals (e.g., mercury and
lead) have been shown to alter gut microbiome composition and
function.14−16 Moreover, a growing body of literature suggests
that prenatal metal exposures can alter the gut microbial
composition and metabolic functions later in childhood.17 This
may be partly due to prenatal programming of nutritional
immune function,18 which suggests that certain nutrients and
elemental exposure during the prenatal or perinatal period may
interact and possibly shape how the body reacts to certain
external perturbances and modifies microbial diversity.19

Prenatal metal levels have also been associated with IBD risk
later in life.20 However, little is known regarding the relationship
among prenatal metal exposures, the gut microbiome, and
intestinal inflammation, especially during childhood.
Environmental studies suggest that important biochemical

interactions occur among specific bacterial taxa, varying from a
few to many bacterial species.21 Early life metal exposures may
influence these interactions.22 However, the effect of these
interactions may be more pronounced in certain subgroups of
the sample.22 Therefore, similar to the conceptual framework of
“genetic signature”, which can be present, particularly in a
specific subpopulation, we introduce the concept of a “metal−
microbial clique signature”. We define this as a signature that can
be characterized by metal concentrations and microbial
abundances, and only a certain subgroup of children with

specific patterns of metal exposure during pregnancy and
microbial abundance above or below certain thresholds in late
childhood will have these definite signature patterns. We
hypothesize that children with specific metal−microbial
cleavage signatures will have a higher risk of preclinical intestinal
inflammation. Such a clique signature, therefore, conceptually
differs from individual and metal mixture associations, where
every individual in the sample has simultaneous exposures but
only a specific subgroup is exposed to a clique signature.
Identifying such clique signatures is technically challenging since
simultaneously searching for multiordered combinations and
estimating thresholds to create subgroups are computationally
very intensive. For example, choosing two-ordered or three-
ordered combinations from a set of 100 microbes and 11 metals
yields more than 5 × 103 and 2 × 105 combinations to choose
from. On top of that, there is additional complexity in finding
thresholds. Therefore, parsing through such vast combinations
is substantially challenging if classical statistical tools are used
solely. Hence, the use of machine learning techniques not only
provides a way forward but also provides a framework for
precision environmental health. In this article, we explore
whether children with certain metal−microbial clique signatures
have a higher risk of developing intestinal inflammation in late
childhood using an ensemble of machine-learning tools with a
regression-based framework.

■ MATERIALS AND METHODS

Study Population
This study leverages data from the Programming Research in Obesity,
Growth, Environment, and Social Stressors (PROGRESS) cohort in
Mexico City, Mexico, an ongoing longitudinal birth cohort.23,24 The
PROGRESS cohort enrolled 948 pregnant women and their offspring
and is designed to examine associations between early life environ-
mental toxicant exposures (i.e., metals) and pediatric health. Recruit-
ment started in July 2007. Pregnant women were enrolled in the
Mexican Social Security System at the beginning of the study.
Participants completed study visits in the second and third trimesters,
andmothers and offspring were followed approximately every two years
from birth to adolescence. Study visits included surveys, physical exams,
biological sample collection, and psychological and behavioral testing.
Approximately 600mother−child pairs are actively followed by surveys,
physical exams, and psychological and behavioral assessments with
children currently 14−16 years old. Blood and urine samples were
collected when the children were 4, 6, 8, and 10 years of age (on
average). As a substudy based on this cohort, stool sampling occurred at
the study visit when children were between 8 to 11 years of age in a
convenience subsample of the cohort (n = 123); however, 108 had
complete outcome data available. Before the stool collection, all
children with a history of antibiotic usage in the past month of stool
sample collection were excluded.

