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Individual mouse embryonic stem cells have been found to exhibit highly vari-

able differentiation responses under the same environmental conditions. The

noisy cyclic expression of Hes1 and its downstream genes are known to be

responsible for this, but the mechanism underlying this variability in expression

is not well understood. In this paper, we show that the observed experimental

data and diverse differentiation responses can be explained by a spatial stochas-

tic model of the Hes1 gene regulatory network. We also propose experiments to

control the precise differentiation response using drug treatment.
1. Introduction
Many gene regulatory networks (GRNs) exhibit oscillatory dynamics in space

and time in response to a range of external stimuli [1–4]. A negative feedback

loop often lies at the core of such networks, controlling the levels of mRNA and

proteins. These proteins are usually transcription factors, which initiate or regu-

late transcription in eukaryotic cells, and in order for them to function they

must bind to specific DNA sequences in the nucleus. One striking example of

a regulatory network containing a negative feedback loop is the Hes1 GRN.

The Hes1 GRN plays a central role in the timing of somitogenesis [1] and can

become deregulated in human cancer [5].

There are numerous sources of stochasticity and heterogeneity in biological

systems, and these can have important consequences for understanding the

overall system behaviour. Intrinsic noise is commonly found in many intracellu-

lar signalling pathways [6–8]. This noise can arise as a result of low abundance

of molecular species, randomness in certain key processes (e.g. binding and

unbinding of transcription factors to promoter sites), stochasticity in production

processes (transcription and translation) and degradation events [9].

In addition to being inherently stochastic, intracellular signal transduction is

inherently spatial. The eukaryotic cell hosts a variety of spatial compartments

(e.g. cytoplasm, endoplasmic reticulum, Golgi apparatus, nucleus, mitochon-

drion, etc.). Each compartment permits different metabolic activity and is

often separated from the rest of the cell by a thin lipid membrane. Signalling

molecules reach the appropriate spatial compartments through molecular

movement, such as diffusion and active transport. The key process of transcrip-

tion occurs at highly localized sites, for example, genes, in the nucleus. Within

the cytoplasm, another key process, such as translation occurs in the ribosomes.

Clearly, mathematical models of GRNs will be more realistic the more they seek

to account for stochastic and spatial features of these networks.

Very few spatial stochastic models exist in the literature but this is beginning to

change. Some of the first spatial stochastic models were of the Min System in an
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Figure 1. The negative feedback loop in the Hes1 GRN. When the promoter
site is free, hes1 mRNA is transcribed at its maximal rate. hes1 mRNA then
produces Hes1 protein via the process of translation. Hes1 protein occupies
the promoter and represses the transcription of its own mRNA. The occupied
promoter site is still able to produce hes1 mRNA, but at a significantly reduced
rate [15]. Reaction arrows displayed in red only occur at the promoter site, while
those in green occur only in the cytoplasm and those in black occur everywhere
within the cell.
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Escherichia coli cell [10,11]. Howard & Rutenberg [10] used a

stochastic analogue of a one-dimensional system of reaction–

diffusion equations and found that for some parameter values

the protein concentrations were low enough that fluctuations

were essential for the generation of patterns. In the model of

Fange & Elf [11], trajectories were generated using the next sub-

volume method (NSM), and numerical simulations were able to

reproduce all documented Min phenotypes, where determinis-

tic or non-spatial models could not. A spatial stochastic model

of the MAPK pathway was developed in the study of Takahashi

et al. [12]. This model was implemented numerically using a

Green’s function reaction dynamics scheme, which allows for

individual particle-level simulation of molecular species.

Using this technique, MAPK responses that could not be

observed using a mean-field approach were produced. Another

recent spatial stochastic model was developed to study in detail

a generic transcription factor binding and unbinding to DNA

[13]. Here, the spatial stochastic model was able to support

the use of well-stirred, zero-dimensional models for describing

noise in gene expression. It is clear from these few examples that

spatial stochastic modelling can provide insight into intracellu-

lar signalling pathways that other approaches cannot. For a

comprehensive review of spatial stochastic modelling of

intracellular processes, see the study of Burrage et al. [14].

