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Hyaluronan – a functional and
structural sweet spot in the tissue
microenvironment
James Monslow, Priya Govindaraju and Ellen Puré*

Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA

Transition from homeostatic to reactive matrix remodeling is a fundamental adaptive tissue
response to injury, inflammatory disease, fibrosis, and cancer. Alterations in architecture,
physical properties, and matrix composition result in changes in biomechanical and
biochemical cellular signaling. The dynamics of pericellular and extracellular matrices,
including matrix protein, proteoglycan, and glycosaminoglycan modification are continu-
ally emerging as essential regulatory mechanisms underlying cellular and tissue function.
Nevertheless, the impact of matrix organization on inflammation and immunity in particular
and the consequent effects on tissue healing and disease outcome are arguably under-
studied aspects of adaptive stress responses. Herein, we review how the predominant
glycosaminoglycan hyaluronan (HA) contributes to the structure and function of the tissue
microenvironment. Specifically, we examine the evidence of HA degradation and the
generation of biologically active smaller HA fragments in pathological settings in vivo. We
discuss how HA fragments versus nascent HA via alternate receptor-mediated signaling
influence inflammatory cell recruitment and differentiation, resident cell activation, as well
as tumor growth, survival, and metastasis. Finally, we discuss how HA fragmentation
impacts restoration of normal tissue function and pathological outcomes in disease.
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Introduction

In the 80 years that have passed since hyaluronan (HA - also known as hyaluronic acid or
hyaluronate) was first isolated and purified from the vitreous humor of the eye (1), the perception
of this structurally seemingly simple molecule has changed dramatically. From simple beginnings,
and being thought of merely as a “space-filler,” our understanding of its role grew slowly at first,
steadily gathered steam and has now entered its exponential phase. HA is now recognized as a
molecular powerhouse with critical roles in homeostasis, pathological disease onset, progression,
and recovery or decline. This is none more so evident than in the number of review articles of
which the biological role of HA has been the focus over the last few years alone [2012-2014 nearly 40
reviews, including an entire edition dedicated to its role in cancer (2)]. It is well established that native
HA matrix found in homeostasis plays important biomechanical and biophysical roles as a hydrated
cushioning agent and/or molecular filter in connective tissue, joints, and skin (3, 4). Furthermore,
increased HA accumulation is a hallmark of almost all diseases in which inflammation and/or
fibrosis occur, especially tumor growth and metastasis (2, 4–10). Importantly, HA polymer length
(and thus its molecular weight, MW) plays a significant part in the nature of its interactions with
the extracellular matrix (ECM), cell surface receptors (including its major receptor, CD44) on both
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resident and recruited cells, and influences how cells in tissue
respond to extracellular cues under these conditions (4, 10–15).
The existing literature clearly pinpoints that the MW character-
istics of HA are important determinants of its biological activity,
through in vitro and in vivo studies describing how exogenously
added HA of different MW affects cellular signaling and function
(4, 8, 11, 12, 16–19). There, however, has been limited work
to elucidate the distribution of varying sizes of endogenous HA
in the tissue in question, the alterations to HA MW that occur
during disease progression and how these HA fragments change
the biomechanical and biophysical properties of the tissue in vivo.
Nor have many of the reports where exogenous HA was added,
elucidated how this effected the size distribution of endogenous
HA, and over time, its effects on tissue architecture and cellular
signaling that translate to either recovery of homeostasis or pro-
gression of disease. This is especially important in the context
of cancer progression, as the effects of altering HA MW may
have varying and opposing effects depending on the origin of the
cancer, the tissue in which it resides, and the stage of the disease
(20). The recent findings in the naked mole rat that suggest a link
between the animals’ resistance to cancer and the extraordinarily
high MW (HWA) HA in its tissues have brought this subject
into the limelight (21). For the above reasons, we have confined
this review to focus on (i) a summary of the existing knowledge
aboutHAMWdistribution in vivounder homeostasis anddisease,
(ii) mechanisms responsible for alterations in HA MW and the
occurrence of these mechanisms in pathological settings, and
(iii) the opposing effects of HMW-HA versus HA fragments on
ECM function, receptor-mediated cellular signaling and disease
outcome.