Metal Measurement
During the second and third trimesters of pregnancy, whole blood
samples from mothers were used to measure metal concentrations. As
noted in our previous studies, in the “Trace Metals Laboratory of the
Icahn School of Medicine at Mount Sinai”, multiple metal
concentrations, including arsenic (As), copper (Cu), chromium (Cr),
cadmium (Cd), selenium (Se), antimony (Sb), lead (Pb), cesium (Cs),
zinc (Zn), manganese (Mn), and cobalt (Co), were determined using
the “Agilent 8800 ICP Triple Quad (ICP-QQQ) in MS/MS mode”.
Further, all measurements were taken in five replicates and reported as
an average, and the quality control standards were recovered at 90−
110%. For laboratory elemental analysis, quality assurance, and quality
control procedures, the following measures were undertaken: (1) initial
verification standards, (2) analyses of calibration standards in the range
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of 0.001 to 50 ng/mL, and (3) continuous calibration verification
standards.25,26

Gut Microbiome Data Collection and Further Processing
Details on stool sample collection and subsequent analysis are
presented in our previous works.17,22,27 Briefly, at the 8−11 year visit,
stool samples were collected from the children. Samples were self-
collected by participants with help from their parents, as required.
Whole stool samples were processed and aliquoted following the FAST
protocol at the ABC Hospital in Mexico City.28 Frozen samples for
further analysis were sent to the Microbiome Translational Center at
Mount Sinai. Next, samples were processed and sequenced in two
batches, n = 73 and n = 50, depending on the time of receipt of the stool
samples. Using the NEBNext DNA Library Prep kit, shotgun
metagenomic sequencing was performed and eventually sequenced
on an Illumina HiSeq. We used Trimmomatic to trim the quality of the
sequencing reads, and human reads were removed by mapping to a
reference with bowtie2.29,30 To determine microbial taxonomy at the
species/strain level, the remaining reads were processed using
MetaPhlAn2, StrainPhlAn, and HUMAnN2 to profile microbial gene
pathways.31−33

Fecal Calprotectin Measurements
Aliquots from the same stool samples were weighed to 40 mg for fecal
calprotectin (FC) measurements using a CALPROLAB Calprotectin
enzyme-linked immunosorbent assay (ELISA) kit (Svar Calpro,
Lysaker, Norway). All procedures were performed as previously
described.6 We used high FC as the outcome, defined as ≥100 μg/g
of stool.34 Previous reviews have shown that, for children, a cutoff of
100 μg/g for fecal calprotectin provides almost 100% sensitivity and
90% specificity in detecting IBD vs non-IBD cases.35 Therefore, we will
use this binary outcome for clinical relevance and an improved
interpretation of our findings.

Covariates
Covariates included in the subsequent analyses were (1) maternal
socio-economic status (SES) during pregnancy, (2) maternal body
mass index (BMI) during pregnancy, (3) maternal age at birth, (4) the
child’s age at the time of stool sample collection, (5) child sex, and last
(6) the microbiome analysis batch. Measured height and weight were
used to calculate BMI. As noted in earlier papers, “the SES during
pregnancy was assessed using the 1994 Mexican Association of
Intelligence AgenciesMarket andOpinion. Families were classified into
six levels based on 13 questions about household characteristics. In the
study, most families belonged to the low-middle SES category; thus, we
condensed all the six categories into three categories: low, mid, and
high”.22,36 For simplicity and due to smaller sample sizes, we kept the
covariates minimal.17

Statistical Methods
We conducted all analyses in R (version 4.2.3). We followed a similar
analysis strategy as our previous work and reiterated details for
replication.17 For univariate analyses, we used covariate-adjusted
logistic regressions. The association estimates for metals were
presented through forest plots, whereas we used volcano plots for the
relative bacterial abundances. The metal concentrations and relative
abundances of the microbial taxa were transformed into quartiles to
ward off influences of outliers and for homogeneity in variance. The
metal concentrations below the limit of detection were therefore
assigned the lowest quartile values. Although most exposures had a
slight right skewness in their distributions, such skewness could possibly
bias the standard errors in regression analysis and therefore bias the
asymptotic normality of the p-value. To combat this, we conducted
normality-agnostic robust permutation tests (as sensitivity analyses) to
verify the p-values of the reported associations. The unadjusted p-values
were corrected by using the false discovery rate (FDR) procedure. Any
missing values in covariates were imputed using the predictive mean
matching algorithm as implemented through the MICE R package.37

The main analyses were conducted on the imputed data set. To ensure
that there is no substantial batch effect in the microbiome data
processing, first, we conducted a detailed principal component analysis

on the β diversity metrics by batch; second, we only used those
microbial taxa that had at least 5% relative abundance in both batches;
and third, we adjusted for the batch indicator in all of our models.

