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Cytochrome P450 (CYP450) is themajor family of enzymes involved in themetabolism of several xenobiotic and
endogenous compounds. Among substrates for CYP450 is the tryptophan metabolite skatole (3-methylindole),
one of the major contributors to the off-odour associated with boar-tainted meat. The accumulation of skatole
in pigs is highly dependent on the hepatic clearance by CYP450s. In recent years, the porcine CYP450 has
attracted attention both in relation to meat quality and as a potential model for human CYP450. The molecular
regulation of CYP450 mRNA expression is controlled by several nuclear receptors and transcription factors that
are targets for numerous endogenously and exogenously produced agonists and antagonists. Moreover,
CYP450 expression and activity are affected by factors such as age, gender and feeding. The regulation of porcine
CYP450 has been suggested to have more similarities with human CYP450 than other animal models, including
rodents. This article reviews the available data on porcine hepatic CYP450s and its implications for boar taint.
© 2014 Rasmussen, Zamaratskaia. Published by Elsevier B.V. on behalf of theResearchNetwork of Computational

and Structural Biotechnology. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Regulation of cytochrome P450 (CYP450) and its importance for
xenobiotic clearance in the body has been the focus of numerous studies
over the last two decades. Moreover, the involvement of CYP450 en-
zymes in themetabolismof several endogenously produced compounds
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is well documented. The superfamily of enzymes belonging to the group
of CYP450s are hemoproteins with a spectrophotometric peak at
450 nm in their reduced state in complex with CO. CYP450s are often
situated in the membranes of the endoplasmic reticulum or mitochon-
dria, oxidising a wide range of substrates in collaboration with NADPH
oxidoreductase and/or cytochrome b5. These reactions are an important
part of the general detoxification process usually conducted in two
phases, where CYP450 enzymes are responsible for Phase I metabolism
[1].

The CYP450 family consists of at least 57 genes in the human body
[1]. They are arranged into families based on their amino acid sequence,
with isoforms sharingmore than 40% beingmembers of the same family
(e.g., CYP1, CYP2) and isoforms sharing more than 55% being members
of the same subfamily (e.g., CYP1A, CYP1B). Individual isoforms are
identified by an additional Arabic number (e.g., CYP1A1, CYP1A2).
CYP450s are widely expressed in all living species, with more or less
conserved isoforms. Studies have determined high homology between
the human and porcine versions of the CYP450, ranging from ~90% for
human CYP2A6 and porcine CYP2A19 to ~60% for human CYP2C8 and
porcine CYP2C33 [2].

Mammalian CYP450s are expressed in a variety of tissues, including
the liver, intestine, kidney, gonads and brain. For most of the CYP450s
the highest expression is detected in the liver. The current knowledge
on porcine CYP450 identification and tissue-distribution has been
summarised by Puccinelli et al. [2].

Similar to general detoxification, the tryptophan metabolite skatole
(3-methylindole) is metabolised in two phases, with CYP450 enzymes
being involved in Phase I metabolism [3]. Skatole accumulation in pigs
has been associated with negative sensory perception of the meat
upon heating and consumption, which is a phenomenon known as
boar taint [3]. The current practice in several countries to overcome
the accumulation of skatole is surgical castration of male piglets before
Fig. 1. Simplistic model of the events from xenobiotic receptor activation to skatole metabolism
with response elements of the DNA, initiating gene transcription. Ultimately, this increases th
skatole clearance from the liver. Several events have been shown to regulate theCYP450 depend
increased (↑) or decreased (↓) expression/activity of CYP450 in comparison to control groups. X
carbinol; 3MOI: 3-methyloxindole.
the age of 7 days. However, this practice is highly questioned due to
increasing focus on animal welfare and negative production impacts.
In this context, alternativemethods are needed. In this review, we sum-
marise the current knowledge on the regulation of porcine CYP450
isoforms involved in skatole metabolism (particularly CYP1A, 2A and
2E1), and we suggest how this knowledge might be used to enhance
the activity of hepatic CYP450 and thereby potentially minimise the
accumulation of skatole in pig meat.