HA Molecular Weight Distribution in
Homeostasis and Disease

HA Molecular Weight – Why Do We Care?
Hyaluronan is a polysaccharide of repeating units of -glucuronic
acid and N-acetyl-glucosamine. This highly charged, hydrophilic
molecule is among the largest polysaccharides in nature, and
in mammals one of the simplest with regards to structure. It
is the major, non-proteinaceous component of the ECM, struc-
turally distinct from other glycosaminoglycans (GAGs) in that it
is unmodified (i.e., non-sulfated) and linear [non-branching (22)].
In its most common, homeostatic, and native form, HA polymer
chain length exists as a HMW molecule, with sizes commonly
above 1000 kDa. In this form, HMW-HA possesses biophysical
properties that serve as a lubricant to hydrate tissue and create
a matrix that sequesters growth factors and cytokines (23). It is
uniquely synthesized at the plasmamembrane with the completed
polymer extruded to the extracellular space by the hyaluronan
synthase enzymes (HASs). IncreasedHAS synthesis andHA accu-
mulation are hallmarks of many pathological conditions (24).
HMW-HA is degraded in vivo by hyaluronidases (Hyals), a family
of enzymes that hydrolyze HA chains into intermediate (medium
MW, MMW) or short (low MW, LMW) fragments (18). Changes
in HA synthesis and degradation in part mediate the biochemical
and rheological alterations to reactive matrices that occur dur-
ing disease progression. Under certain pathological conditions,

the extent of HA fragmentation is greatly enhanced, causing
significant changes in the distribution and size of biologically
active HA products, including the accumulation of HA oligomers
[<10 kDa or <20 monomers – oligo-HA (25, 26)]. Collectively,
these bioactive HA fragments serve to interact with cells and
influence behavior in different ways to HMW-HA (27–31).

HA MW Distribution in Health Versus Disease – It
is the Small (HA) Things that Matter
A correlation of increased HA levels in the pathological setting is
now par for the course. However, understanding the MW distri-
bution of HA in vivo, how it varies between different tissues, and
how the ratio of HMW-, MMW-, LMW-, and oligo-HA changes
during disease progression is also paramount when developing
treatment regimens that target HA. Surprisingly, measurements
of HA MW distribution in vivo have only occasionally been
investigated; these are summarized in Table S1 in Supplementary
Material.

Upon review of the literature, it became clear that there was no
consensus for what was termedHMW- versusMMW-, LMW- and
oligo-HA. To better understand and compare the roles of HA of
different sizes under various biological settings going forward, we,
for the purpose of this review, categorize the various MW forms
of HA as follows; HMW-HA (>1000 kDa), MMW-HA (250-
1000 kDa), LMW-HA (10-250 kDa), and oligo-HA (<10 kDa).
These groups are by no means distinctly distributed; in many
settings, HA MW is polydisperse, encompassing more than one
size category. In contrast, specific properties of HA are in certain
instances associated with a defined and narrow spectrum of its
MW (12).

A total of 65 studies reported analysis of HA MW in an array
of tissues including skin, brain, eye, prostate, blood, circulating
leukocytes, synovial tissue and fluid, cartilage, amniotic fluid,
lymphatics, kidney, aorta, gums, lung and lung fluid, heart, larynx,
liver, cervix, skeletal muscle, and urine across a variety of species
(see Table S1 in Supplementary Material for references). Nineteen
of the studies analyzed HA MW under homeostatic conditions
exclusively. Surprisingly, we only found eight studies that analyzed
HA in the context of cancer. The remaining studies reported HA
size in a number of pathological settings, including cardiovascular
disease (atherosclerosis and vascular injury), arthritis (rheuma-
toid and osteoarthritis), liver disease (septic shock and chronic
liver fibrosis), vanishing white matter disease, skeletal ischemia,
lung disease (asphyxia, cigarette smoke exposure, asthma, fibro-
sis, ischemia, and hypertension), skin wounding/healing, kidney
disease, development, pregnancy, inflammation, and aging. HA
exists in a HMW form under homeostatic conditions in almost
all of the tissues where it was analyzed, with subtle yet possi-
bly significant differences depending on the tissue and species
(1000-7000 kDa). Notably, increased HA fragmentation was evi-
dent under pathological conditions, occurring in both inflam-
matory and fibrotic diseases. HA MW analysis in lung and skin
pathologies had been more extensively analyzed compared to
other tissues. A small amount of HA was detected in lungs under
homeostatic conditions, found predominantly in the HMW form.
Following insult or injury, a dramatic increase in total HA as
well as fragmentation yielding LMW-HA species was observed.
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Comparatively, under homeostatic conditions, skin contained a
greater amount of HA, though still present in a HMW form. Fol-
lowing injury (by wounding or exposure to UVB radiation), HA
was detected in either a LMW or MMW form (ranging from 100
to 350 kDa). As wounds healed, HA MW gradually transitioned
back to its nativeHMWform after 28weeks. Two reports analyzed
the effects of aging in the context of wound healing and found
decreased Hyal activity and delayed wound repair and restoration
of HMW-HA in aged animals (mouse and rat). HA, HAS, and
Hyal enzymes have been implicated in a variety of cancers. HA size
has been reported in prostate, lung, brain, larynx, liver, colon, and
urine (bladder) cancer. IncreasedHA fragmentationwas observed
in the prostate (1 of 2 reports), urine, larynx, brain tumor cyst
fluid, and colon cancer compared to their normal counterparts,
with no observed/reported change in MW distribution in lung or
liver cancer. Interestingly, the presence of oligo-HA in vivo was
only reported in five studies, two ofwhichwere under homeostatic
conditions in the aorta and urine, one in the interstitial fluid
of patients with colon cancer, and the remaining two studies in
vascular tissue following injury. Collectively, such limited data,
therefore, make it challenging to generalize and suggest how to
manipulate HA with the goal of altering disease progression. Fur-
thermore, changing HA MW in the milieu in one specific tissue
may then not be translatable to the treatment of carcinogenesis
and other pathological settings in different tissues.