The downstream analysis identifies combinations of prenatal metal
exposures and gut microbes and their thresholds, eventually creating
the metal−microbial clique signatures. As an example, consider a clique
signature of microbe X and metals Y and Z, denoted by X+/Y−/Z+,
which implies a subgroup of the sample with a higher relative
abundance of X, a lower concentration of metal Y, and a higher
concentration of metal Z. Therefore, a clique signature in this analysis is
represented as a binary variable, characterizing a specific subgroup of
children with particular patterns of prenatal metal exposures and
microbial relative abundances. We used an interpretable machine-
learning algorithm called the “repeated hold-out signed-iterated
Random Forest” (rh-SiRF) and merged it with a regression-based
inference framework, where the relative abundances of the gut
microbial taxa and prenatal metal exposures during the second and
third trimesters were treated as predictors, and elevated FC as the
outcome.38−40 Previously, after controlling for the overall environ-
mental chemical mixture effect, the rh-SiRF algorithm was used to find
highly ordered interactions among chemical exposures. The rh-SiRF
algorithm combines (1) a weighted random forest algorithm that
iteratively assigns higher weights on predictors with better discrim-
inatory performance and (2) within the forest searches for
combinations of nodes (predictors) that co-occur together in the
generated trees. Among the bootstrapped iterations and throughout the
forest, if a certain combination of predictive nodes co-occurs multiple
times, then the rh-SiRF algorithm chooses such a combination and
provides statistics to quantify the strength of its occurrence. Finally,
using a “threshold finding algorithm”, the multiordered combinations
were converted into binarized clique signatures.

The rh-SiRF model was fitted in three stages to create cliques of
metals, cliques of microbes, and cliques of metals−microbes: (1) first,
two separate models were fitted on a subset of 70% data (n = 76), one
with prenatal metal concentrations as the predictors and the other with
microbial relative abundances as the predictors. (2) Next, we extracted
the top 5% of the most commonly occurring combinations from both
models. The cutoff of 5% was chosen to obtain, at most, a total of 10
stable clique features. We chose a conservative cutoff since the higher
the cutoff, the higher the possibility of including overfitted cliques for
the next stage of modeling. (3) Lastly, we again fitted two rh-SiRF
models using the training data set (n = 76) with the top 5% most stable
metal combinations and all microbial abundances as predictors and the
other with the top 5%most stable microbial combinations and all metal
concentrations as predictors. The aim of this third step was to identify
all possible metal−microbial clique signatures of a higher order. With
the small sample size, this algorithm could not often find more than two
ordered cliques; therefore, in the third stage, we included both models
to create three-ordered clique signatures. The sole individual metal
combinations and microbial combinations were chosen from the first
stage, whereas the metal−microbial combinations were chosen from
the third stage. Each model was repeated at least 500 times with 200
bootstrap iterations, ensuring that the often occurring combinations are
not just an over fitted combination; instead, they must occur multiple
times throughout the forest to be picked up by the algorithm. Further,
each machine-learning model was fitted on a continuous log-
transformed calprotectin value to combat overfitting. In contrast, the
eventual downstream regression analyses were conducted on binarized
FC. Finally, we converted these combinations into predictive clique
signatures using a threshold-finding algorithm for the following
regression analysis stage. We used the whole data set (instead of 30%
test data for the regression analysis) because the regression estimates
would not be robust with a mere sample size of n = 32, and none of the
asymptotic properties would kick in. Although this is not the ideal
scenario, training on 70% of the data and regression (testing) on the
whole data create some form of separation and help to instill the
asymptotics in p-values with better coverage for the 95% CIs.
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Table 1. Characteristics of the Study Population