2. Xenobiotic receptors and regulation of mRNA expression

The expression of individual CYP450s is regulated by ligand binding
receptors constitutively expressed in hepatocytes and other cell types
(e.g., enterocytes), often collectively referred to as xenobiotic receptors
(XR) (Fig. 1). Several receptors are known to be involved in the initia-
tion of gene expression, either by direct binding to promoter regions
of the gene or by crosstalk with other receptors [4,5]. With respect to
the control of skatole metabolising CYP450, the major XRs controlling
them are the aryl hydrocarbon receptor (AhR), constitutive androstane
receptor (CAR) and pregnane X receptor (PXR). All of these receptors
control a battery of genes, includingdifferent CYP450s, Phase II enzymes
and drug transporters. Other receptors (e.g., farnesoid X receptor and
liver X receptor) and co-factors are also likely involved in tuning the
activity of the XRs as co-activator and co-repressors or via crosstalk;
however, it is beyond the scope of this review to cover this topic.
Readers interested in more detailed information about these regulatory
events are directed to other reviews [4,5].

2.1. Aryl hydrocarbon receptor

TheAhR is known to control the expression of genes such as CYP1A1,
1A2 and 1B1. AhR is located in the cytosol where it is kept in complex
. Upon activation, the xenobiotic receptor translocates into the nucleus, where it interacts
e expression of skatole-metabolising cytochrome P450 enzymes and thereby improving
ent activity and therebypotentially interactwith the skatolemetabolism. * Arrows indicate
R: xenobiotic receptor; REM: response element; CYP450: cytochrome P450; I3C: indole-3-
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with other proteins, including heat shock protein 90 (HSP90). Upon
binding of its ligands, AhR dissociates from HSP90 and translocates
into the nucleus, where it binds with AhR nuclear translocator (Arnt).
The AhR–Arnt complex then binds to the response element of the
gene, initiating transcription. The class of ligands able to activate AhR
is diverse and includes both endogenous and exogenous compounds
[6]. A prototypical AhR ligand is TCDD (2,3,7,8-tetrachlorodibenzo-
p-dioxin), which strongly increases mRNA expression of several
genes including CYP1A1 and 1A2 [7]. Treatment of porcine primary
hepatocytes with β-naphtoflavone (β-NF), another commonly used
AhR activator, increased the mRNA and protein expression as well
as the activity of the CYP1A family [8,9]. In agreement with this
observation, in vivo results from studies treating pigs with β-NF
showed increased expression and activity of CYP1A in several tissues,
including the liver [10–12]. AhR activation and increased CYP1A
mRNA and protein expression are also observed in the presence of
several naturally occurring compounds, among them metabolites of
tryptophan [13–15]. In human bronchial epithelia, skatole was shown
to increase the expression of CYP1A1 by interacting with AhR [16]. It
is unknown if skatole is an agonist of porcine hepatic AhR, but this is a
reasonable suggestion due to a number of common activators of
human and porcine AhR. Moreover, a known metabolite of skatole is
indole-3-carbinole, which is known to be a strong activator of human
AhR, increasing CYP1A expression [17].

2.2. Constitutive androstane receptor

CAR (NR1I3) belongs to the class of orphan nuclear receptors and is
named for its constitutively active properties. However, it is still debated
if the receptor is truly constitutively active in vivo [7]. Similar to AhR,
CAR is situated in the cytoplasm, where it translocates to the nucleus
upon ligand binding, and initiates gene transcription when in complex
with retinoic acid receptor (RXR). CAR is mainly expressed in the mam-
malian liver and intestine, where it regulates the transcription of several
genes, including the CYP2A and 2B family. Several agonists/activators
of CAR have been identified, including phenobarbital, TCPOBOP (4-bis
[2-(3,5 dichloropyridyloxy)]benzene) and CITCO (6-(4-chlorophenyl)
imidazo[2,1-beta] [1,3]thiazole-5-carbaldehyde-O-(3,5-dichlorobenzyl)
oxime). Species-specific differences in CAR have been demonstrated,
as CITCO is an activator of human and porcine CAR, while TCPOBOP
has no effect [18–20]. Accordingly, TCPOBOP activates mouse CAR but
not human and porcine CAR [19,21]. However, other studies did not
report increases in CYP2A19 mRNA expression after CITCO treatment
using primary porcine hepatocytes [9,20]. A study by Gray et al. [22]
showed that a similar response for human and porcine CARs in 10 out
of 12 treatments compared to only 4 out of 12 for human and mouse
CARs. Using a reporter gene assay, skatole has been determined to
decrease the activity of CAR in a dose-dependent manner [23].