The development of mathematical models which reflect

both spatio-temporal and stochastic aspects of GRNs can be

regarded as an important computational tool in making pre-

dictions about the behaviours of GRNs and in the optimizing

of targeted drug treatment. In this paper, we propose a novel

spatial stochastic model of the Hes1 GRN. We focus our

study on Hes1 oscillations observed in embryonic stem (ES)

cells, as the quality and abundance of Hes1 expression data

for this cell line far exceeds all others.
2. The Hes1 gene regulatory network
Hes1 is a member of the family of basic helix–loop–helix

(bHLH) transcription factors. Hes1 is known to play a role in

somitogenesis, the developmental process responsible for seg-

mentation of the vertebrate embryo. During somitogenesis, a

‘segmentation clock’ controls the timing of the assignment of

mesodermal cells to discrete blocks. The segmentation clock

depends on the oscillatory expression of a complex network

of signalling pathways, including the Hes1 GRN which con-

tains a negative feedback loop (figure 1). This feedback loop

is formed through interactions of the Hes1 protein with its

own gene—Hes1 protein binds to N box sequences on the

hes1 promoter and represses the transcription of hes1 mRNA.

Experiments have been conducted to measure expression

levels of hes1 mRNA and Hes1 protein in many different cul-

tured mouse cell lines [1]. In response to a single serum

treatment, it was found that levels of hes1 mRNA and Hes1

protein exhibited oscillations with a regular period of approxi-

mately 2–3 h. This coincides with the period observed for the

mouse segmentation clock. It has been found that Hes1 oscil-

lations are stable (both the period and amplitude are

relatively constant) in presomitic mesoderm cells but unstable

(the period and amplitude are variable) in individual disso-

ciated presomitic mesoderm cells, suggesting that cell–cell

communication is essential for stabilization of such cellular

oscillators [16]. Hes1 oscillations have also been observed in

neural progenitor cells, again with a period of about 2–3 h
[17]. It was found that these oscillations were responsible for

the maintenance of neural progenitors and that sustained over-

expression of Hes1 inhibits proliferation and differentiation of

these cells. More recently, Hes1 expression was monitored in

ES cells [18], where it was discovered that Hes1 levels still oscil-

lated in space and time, but with a period of 3–5 h, longer than

that of other cell lines. This lengthened period is thought to be a

result of the increased stability of hes1 mRNA in ES cells. It

has also been discovered that Hes1 oscillations contributed to

heterogeneous differentiation responses of ES cells. Using fluor-

escence-activated cell sorting, ES cells with high and low

expression levels of Hes1 were isolated and then immediately

transferred to a neural differentiation medium. It was found

that cells expressing low and high levels of Hes1 differentiated

into neural and mesodermal cells, respectively [19,20].

Previous mathematical models of the Hes1 negative feedback

loop have taken a variety of forms. The first model adopted an

ordinary differential equation approach [1], while later models

used delay differential equation (DDE) models [21,22]. The

effect of low particle numbers in the DDE system was considered

in [23], where the stochastic simulation algorithm (SSA) [24],

extended to allow for delays, was used. Further modelling of

the Hes1 oscillator found that there is little evidence for synergis-

tic binding in the regulatory region of the Hes1 gene [25]. The role

of Gro/TLE1 has also been considered [26] and other models

have examined the role of the Hes1 pathway in somitogenesis

[27]. Spatio-temporal models of the Hes1 negative feedback

loop were presented in the study of Sturrock et al. [28], using a

partial differential equation (PDE) model while extensions of

this were considered in the study of Sturrock et al. [29].

2.1. A spatial stochastic model of the Hes1 gene
regulatory network

The basic assumptions concerning the molecular reactions in

the Hes1 feedback loop follow previous modelling efforts
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Figure 2. The three-dimensional meshed domain used in numerical simulations
of the Hes1 model. The domain is discretized such that 10 946 voxels make up
the domain. Here, the units of axes are in micrometres. The cell is represented
by a sphere, centre (0,0), with a radius of 7.5 mm. The nucleus is shown as a
blue sphere, centre (0,0), with a radius of 3 mm. The cytoplasm (shown in green)
is the part of the cell that is outside the nucleus. The gene subdomain is chosen
to be the voxel closest to the centre of the cell (0,0), a distance r from the
nuclear membrane.
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[21]. Figure 1 shows a schematic description of the network.

Our model explicitly considers the spatial distributions of the

species so reactions are now localized to separate compart-

ments of the cell, as indicated by the colours of the arrows.