variablea overall (n = 108)
low fecal calprotectin

(<100 μg/g)
elevated fecal calprotectin

(≥100 μg/g)
p-

valueb

child sex 0.83
male, n (%) 62 (57.41%) 43 (56.58%) 19 (59.38%)
female, n (%) 46 (42.59%) 33 (43.42%) 13 (40.63%)
maternal SES in pregnancy 0.79
low, n (%) 59 (54.63%) 43 (56.58%) 16 (50.00%)
mid, n (%) 38 (35.19%) 25 (32.89%) 13 (40.63%)
high, n (%) 11 (10.19%) 8 (10.53%) 3 (9.38%)
maternal age in years at offspring birth, mean (SD) 28.31 (5.65) 28.83 (5.86) 27.09 (5.00) 0.21
maternal BMI (kg/m2), in pregnancy, mean (SD) 26.90 (4.37) 27.02 (4.42) 26.63 (4.31) 0.82
child age in years at stool sample collection, mean (SD) 9.67 (0.88) 9.71 (0.87) 9.59 (0.91) 0.32
Shannon α diversity index, mean (SD) 2.35 (0.39) 2.38 (0.37) 2.29 (0.44) 0.29
2nd trimester Mn concentration (μg/L), mean (SD)c 14.53 (5.43) 15.23 (5.89) 12.88 (3.70) 0.07
2nd trimester Cr concentration (μg/L), mean (SD)c 0.77 (1.11) 0.67 (0.89) 1.00 (1.52) 0.42
3rd trimester Cs concentration (μg/L), mean (SD)c 2.64 (0.85) 2.63 (0.82) 2.66 (0.92) 0.90
3rd trimester Cu concentration (μg/L), mean (SD)c 1621.35 (275.50) 1645.94 (301.94) 1562.97 (190.85) 0.38
aSES, socioeconomic status; BMI, body mass index; Mn, manganese; Cr, chromium; Cs, cesium; Cu, copper. bp-values were obtained using
Fisher’s exact test or Wilcoxon rank sum test as required. cConcentrations of all metals in the second and third trimesters are provided in the
Supporting Information

Figure 1. Prenatal metal exposures, gut microbial relative abundances, and elevated fecal calprotectin level. (A) Prenatal metal exposures and odds of
high fecal calprotectin (≥100 μg/g) presented through forest plots. (B)Microbial relative abundance and adjusted odds of high fecal calprotectin. Part
(A) shows the individual associations (adjusted odds ratios (OR) and 95% CI) between prenatal metal exposures at second and third trimesters and
high fecal calprotectin (≥100 μg/g). The metal concentrations were transformed into quartiles for robustness. Part (B) demonstrates the OR for
associations between microbial relative abundance and elevated fecal calprotectin. The p-values and the ORs are plotted through a volcano plot. The
red horizontal line denotes the log(p-value) at 0.05, the nominal p-value. In contrast, the black horizontal line denotes the log(p-value) at 0.002, the
multicomparison error adjusted p-value.

Environment & Health pubs.acs.org/EnvHealth Article

https://doi.org/10.1021/envhealth.4c00125
Environ. Health 2024, 2, 739−749

742

https://pubs.acs.org/doi/suppl/10.1021/envhealth.4c00125/suppl_file/eh4c00125_si_001.pdf
https://pubs.acs.org/doi/10.1021/envhealth.4c00125?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/envhealth.4c00125?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/envhealth.4c00125?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/envhealth.4c00125?fig=fig1&ref=pdf
pubs.acs.org/EnvHealth?ref=pdf
https://doi.org/10.1021/envhealth.4c00125?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Sensitivity Analysis
We conducted multiple sensitivity analyses to ensure the robustness of
our results. First, we adjusted the regression models for the clique
signature association analyses with the Shannon α diversity index.
Second, to understand the impact of threshold choices on the
directionality of the associations while constructing the clique
signatures, we deliberately increased and decreased each threshold by
10 percentiles and refitted the models. Third, to ensure that the p-values
obtained from the main regression-based metal−microbial clique
models were robust, we conducted randomization with a permutation
test, where we randomly permuted each of the outcomes 105 times and
estimated robust p-values. Fourth, we repeated the main analysis using
continuous calprotectin values and reported the standardized and
scaled β estimates. Fifth, we repeated the main using a log-binomial
model to report relative risks instead of odds ratios. Sixth, and most
importantly, we presented the regression analysis for metal−microbial
cliques on the 30% (n = 32) test data to highlight the robustness of the
result.