2.3. Pregnane X receptor

Similarly to CAR, PXR (NRI12) belongs to the class of orphan recep-
tors and is found in several tissues, including liver and intestine [12,23].
PXR has previously been named SXR (steroid and xenobiotic receptor)
and PAR (pregnane-activated receptor), indicating the broad range of
ligands for this receptor. Once activated, PXR translocates from the cyto-
sol into the nucleus, where it forms a complex with e.g., RXR, initiating
transcription of numerous genes, including the CYP3A and 2C family [8,
9,20,24]. PXR and CAR share the control of several genes. An ever-
evolving list of both natural and synthetic compounds has been identi-
fied as agonists for PXR, while reports of antagonists are scarce. The list
includes the commonly used CYP3A inducer rifampicin, as well as
several natural compounds such as artemisinin and hyperforin [8,9,
25–27]. Furthermore, porcine PXR has been suggested to be a good
model for human PXR [23,28,29]. As for CAR, skatole has been shown
to reduce porcine PXR activity in a reporter gene assay in a dose-
dependent manner [23].

2.4. Other receptors involved in CYP450 regulation

Several other receptors are also involved in the regulation of CYP450
transcription, either as direct receptors, co-factors or via crosstalk.

The peroxisome proliferator activated receptor (PPAR) is another
important receptor found in hepatocytes and other tissues, expressed
in three isoforms, which has been shown to regulate CYP4A, an isoform
involved in the metabolism of fatty acids. Fatty acids as well as several
other compounds are known agonists for PPARs. No studies have
shown involvement of CYP4A in the metabolism of skatole, but PPAR
activation has been shown to inhibit expression of AhR regulated
genes, including CYP1A [30]. Moreover, PPAR agonists have been
shown to regulate other CYP450 families [31].

Another known example is the chick ovalbumin upstream promoter
transcription factor 1 (COUP-TF1), which has been shown to bind to the
promoter region of porcine CYP2E1 [32]. The same study showed that
binding of COUP-TF1 to this promoter region was inhibited by
androstenone, a compound often found in high amounts in boar-
tainted meat.

3. Protein expression

As described in the central dogma of biology, protein expression is
dependent on translation of mRNA, meaning that protein expression
is to some degree positively correlated to mRNA expression. However,
this is a simplified assumption as other events like, mRNA turnover
and protein stabilisation are also important in determining the given
protein amount. In fact, for CYP2E1, it has been suggested that events
such as protein stabilisation are more important for protein expression
than mRNA expression [33]. This suggestion is consistent with results
on the effects of castration and specific feeding components, as both
castration and bioactive dietary compounds increased porcine CYP2E1
mRNA expression without affecting protein expression and activity [34,
35]. Using primary porcine hepatocytes treated with activators of the
XRs (rifampicin, dexamethasone, phenobarbital, 3-methylcholanthrene,
dimethyl sulfoxid) for 3 days, Baldini et al. [36] found no changes in
CYP2E1 protein expression. The protein expression of CYP2E1 in primary
porcine hepatocytes has been determined to increase after treatment
with skatole in a dose- and time-dependent manner [37]. The skatole-
induced increase in protein expression was eliminated by co-treatment
with androstenone. Likewise, it has been shown that skatole and indole
induce CYP2A19 expression in primary porcine hepatocytes, while
androstenone down-regulates protein expression [38]. There were no
observed changes in CYP2A19 protein expression by treatment with
other steroids such as testosterone and oestrone sulphate. It has also
been suggested that androgens (testosterone) can decrease the expres-
sion of CYP1A proteins [39,40]. However, this effect is breed-dependent.