We assume that the promoter site exists in two states—a

free state or one occupied by Hes1 protein, represented by Pf

and Po, respectively. All reactions are modelled by elementary

mass action kinetics. This is in contrast to all previous model-

ling efforts where a Hill function approximation was used for

Hes1 binding to the promoter. Since our model is explicitly

spatial, such an approach is neither appropriate nor necessary.

2.2. The reaction – diffusion master equation
To account for intrinsic stochasticity, we model the reaction–

diffusion kinetics as a continuous time discrete-space Markov

process. The state of the system is the discrete number of mol-

ecules of each of the species as a function of time. The

likelihood of a transition is described by its reaction propen-

sity, which defines the probability of transition from the state

x to x þ Nr per unit time

x
vrðxÞ���! xþNr; ð2:1Þ

where Nr [ ZS is the transition step and is defined as the rth
column in the stoichiometric matrix N and vr(x) is the reaction

propensity function. When the system can be considered well

mixed, the SSA [24] or variants of it are typically used to

generate statistically exact realizations of the process.

To introduce molecular motion owing to diffusion, the

spatial domain is subdivided into non-overlapping voxels

in a mesh (cf. figure 2). Diffusion is modelled as first-order

events where a species Sl in voxel ci moves to an adjacent

voxel cj, i.e.

Sli
qlijxli���! Slj; ð2:2Þ

where xli is the number of molecules of species l in voxel i and

qlij is a diffusion rate constant that depends on Dl, the diffusion

coefficient of species l, and on the size and shapes of voxels ci

and cj. The equation that governs the time evolution of the

probability density of the system is called the reaction–diffu-

sion master equation (RDME). A more detailed description of

the modelling framework can be found in the electronic sup-

plementary material. We assume that both hes1 mRNA and

Hes1 protein can diffuse as described above, with diffusion

coefficient D ¼ 6.00� 10213 m2 min21 [30]. We do not allow

promoter species to diffuse, rather we assume the promoter

species remain in the gene subdomain.

For fine discretizations, the classical SSA becomes inefficient.

NSM [31] is an algorithm adapted for simulations of the RDME,

and it inherits good scaling properties from the next reaction

method (NRM) [32]. For all following simulations, we have

used NSM as implemented in the unstructured mesh reac-

tion–diffusion master equation (URDME) software framework

[33]. URDME uses unstructured tetrahedral and triangular

meshes such as shown in figure 2, thus enabling simulations

to be performed on complex geometries. The diffusion rate con-

stants qlij are automatically computed for the unstructured mesh

as described in more detail in the earlier studies [33,34].

2.3. Domain, initial and boundary conditions
The computational domain is shown in figure 2. The cell is

represented by two concentric spheres with centre (0,0) and
radius 7.5 and 3 mm, respectively. The inner sphere models

the nucleus. These values are chosen to be consistent with

experimental measurements of ES cells [35]. The promoter

site, or gene subdomain, is taken to be a single voxel at a

radial distance r from the nuclear membrane. Unless other-

wise stated, we choose the promoter site to be at r ¼ 3 mm,

i.e. the voxel closest to the centre of the cell (0,0). We arbitra-

rily choose initial conditions such that 60 Hes1 proteins are

uniformly distributed in the cytoplasmic subdomain,

10 mRNA molecules in the nuclear subdomain and a single

free promoter is found in the gene subdomain (our model

does not appear to be sensitive to initial conditions—see §6

of the electronic supplementary material). Zero-flux bound-

ary conditions are applied at the cell membrane and

continuity of flux boundary conditions are applied at the

nuclear membrane as a means of modelling the transport in

and out of the nucleus.

A summary of the reactions, their subcellular localization,

and the initial parameters used in the simulations are found

in table 1.
3. Results
3.1. The model reproduces quantitative and qualitative

behaviour of wild-type embryonic stem cells
We performed simulations of the Hes1 GRN model using the

parameter values in table 1 and in order to be consistent

with biological experiments, we ran our simulations for

1200 min [18]. Five representative trajectories are displayed in

figure 3a, along with corresponding periods figure 3b. These

time-dependent periods are estimated using a Morlet continu-

ous time wavelet transform as implemented in WAVOS (for the

most appropriate technique for these data, see [36] for details)

and we use Gaussian edge elimination to minimize artefacts in

the approximation of the period.