■ RESULTS
Table 1 shows the characteristics of the study population.
Among the 108 participants, there were moremale children than
female children (57% and 43%, respectively). The average age at
stool sample collection was between 9 and 10 years; most
children belonged to the mid-to-lower SES group. The

distribution of prenatal metal concentrations and their
corresponding percentage above the detection limits are
presented in Table S1. The median (IQR) of FC was 43.9
(91.8) μg/g. Both the α (measured by Shannon index) and β
diversities had almost null associations with the elevated FC (α
diversity, OR = 0.91 and p-value = 0.2; β diversity, F = 1.39 and
p-value = 0.17). In Table 1, we only included the concentrations
of Mn, Cr, Cs, and Cu since these metals eventually formed
metal cliques and metal−microbial cliques in the later stage of
the analysis.
The results of the covariate-adjusted analyses for individual

prenatal metals and gut microbial relative abundance are
represented in Figure 1. The adjusted odds of elevated offspring
FC by maternal blood metal levels varied by trimester (Figure
1A). Increased relative abundance of Eubacterium ventriosum
and Faecalibacterium prausnitzii was associated with lower odds
of elevated FC (OR [95%CI]: 0.33 [0.18,0.63], p-value < 0.001
and 0.56 [0.32,0.99], p-value < 0.05, respectively), while
increased relative abundance of Ruminococcus torques was
associated with higher odds of elevated FC (OR [95%CI]:
1.15 [1.85,2.99], p-value < 0.05, Figure 1B). Only the FDR-
adjusted p-value for E. ventriosum was lower than 0.05.
We identified multiple two- and three-component metal,

microbial, and metal−microbial clique signatures associated

Figure 2. Distribution (density plot) of fecal calprotectin (continuous and binary) over subgroups of children with (or without) metal−microbial
clique signatures. (A and B) The density plots of log-transformed calprotectin levels for subgroups of children with andwithoutmetal−microbial clique
signatures. (C and D) Similar distributions through stacked bar plots for binary calprotectin levels.
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with elevated FC. However, the major metal−microbial clique
signatures consisted of (1) low concentrations (below the 70th
and 80th percentile of the sample) of Cs and Cu in the third
trimester and low relative abundance of E. ventriosum (below the
sample median) and (2) low concentration (below sample
median) of Cu in the third trimester and high relative
abundances of Roseburia inulinivorans and R. torques (both
above the 60th percentile of the sample). Figure 2 shows the
distribution of continuous log-transformed calprotectin levels
and the binary high FC level (≥100 μg/g) for subgroups of
children with and without the metal−microbial clique
signatures. All the illustrative figures show that subgroups of
children with any metal−microbial clique signatures were
significantly more likely to have higher fecal calprotectin levels.
Figure 3A demonstrates associations across metal, microbes,

and metal−microbial clique signatures. As illustrated by Figure
3, the strongest associations were observed among the metal−
microbial clique signatures. We identified two subgroups of
children (29.6% and 11.1% of the sample) characterized by the
clique signatures Cs−Cu−E. ventriosum and Cu−R. inulinivor-
ans−R. torques with significantly elevated FC in late childhood
(OR [95%CI]: 10.27 [3.57,29.52], p-value < 0.0001 and OR
[95%CI]: 7.21 [1.81,28.77], p-value < 0.01, respectively).
Except for the associations with metal clique signatures, all
associations with microbial and metal−microbial clique
signatures had FDR-adjusted p-values below 0.05. The Spear-
man correlation between these two clique signatures was
minimal (correlation = −0.04), indicating the detection of

mutually exclusive subgroups. Similarly, the correlation across
variables did not play a significant role in constructing metal−
microbial clique signatures (Figure 3B).
The sensitivity analyses illustrated the robustness of the main