4. CYP450 activity

The catalytic activities of individual CYP450 isoforms are generally
estimated from the rate of metabolism of specific probe substrate(s).
To date, only limited data on the specificities of probe substrates for
porcine CYP450 are available. Thus, to estimate activities of individual
porcine CYP450 isoforms, typical probe substrates for human CYP450
are often used, showing both similarities and differences between the
catalytical activity of human and porcine CYP450 [41,42]. This makes
the interpretation of results on porcine CYP450 substrate metabolism
challenging.

The catalytic activity of CYP1A is usually estimated as the rate of
ethoxyresorufin O-deethylation (EROD). EROD activity was detected
in microsomes from minipigs, although the obtained values were
lower than in microsomes from humans [43] as well as from human
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recombinant CYP1A [44]. In conventional pigs, EROD activity has also
been detected; however, it was suggested that EROD might not truly
reflect specific CYP1A1 activity, as it is most likely metabolised by two
different CYP450 isoforms in pigs [45].

Chlorzoxazone 6-hydroxylation is the most used probe reaction
to assess human CYP2E1 activity [46], while in pigs, the kinetics of
chlorzoxazone 6-hydroxylation differed from that found in human mi-
crosomes [47,48]. It has been suggested that chlorzoxazonemetabolism
in pigs is not entirely due to CYP2E1 activity because other isoforms,
such as CYP1A1, CYP2A19, and CYP2C33v4, are also involved [48,49].
P-nitrophenol is currently used as CYP2E1 specific substrates, although
its specificity towards porcine CYP2E1 has also been questioned [49].

Catalytic activities of CYP2Aare commonlymeasuredby thehydroxyl-
ation of coumarin, showing large correlation with the expression of the
protein [50]. Moreover, studies showed that coumarin 7-hydroxylation
could be inhibited by anti-human CYP2A6 antibodies [42,50].

For estimation of CYP3A activity several different probe sub-
strates have been used, including testosterone [27,42] and nifedipine,
both showing strong correlation with expression of CYP3A protein
[51]. Additionally, the metabolism of 7-benzyloxyresorufin and 7-
benzyloxyquinoline has been shown to be inhibited by ketoconazole,
which is a known inhibitor of CYP3A activity [52].

Attempts to use cocktails of substrates for the simultaneous deter-
mination of several porcine CYP450 activities have not been successful
[53].

4.1. Skatole metabolism

As stated in the Introduction, porcine CYP450 is of special interest
because it mediates the metabolic transformation of skatole, one
of the main contributors to boar taint, an unpleasant odour in
meat from intact (un-castrated) male pigs. Skatole is a hydrophobic
compound, which makes it difficult to eliminate from the body.
The biological significance of skatole metabolism is to produce
more hydrophilic metabolites to facilitate its excretion. Bæk
et al. [54] identified several skatole metabolites in porcine blood
and urine, with the major ones being 3-hydroxy-3-methyloxindole
and 6-sulfatoxyskatole. Moreover, in vitro study using porcine liver
microsomes identified seven Phase I metabolites, with the major me-
tabolite being 3-hydroxy-3-methylindolenine [64]. 3-hydroxy-3-
methylindolenine and the other Phase I metabolites, 3-hydroxy-3-
methyloxindole, 5-hydroxy-3-methylindole, 6-hydroxy-3-methylindole,
3-methyloxindole, indole-3-carbinol and 2-aminoacetophenone, are pro-
duced in the liver through Phase I oxidation reactions by CYP450 [55,56].
Some of these metabolites undergo then Phase II reactions, sulphation
Table 1
Overview of known porcine CYP450 isoforms and their importance for skatole Phase I metabo

Sub-family Isoform Importance for boar taint

CYP1 CYP1A CYP1A1 Both human and porcine versions metabolise
CYP1A2 Both human and porcine versions metabolise

human CYP450 in the metabolism of skatole [
CYP1B CYP1B1 Human version metabolises skatole to a smal

CYP2 CYP2A CYP2A19 Both human (CYP2A6) and porcine versions m
metabolism of skatole [56,59–61,93]

CYP2B CYP2B22 Porcine version not known. The human ortho
low degree [60]

CYP2C CYP2C33 Has been shown to metabolise skatole to a low
CYP2C42 Porcine version not known. The human ortho
CYP2C49 Has been shown to metabolise skatole [59]

CYP2D CYP2D21 Porcine version not known. The human ortho
CYP2D25 Porcine version not known. The human ortho

CYP2E CYP2E1 Both human and porcine versions metabolise
together with CYP2A19 [56,58–62,92].