Table 1. Description of reactions in the Hes1 model, their localization and initial parameter values used.

reaction description localization parameter values

Pf þ protein O
k1

k2

Po binding/unbinding of Hes1 protein

to promoter

promoter site k1 ¼ 1.00 � 109 M21 min21, k2 ¼ 0.1 min21

Pf
am���! mRNA basal transcription of hes1 mRNA promoter site am ¼ 3.00 min21

Po
am=g���! mRNA repressed transcription of hes1

mRNA

promoter site am ¼ 3.00 min21, g ¼ 30.00

mRNA
ap���! mRNAþ protein translation of Hes1 protein cytoplasm ap ¼ 1.00 min21

mRNA
mm���! f degradation of hes1 mRNA entire cell mm ¼ 0.015 min21

protein
mp���! f degradation of Hes1 protein entire cell mp ¼ 0.043 min21

Sli
qlij xli���! Slj

molecular diffusion entire cell D ¼ 6.00 � 10213 m2 min21

radial distance of gene from

nuclear membrane

nucleus r ¼ 3 mm
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Figure 3. In row (a), plots of the total numbers of Hes1 protein (found by summing the number of proteins over the entire cell domain) are presented against time
for five different trajectories of the Hes1 model. The mean copy numbers are displayed in the titles of row (a). The green vertical line represents the transference of
cells to a neural differentiation medium. The number highlighted in green is the copy number of Hes1 at this time. Row (b) shows the corresponding time varying
period as approximated by a Morlet continuous time wavelet transform with Gaussian edge elimination. The mean periods are displayed in the titles of row (b).
Baseline parameter values are used (table 1).
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The evolution of the total number of proteins is in close

agreement with recent experimental studies, in terms of

qualitative behaviour and quantitative values for the

period. Although there have been many experiments per-

formed to analyse the oscillatory nature of the Hes1

protein, it is not clear what units are used to measure protein

expression levels, hence it is difficult to compare the numbers

of Hes1 protein predicted from our model with real exper-

imental values. However, we have received estimates of the

copy number of hes1 mRNA in ES cells from experimentalists

(see electronic supplementary material, table S3), which fall

in the range 0–465, and our mRNA values also fall in this

range (see electronic supplementary material, figure S1).

Note that although there are large amplitude oscillations or

variations in the protein copy number levels, the hes1

mRNA copy numbers are relatively stable. This phenomenon

of small variations in mRNA copy number leading to large

variations in protein copy number is consistent with other

studies, see [37] for example. It is reasonable to assume that
protein levels will be higher than mRNA levels, see [38,39],

hence the values predicted by our model (figure 3) may be

consistent with experimental values. Unlike the copy

number of Hes1 protein, values for its period can be found

in the literature. Experimentalists estimated that the period

for Hes1 protein in ES cells lies in the range of

180–300 min. The periods from 100 different trajectories of

our model are displayed in figure 4, and many of these lie

in the same range reported by biologists (compare figure 4

with electronic supplementary material, figure S12). Since

our model accounts for intrinsic noise, it is able to reproduce

the highly variable period and amplitude found in the

expression of Hes1 protein in ES cells. This is a feature that

recent PDE models are not able to reproduce [28,29].

Furthermore, we include a plot of spatial snapshots of the

spatio-temporal evolution of Hes1 protein in figure 5. Such

spatial plots can be compared with experimental movie

clips of bioluminescence imaging of Hes1 protein in ES

cells (see supplemental movie file of [18], for example). We
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Figure 4. Plot showing the period of 100 different trajectories. The periods
were calculated using a Morlet continuous wavelet transform with Gaussian
edge elimination. Baseline parameter values are used (table 1).
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Figure 5. (a) Plot showing the total Hes1 protein copy number over a period
of 600 min from a single trajectory of the Hes1 model (see table 1 of the
main paper for parameter values), and (b) plots showing the corresponding
spatial distributions of Hes1 protein. The times for these spatial snapshots
were chosen to correspond to the peaks and troughs of oscillations in Hes1
protein copy number shown in (a) above. These times are highlighted by the
red circles in (a). In (b) blue voxels indicate regions of the cell which contain
Hes1 protein.
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also include additional plots of the other model species in the

electronic supplementary material. In addition to the total

copy number of hes1 mRNA and Hes1 protein, the switch-

like behaviour of the promoter states is clearly visible in the

electronic supplementary material, figure S1.