results. Associations remained consistent after further adjust-
ment for the Shannon α diversity index. We conducted two
additional sensitivity analyses, where each threshold of the
clique signature components was separately (1) increased and
(2) decreased by 10 percentiles; however, the directionalities of
all the major remained unchanged (Figures S1A and S1B). The
permutated randomization-based p-values for the metal−
microbial clique signatures remained as low as the model-
based asymptotic p-values (p-value < 105). There were less than
5% missing values in a few covariates, and results did not alter
significantly when the analysis was repeated in the nonimputed
data set. The results for the associations with continuous
calprotectin values are presented in Figure S2. The directionality
of the associations remains unaltered, with the associations for
metal−microbial cliques remaining significant. We also
presented relative risk estimates instead of odds ratio for Figure
3A in Figure S3. Lastly and most importantly, we presented the
regression analysis for metal−microbial cliques on the 30% (n =
32) test data (Figure S4). As expected, the directionality of the
associations for metal−microbial clique associations remains
unaltered (with one of them remaining statistically significant),
while due to the small sample size, the 95% CIs are very broad.
Therefore, this validates that the associations observed from the
whole data analysis are not merely due to overfitting.

Figure 3. Metal−microbial clique signatures, odds of high fecal calprotectin, and the Spearman correlation between components of metal and
microbial cliques. (A) The associations with metal and microbial clique signatures. The top rows (red, green) denote second- and third-order metal
clique signatures, the middle rows (blue) denote microbial clique signatures, and the bottom rows (purple) denote the metal−microbe clique
signatures. The sample proportion of children for each clique is denoted within brackets. The names of the clique signatures are noted on the Y-axis of
(A). (B) The Spearman correlation between variables that constitute the clique signatures. 2T, second trimester; 3T, third trimester.
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■ DISCUSSION
Using a novel machine-learning approach, this pilot analysis
investigated the effect of maternal metal exposure during
pregnancy and the offspring’s fecal microbiome on elevated
intestinal inflammation in late childhood.We demonstrated that
interactions among bacterial taxa in childhood and specific
metals during pregnancy are associated with an elevated FC in
otherwise healthy children. Our findings indicate that early life
exposure to metals and their consequent interaction with the gut
microbiome could intricately shape children’s biological
programming of gastrointestinal inflammatory processes. The
use of an ensemble machine-learning approach allowed us to
uncover previously unknown interactions among prenatal metal
exposures, offspring fecal microbial features, and their effect on
intestinal inflammation in children. To the best of our
knowledge, this is the first study to report on microbial and
metal−microbial interactions leading to subclinical intestinal
inflammation. We also delineate specific clique signatures
identifying children with higher susceptibility to worsening
intestinal inflammation, highlighting the potential for prediction
and prevention opportunities in late childhood. Our approach
provides a framework for a precision environmental health
approach.
The bacterial taxa that are of importance highlighted in our

study have previously been associated with IBD risk. Specifically,
E. ventriosum and F. prausnitzii have shown inverse associations
with IBD and MRS,5 respectively, while R. torques have been
linked to MRS, a known predictor of CD onset.4 These findings
are consistent with perturbations observed in a multiomic
analysis of 132 individuals.41 Together, these data suggest that
specific combinations of bacterial taxa may play a role in
intestinal inflammation and IBD risk, and our findings highlight
that when present as clique signatures, specific combinations of
taxa may lead to intestinal inflammation as early as childhood.
Using gut microbiome taxonomic features and fecal calprotectin
may also help predict future risks of IBD, thereby developing a
framework for prediction and prevention.
Additionally, maternal metal levels during pregnancy and

their relation to inflammation and IBD remain unclear. A pilot
study analyzing deciduous teeth indicated higher metal
absorption levels (Cu, Zn, Cr, and Pb) among IBD cases
compared to controls during different early life periods.20 While
these specific metals have been linked to IBD, further
investigation is warranted to elucidate their role, specifically
their long-term effect on childhood. Moreover, our findings of
Cu and Cs concentrations align with previous evidence
associated with inflammatory responses. Human and rodent
models suggest that Cu-induced inflammation is associated with
conditions such as osteoarthritis, pulmonary lesions, oxidative
stress, and apoptosis.41−43 Cs toxicity has been linked to the
disruption of homeostasis inflammatory mediators, neuro-
inflammatory responses in rats, nephritis, and rheumatoid
arthritis.43−46