CYP3 CYP3A CYP3A22 Porcine CYP3A has been shown to metabolise
CYP3A29 Porcine CYP3A has been shown to metabolise
CYP3A39 Porcine CYP3A has been shown to metabolise
CYP3A46 Porcine CYP3A has been shown to metabolise
and glucuronidation [55,57]. Porcine CYP1A, 2A19, 2C33v4, 2C49, 2E1
and 3A were identified as the major skatole-metabolising isoforms
(Table 1) [56,58,59]. Similarly, CYP1A2, 2E1, 2A6 and 3A have been
shown to metabolise skatole in humans [59–61]. Originally, CYP2E1
was suggested to be the main skatole-metabolising isoform [62]. Later,
Diaz and Squires [56] demonstrated the involvement of CYP2A. More-
over, in vivo skatole levels in fat were more strongly related to CYP2A
than to CYP2E1 activity ([63] and unpublished observations). Recently,
involvement of CYP1A in skatolemetabolismwas also suggested [61]. In-
terestingly, the co-factor cytochrome B5A (CYB5A) was shown to be of
importance for CYP450-dependent skatole metabolism [59]. The exact
mechanism of CYB5A involvement is not yet understood; however, a
role as an electron donor has been suggested [59]. Disagreements be-
tween the relative importance of different isoforms for skatole metabo-
lism exist, which might be partly due to breed-related variations in the
formation of skatolemetabolites, aswell as in differences in experimental
conditions (e.g., studies have used different in vitro systems to identify
skatole metabolites, including hepatic microsomes [62,64], primary cul-
tured pig hepatocytes [58] and individual purified porcine enzymes
[61]). Wiercinska et al. [59] studied the contribution of porcine CYP450s
in hepatic skatole metabolism by cloning and expressing them individu-
ally in the human embryonic kidney HEK293-FT cell line. In porcine liver
microsomes and hepatocytes, the involvement of CYP450s was studied
using probe reactions and specific inhibitors for human CYP450s. How-
ever, as discussed above, their specificity towards porcine CYP450
might differ from that of human CYP450s, causing diverse results.
Even various solvents to solubilise inhibitors may have different effects
on CYP450 probe reactions. Moreover, due to genetic variation, envi-
ronmental and physiological factors, as well as intrinsic limitations of
in vitro systems, the quantitative prediction of in vivo skatole metabo-
lism in pigs remains a challenge.

4.2. Hormonal status has an impact on CYP450 expression and activity

The hormonal status of the pig is one of the crucial factors regulating
CYP450 catalytic activities and expression. Several in vivo studies dem-
onstrated the involvement of testicular steroids in CYP450 regulation.
It has repeatedly been shown thatmature pigswith high levels of testic-
ular steroids possess low CYP450 activities [19,34,39,40,65,66]. Accord-
ingly, both castration and immunocastration (subcutaneous injection
with a GnRH analogue to promote the intrinsic production of GnRH
antibodies) increased gene expression and activities of most hepatic
CYP450s [65,67]. Treating pigs with human chorionic gonadotropin
(hCG), thus inducing a temporary increase in the level of testicular
steroids, reduced CYP450 activities [68–70]. The role of testicular steroids
lism.

skatole in vitro [59,92]
skatole; most likely more than CYP1A1. Has also been suggested to be the most active
60,61,92]
l extent in vitro; porcine version not known [92]
etabolise skatole. Has been suggested to be one of the most active CYP450 in the

log (CYP2B6) has been shown to be unable to bioactivate skatole in vitro or to a very

degree [59]
log (CYP2C8 and 2C9) has been shown not to bioactivate skatole [59]

log (CYP2D6) has been shown to metabolise skatole to a very low degree [60]
log (CYP2D6) has been shown to metabolise skatole to a very low degree [60]
skatole. Has been suggested to be the most important in the metabolism of skatole,