3.2. Intrinsic noise can explain variability in embryonic
stem cell differentiation

Our model produces some trajectories that either have a period

that is unrealistically long (more than 400 min) or simply fail to

oscillate with non-negligible amplitude. We shall label these

trajectories as cells exhibiting ‘persistent expression’ (PE) of

Hes1. For example, in figure 4, we can observe 15 trajectories

falling into this category. In ES cells, as stated earlier, persistent

high levels of Hes1 was indicative of cells that would differen-

tiate into mesodermal cells. Hence, our model can yield

predictions concerning the differentiation response of ES

cells. In particular, given a batch of ES cells, it is possible to

predict how many would differentiate into neural and meso-

dermal cells at a specific time. We have illustrated this idea

in figure 3a. The green vertical line indicates the time at

which cells are transferred to a neural differentiation

medium (900 min) with the copy number of Hes1 at this

time given beside the line. Cells with high expression of

Hes1 protein at this time would differentiate into mesodermal

cells while those displaying low expression levels would

differentiate into neurons. If we define high and low

expression as the copy number being greater than or less

than the mean, respectively, then we suggest that of the trajec-

tories displayed in figure 3, cells 2, 4 and 5 would differentiate

into mesodermal cells and cells 1 and 3 would differentiate

into neurons. Hence, by accounting for intrinsic noise, our

simple model is able to reproduce the variability encountered

experimentally in ES cell differentiation.

3.3. Hes1 exhibits highly variable expression levels
under a wide range of conditions

Here, we explore the parameter space of our model in a bid to

find the main sources of stochasticity and variability exhibited

in its trajectories. We achieve this mainly through parameter
sweeps. A parameter sweep is performed by holding all par-

ameter values at their baseline values (table 1), then varying

a single parameter over some finite range and recording 100

trajectories for each new parameter set produced. For each tra-

jectory recorded, we compute its mean period (as in figure 4)

and visualize the output in a histogram. We perform par-

ameter sweeps for all parameters in the model and plot the

histograms produced in the electronic supplementary material.

We discuss here the two parameters for which we do not have

experimental measurements, namely, k1 and k2 as well as two

spatial parameters, D and r. Note that by only varying one

parameter at a time, we are neglecting most of the parameter

space. A future study will investigate the full parameter

space of our model using data-clustering techniques.

In general, we found from the parameter sweeps that the

model produces broad distributions of periods whenever oscil-

latory dynamics are found. Provided the sweep does not yield

trajectories entirely exhibiting persistent expression of Hes1

then we find great variety in the mean periods computed.

3.3.1. Hes1 must bind to the promoter sufficiently fast for
oscillations to be observed

The rate at which Hes1 protein binds to the promoter region

of the hes1 gene is an important parameter in our model. It is
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responsible for the negative feedback Hes1 protein exhibits

on its own mRNA production. We vary k1 over the range

(1.00 � 107 2 1.00 � 1010)M21 min21, which is in line with

experimental measurements of protein–DNA-binding rates

[40]. The histogram displaying the mean periods from the

parameter sweep of k1 is displayed in electronic supplemen-

tary material, figure S7. The results are consistent with

intuition—if k1 is too small, Hes1 protein is unlikely to bind

to the promoter site and so the majority of trajectories display

PE. Experimentalists have compared the expression levels of

wild-type Hes1 and a functionally defective Hes1 mutant,

which is unable to bind to the N or E box DNA sequence,

in haematopoietic progenitor cells. The authors reported no

repression of Hes1 when the mutant levels were monitored,

in contrast to the wild-type case [41]. This is comparable to

low values of k1 in our model, which produces trajectories

which mainly exhibit persistent expression (i.e. no repression

of Hes1 levels). Hence, using our model, we can investigate

both mutant and wild-type Hes1 genes. If we set k1 ¼ 0,

then all trajectories are found to display PE, with high

values of protein. As k1 is increased, we obtain a broad

range of periods, which appear to be quite robust to change

provided k1 is above approximately 2.50 � 108 M21 min21.