Low levels of Cu or its deficiency can lead to chronic
inflammation and oxidative stress.47 However, not much is
known about exposure to low levels of Cs. In our data, individual
concentrations of Cs and Cu during pregnancy and elevated
fecal calprotectin levels were not significantly associated;
however, the interactive cliques of these metals (at low levels)
with microbes showed strong associations with elevated fecal
calprotectin. Note that prenatal exposures to metals have
previously been reported to have nonlinear effects on health

outcomes.48 Therefore, such observations raise the plausibility
of nonlinear synergistic interactions between Cu and Cs (only at
low levels), which might affect the microbial diversity of certain
bacteria. There is a lack of such interactions reported in the
current literature, particularly for inflammation, but future work
should investigate the mechanistic underpinnings.
Furthermore, it is well-known that metals are omnipresent

elements found extensively in the environment. Upon entry into
the body, they can be absorbed through the gastrointestinal tract
and transported to various organs and tissues. Environmental
epidemiological studies indicate that metals can influence the
composition of the gut microbiome and are associated with
alterations in it, affecting microbial metabolic profile, gut barrier
integrity, and immune dysregulation, which are associated with
gastrointestinal disorders like IBD.49−52 Furthermore, multiple
animal studies showed an association between dietary levels of
Cu and inflammatory response through alteration of gut
microbial compositions.53 Therefore, exploring the interactive
chemistry between metals, microbes, and their synthesis effects
is essential, given the limited epidemiological studies investigat-
ing their association with child health outcomes.
A metal or metal−microbial clique signature signifies a

specific affinity between metal exposures and distinct gut
microbial signatures. Our prior investigations have illustrated
the complex nature of these affinity clique signatures, showing
unique combinations of metals and microbial abundances
capable of exerting notable influences on pediatric health
outcomes. For example, in our previous research using an
innovative statistical method, Microbial and Chemical Exposure
Analysis (MiCxA), we identified a two-taxa microbial clique
signature featuring Bif idobacterium adolescentis and Ruminococ-
cus callidus and a three-taxa clique signature that included
Prevotella clara during late childhood, associated with lead
exposure.17 Similarly, we identified a metal−microbial clique
signature characterized by high Zn levels in the second trimester,
low Co levels in the third trimester, and an increased abundance
of specific bacteria, such as Bacteroides f ragilis. This precise
metal−microbial clique signature was linked to elevated
depression scores in school-aged children.22 These findings
emphasize the importance of these associations in disentangling
how metal exposures can influence gut microbiota composition,
accentuating the complex interactions between metal and
microbes and thus potentially contributing to a spectrum of
child health and well-being outcomes.
Strengths of our study include the use of a longitudinal birth

cohort of healthy children with regular follow-up and the
availability of relevant clinical data and biological samples. We
used objective omics and biomarker measurement techniques
and applied a state-of-the-art interpretable machine learning
algorithm to identify metal−microbial clique signatures, which
are novel and unbiased approaches. Our study also has
limitations. Our study sample size is relatively small; however,
we note a signal with a high strength of association and biological
plausibility. We have conducted a cross-sectional analysis of the
gut microbiome and FC due to access to stool samples at a one-
time point, and there is a lack of IBD outcomes in the study
participants. Although diet is an important component that
affects microbial diversity,54 we did not adjust our analyses for
maternal and child diet or their dietary history due to a lack of
data. Although maternal IBD status can influence child IBD and
alter their gut microbial diversity,5 we also did not adjust for
maternal IBD status or calprotectin level due to the lack of such
data in the present cohort. However, these data on subclinical
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features of intestinal inflammation provide important mecha-
nistic insights. Certainly, replication in larger cohorts with a
greater sample size would be an important next step toward
prediction and prevention strategies in IBD. Early detection and
a deeper mechanistic understanding of IBD in children reduced
the risk of developing more severe conditions and associated
extensive morbidity.

■ CONCLUSIONS
In conclusion, we demonstrate that children with specific
exposure patterns to metals during pregnancy and gut microbial
signatures have a higher likelihood of subclinical intestinal
inflammation. Using an interpretable machine-learning techni-
que, we provide a framework for a precision environmental
health approach that identifies children with a higher
susceptibility to worsened intestinal inflammation. Future
research is necessary to fully understand the mechanistic
insights and create an exposome-based precision health
initiative.
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