skatole, however, the specific isoform was not stated [59]
skatole, however, the specific isoform was not stated [59]
skatole, however, the specific isoform was not stated [59]
skatole, however, the specific isoform was not stated [59]
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in the regulation of porcine CYP450 is however breed-dependent [40,66].
Further studies on breed-related differences in hepatic CYP450 are
relevant not only for meat science but also for veterinary medicine, as
CYP450s are involved in the metabolism of veterinary drugs. In vitro
studies have been used to investigate the mechanism of testicular
steroid–CYP450 interactions and determine gender-related differences
of these interactions. Apart from the previously discussed down-
regulating effect of androstenone on the protein expression of CYP2E1
[32,37] and CYP2A [38], androstenone also directly inhibits CYP2E1
activity [71–73]. Special interest is focused on 17β-oestradiol (E2), as it
was shown to affect CYP450 activities only in male pigs [71,73]. The
results, however, differed in terms of the inhibition mode of E2.
Zamaratskaia et al. [73] reported that E2 is a mixed-mode inhibitor of
CYP2E1 in microsomes from prepubertal male pigs, although E2 was
later reported to act more as an irreversible inhibitor [72]. While a
major step forward, the in vitro studies fail to replicate the precise condi-
tions of an organism and are hampered by the lack of correlation to
in vivo studies. Thus, physiological consequences of the inhibition of
CYP450 activities by oestradiol remain uncertain, especially in the light
of a recent in vivo study which did not show any differences in CYP450
activities between pigs with physiological and artificially reduced
oestradiol levels [74].

4.3. Dietary factors and CYP450

Dietary compounds are another key factor regulating CYP450
metabolic activity in humans and pigs. Between-individual variations
in CYP450 expression/activity and in the magnitude of response to
drug-treatment [75–78] are due to genetic background, previous drug
intake or hormonal status as well as differences in exposure to dietary
ingredients. Thus, bioactive components in the diet modify CYP450
activity and thus interactwith themetabolism of xenobiotic substances.
In humans, there have been several cases of food–drug interaction,
situationswhere the consumption of specific dietary compounds affects
the outcome of a simultaneous drug treatment.Most of these cases have
been traced back to compounds originating from food or herbal medi-
cine capable of modifying the expression or activity of the CYP450
enzyme system. Examples include the phytoestrogen coumestrol,
which has been shown to be an antagonist of human PXR [79], and
grapefruit juice, which has been shown to down-regulate CYP3A4
expression and thereby augment the bioavailability of several drugs
[80]. Moreover, the inclusion of herbal medicines containing ginkgo
biloba or St. John's wort in diets interferes with drug clearance by
CYP3A4 [81]. In pigs, increased hepatic CYP2E1 activity or protein expres-
sion has been observed following exposure to high-fat/high-cholesterol
diets [82], feeding with sugar beet [67] or after administration of ethanol
with a folate-deficient diet [83]. Additionally, in pigs, the administration
of the plant secondary metabolite quercetin has been shown to alter
the bioavailability of co-administered drugs [84,85]. Following adminis-
tration of chicory root, increased expression and activity have been
observed for several porcine hepatic CYP450s, including CYP1A, 2A and
3A [35,86]. Accordingly, purified secondary metabolites found in chicory
induce mRNA expression of CYP1A, 2A and 2E1, together with 3A, in
porcine primary hepatocytes [9]. A number of secondary plant metabo-
lites have also been shown to directly interact with the CYP450 enzymes,
affecting their activity [87]. These different levels of interactionsmake the
study of the effects of specific dietary compounds challenging and make
the outcome of a given treatment a function of numerous factors, includ-
ing the time of exposure.

Remarkably, our unpublished results suggested that regulation of
CYP450 activitiesmight differ between genderswithin the same species
[Borrisser-Pairó F., Rasmussen M.K., Ekstrand B., Zamaratskaia G.
Accepted for publication in Animal]. We demonstrated that CYP3A ac-
tivity was inhibited by myricetin and CYP2E1 by quercetin in micro-
somes from male but not from female pigs. In support of this finding,
we have shown that an extract of chicory root inhibits CYP3A activity
in microsomes from male pigs, while increasing the activity in micro-
somes from female pigs [86]. Further investigations are needed to deter-
mine the physiological significance of these gender-related differences
and to determine the mechanisms behind this difference.