The parameter value for which we have the least information

in our model is k2, the rate at which protein unbinds from the

promoter site, making the promoter free again. We vary k2 in

the interval 0.1 2 1 min21 and the histogram containing this

parameter sweep is displayed in electronic supplementary

material, figure S8. For lower values of k2 (0.01–0.34 min21),

we can observe a broad range of periods, but as k2 is increased,

we find more and more trajectories displaying PE of Hes1. This

can be interpreted biologically as the promoter site becoming

free too quickly, which would prevent the negative feedback

from taking effect. As in the case of parameter k1, if we set

k2 ¼ 0, we find no oscillations in the trajectories of our model.

However, in contrast to k1, we find low protein levels.
3.3.2. Oscillatory dynamics are only found for sufficiently large
diffusion coefficients

It was reported in [28,29] that PDE models of Hes1 oscil-

lations exhibited oscillatory dynamics for a finite range of

values of the diffusion coefficient, i.e. if the diffusion coeffi-

cient was too large or too small then oscillations ceased. We

investigate a range of values for the diffusion coefficient in

our model, in order to see whether the same properties are

retained in our stochastic model (see electronic supplemen-

tary material, figure S9 for the corresponding parameter

sweep). Interestingly, in the context of observing oscillatory

dynamics, it appears that D is bounded below, but not

above. No matter how large the diffusion coefficient is

made, the model still yields oscillations. This is likely to be

a result of the stochastic nature of our model. Even if the dif-

fusion coefficient is very large, it is still not a certainty that the

protein will find the gene site almost instantly, which is the

case in the corresponding continuum model. However, if

the diffusion coefficient is too small, then mRNA and protein

will stay in the subdomain where they originated, which is

reflective of the continuum case. Overall, our spatial stochas-

tic model is more robust to changes in the diffusion

coefficient than a continuum model of the same GRN. In

particular, oscillatory dynamics are observed for any
diffusion coefficient greater than or equal to D ¼ 5.00 �
10214 m2 min21.

3.3.3. Oscillatory behaviour is robust to changes in the position
of the promoter site if the diffusion coefficient is large
enough

It is known that some genes are located closer to the nuclear

membrane than others, which increases their sensitivity to

transcription factors [42]. Evidence of precisely where the

Hes1 gene is located within the nucleus is lacking, and in

any case this is likely to change from cell to cell. Hence,

given the symmetry of our domain, we investigate the influ-

ence of varying the distance r of the promoter site from the

nuclear membrane for three different diffusion coefficients

(see electronic supplementary material, figure S10 for the par-

ameter sweeps). For a low value of the diffusion coefficient

(D ¼ 1.00 � 10214 m2 min21), we find that the location of

the promoter site strongly influences the oscillatory behav-

iour observed. Persistent expression of Hes1 is observed

when the promoter site is placed further away from the

nuclear membrane, and as the promoter site is moved

closer to the nuclear membrane, we find a broader distri-

bution of periods. A slight dependence on promoter site

location is observed for the default value of the diffusion

coefficient, D ¼ 6.00 � 10213 m2 min21. Here, if the promoter

site is too close to the nuclear membrane, more trajectories

exhibiting PE are found. Finally, for larger diffusion coeffi-

cients, specifically D ¼ 1.00 � 10211 m2 min21, we find a

broad range of oscillatory dynamics which are robust to

promoter site location.

3.4. Controlling differentiation responses via
drug treatment

The proteasome is a large proteolytic protein complex found

in all eukaryotic cells that is the primary site for degradation

of most intracellular proteins. The proteolytic activities of the

proteasome can be inhibited by the class of drugs known

as proteasome inhibitors. It is known that exposing fibroblast

cells to proteasome inhibitors (specifically 100 mM of ALLN)

results in increased levels of Hes1 protein and decreased

levels of hes1 mRNA. In particular, it was shown that hes1

mRNA levels peak 1 h after proteasome inhibition treatment

[1]. We reproduce this experiment using our model by

decreasing mp by a factor of 100 and running our simulation

for 240 min (figure 6). The model is able to reproduce the

experiment qualitatively, i.e. mRNA levels peak quickly

then stabilize at a low number while protein levels saturate

at high levels. We performed 100 simulations with mp

decreased by a factor 100 and found that the average time

for hes1 mRNA levels to peak was 29.36 min (shorter than

that of fibroblast cells). We are not aware of proteasome inhi-

bition experiments performed in ES cells, and so leave this

result as a quantitative prediction of the model. Using our

model, we can also make the prediction that ES cells treated

with proteasome inhibitors are more likely to differentiate

into mesodermal cells.