5. Future research focus

Skatolemetabolism hasmainly been studied in the liver because it is
considered the major site of skatole metabolism; however, biotransfor-
mation of skatole might also occur in extra-hepatic tissues, such as
intestines and blood. As the first boundary, skatole has to cross the
intestinal wall before entering the hepatic portal vein and ultimately
reaching the liver. Several CYP450 isoforms have been found in the
enterocytes (e.g., CYP1A, 2A, 2E and 3A). As for their hepatic counter-
parts, it is likely that they also metabolise skatole. The importance of
this “first-pass-metabolism” for the occurrence of boar taint has gained
surprisingly little attention. As an example, it has been determined that
the intestinal metabolism of the drug midazolam is of the same magni-
tude as the hepatic clearance in humans [88]. Another example of
extra-hepatic CYP450 location is the presence of CYP2E1, the major
skatole-metabolising enzyme, in human peripheral blood lymphocytes
[89]. The role of this enzyme in blood remains highly speculative, but a
possibility of its involvement in skatole metabolism could be of interest,
and has never been studied in pigs. Additionally, the search for polymor-
phism of CYP2E1 and other skatole-metabolising enzymes using blood
samples would be useful in the identification of genetic markers for the
selection of pigs with low fat skatole levels. Pigs with high CYP2E1 activ-
ity can then be selected to produce pigs with a lower incidence of boar
taint. Moreover, biomarkers for intestinal and/or hepatic CYP450 activity
can be identified in the faeces or urine of the pig and used for non-
invasive detection of pigs with high risk of boar taint.

An important research area is the modulation of CYP450 activities
by specific dietary compounds. Targeting regulation of the skatole-
metabolising enzymes to enhance skatole metabolism and reduce the
risk of boar taint would be an attractive alternative to surgical castration
and immunocastration. However, this research is challenging because
little is known about the effectiveness of bioactive compounds in the
regulation of porcine CYP450s. Several cases of food–drug interactions
are reported in humans, as stated above. Thus,with the close similarities
between human and porcine XRs, it is likely that the same events will
occur in pigs. This opens the possibility of targeting specific XRs in the
liver, up-regulating skatole-metabolising CYP450s, and thereby increas-
ing the clearance of skatole from the pig (Fig. 1), which may be a
consumer-acceptable and easily implementable method.

Another important point of view to the regulation of porcine
CYP450, apart from the importance for boar taint, is the usefulness of
porcine CYP450 as a model for human CYP450. Due to limited availabil-
ity and high costs, human primary hepatocytes for basic research are
not common. However, the substitution of human hepatocytes with
porcine hepatocytes for basic trials can be the future; porcine livers for
isolation of hepatocytes are available on request, giving the possibility
of using the exact age and gender needed. However, the high variation
between humans and the fact that the gender of the pigs is a factor for
CYP450 activity also need to be addressed to fully evaluate the potential
of pigs as amodel. Moreover, there seems to be differences between the
isoform distribution when comparing human and porcine livers (e.g. in
humansCYP3A4 is themost predominant isoform,while CYP2A19 is the
most predominant isoform in pigs [90,91]).

Finally,manyquestions related to genetic variations in themechanism
of CYP450 regulation remain to be addressed.

6. Conclusion

Knowledge about the regulation of porcine CYP450 and the factors/
mechanismsbehind it is very important in the context ofmeat quality in
pigs.We currently know to a large extent how the expression of specific
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CYP450 is controlled and how the activity is affected under different
experimental conditions. This knowledge will potentially enable us to
use tools such as dietary compounds tomodulate the CYP450 expression
and activity, and thereby controlling the metabolism of skatole in pigs.
However, research is still needed to cover the level from cell models to
whole animal studies.

It should be emphasised that CYP450s only controls the first step of
skatole metabolism. Skatole deposition also depends on the second
stage of skatole metabolism as well as on the rate of its production.
Thus, in the studies on the control of boar taint, complex interactions
between production, metabolism and clearance of boar taint compo-
nents should be considered.
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