Treating cells with cycloheximide inhibits the key process

of translation in cells. Experiments have been performed in

fibroblast cells to monitor levels of hes1 mRNA in response

to this treatment. In the experiments a sustained increase in

hes1 mRNA levels is reported [1]. We mimic this experiment
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Figure 6. A single trajectory from a proteasome inhibition numerical experiment.
The total numbers of hes1 mRNA (red) and Hes1 protein (blue) are plotted against
time. Baseline parameter values are used, with the exception of mp which is
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Figure 7. A single trajectory from a translation inhibition numerical experiment.
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with our model by decreasing ap by a factor of 100 and run-

ning our simulation for 300 min. The results of this numerical

experiment are shown in figure 7. Our model is able to repro-

duce qualitative behaviour, i.e. an increase in hes1 mRNA

numbers. In terms of exact numbers, we recorded the mean

copy number of hes1 mRNA produced by our model under

translation inhibition conditions and compared it with the

wild-type case (recording 100 means for each case then

taking the average of the means). The translation inhibition

experiment caused mean mRNA levels to increase from 50

to 183 (more than threefold increase). We leave this result

as a quantitative prediction of the model. Furthermore, we

observe that protein levels are persistently low, so using

our model we can make the prediction that ES cells under-

going translation inhibition would be more likely to

differentiate into neuronal cells.
4. Discussion
ES cells are pluripotent stem cells with the ability to differen-

tiate into various cell types belonging to all three germ layers:

ectoderm, mesoderm and endoderm. Application of these

differentiated cells is highly anticipated for regenerative

medicine, but ES cells respond heterogeneously to different

cues, resulting in a mixture of various types of differentiated

cells. The basic mechanism governing such heterogeneity in

the differentiation of ES cells is not well understood but

recent studies have suggested the cyclic expression of Hes1

plays a role.

We have presented a spatial stochastic model of the Hes1

GRN that yields results in close agreement with experimental

studies. Transcriptional feedback systems in eukaryotic cells

are inherently stochastic and spatial and the work presented

here emphasizes the need for mathematical models to

account for this. With these modelling assumptions, we

were able to propose intrinsic noise as the main driving

force for the heterogeneity observed in ES cell differentiation

responses.

In contrast to recent PDE models of the Hes1 oscillator

[28,29], our model is able to reproduce the variability in period
and amplitude of Hes1 oscillations observed in experiments.

We were able to ask more questions of our model than recent sto-

chastic DDE models [23], as well as being able to directly

compare our numerical simulations with bioluminescence

movies of in vivo Hes1 expression. Additionally, our model

does not rely on a Hill function approximation to the negative

feedback the Hes1 protein exerts on its own mRNA, the validity

of which has been cast into doubt in recent years [43].

Given the potential application for regenerative medicine,

we have also proposed methods of controlling differentiation

responses via drug treatment. Our model has predicted that

applying proteasome inhibitors to an ES cell could yield a

mesodermal cell while applying translation inhibitors could

yield a neuronal cell. Our model was also able to reproduce

experimental results in which hes1 transgenes were intro-

duced to haematopoietic progenitor cell which encoded a

mutant Hes1 protein lacking the DNA-binding domain [41].

Future work will consider extending the model in various

ways. In particular, we will explicitly account for transport

across the nuclear membrane and dimerization of Hes1 mono-

mers. There is experimental evidence that molecular movement

within a cell can be ‘subdiffusive’ or ‘superdiffusive’ [44–47],

which is something we will investigate in future models. As men-

tioned earlier, we will also conduct a global sensitivity analysis of

our model using data-clustering techniques. We may also con-

sider cell–cell communication in future work to see whether

this acts to stabilize and synchronize oscillatory behaviour as

Masamizu et al. [16] found experimentally and Terry et al. [48]

found in their model of Notch signalling. Naturally, our

approach is readily applicable to many other pathways and

future work will investigate the more complex p53–Mdm2

negative feedback loop.
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