Physiologic and Pathophysiologic
Mechanisms of HA MWModification In vivo

Is Synthesis Important?
Accurate measurements of HA MW profiles may be in short
supply, but there is a substantial body of work focusing on the
molecular processes that govern HA MW and the methods by
which HA fragments accumulate. Under normal homeostatic
conditions HA metabolism is carefully controlled to maintain
physiological concentration in tissues. Furthermore, changes in
HA synthesis and/or degradation are hallmarks of an ongoing
pathological process (32). The three mammalian HAS enzymes
(HAS1–3) synthesize and secrete HA polymers of different length;
HA secreted into the culturemedia by stable transfectants revealed
that HAS1 makes MMW-to-HMW-HA (200-2000 kDa), whereas
HAS2 is responsible for onlyHMWpolymers (>2000 kDa). HAS3
produces HA in the LMW-to-MMW range [100-1000 kDa (33)].
Stimuli such as cytokines [IL-1β, TNFα (34–36), and IL-15 (37)]
and growth factors [TGF-β (36, 38, 39), PDGF (39, 40), HB-
EGF (41), and EGF (42)] can regulate HAS expression at the
transcriptional level. Furthermore, HAS activity hasmore recently
been shown to be controlled by direct phosphorylation (43, 44),
O-GlcNAcylation (45), and ubiquitination (46). The availability
of UDP-sugar precursors (constituents of the HA disaccharide
subunit) is also a rate-limiting step for HA production (47). HAS2
also has a natural antisense transcript at its gene locus (HAS-AS1)
that can stabilize HAS2 mRNA (48).

Collectively, there are, therefore, many cellular mechanisms
that can regulate HA levels in tissue at the stage of synthesis. How-
ever, there is currently no evidence suggesting that any of these
factors, or others, alter the ability of the HAS enzymes to modify

the length of HA polymer they produce. HA MW distribution,
and specifically the accumulation of smaller polymers, appears to
lie solely in mechanisms specifically controlling its degradation,
withHAS enzymes only able to replenish existing extracellularHA
reservoirs.

HA Turnover, Catabolism, and the Control of HA
Fragmentation
Extracellular HA can exist in a number of distinct pools that may
have implications for HA turnover in homeostasis. Furthermore,
any changes in the processes involved in the transition of HA from
one pool to another could potentially affect its biological roles
in the surrounding tissue. First, HA is synthesized as a HMW
polymer that is retained as a pericellular coat, via retention by
the HAS enzymes or receptor-mediated binding of HA following
release of nascent chains from the synthases. Alternatively, HA can
be released from the pericellular matrix and incorporated as an
integral component of the ECM. Some may also be released as a
soluble form into interstitial fluids or the circulation. In each case,
HA is subject to subsequent degradation and either internalized
and recycled by the resident cells or removed via the lymph.Under
homeostatic conditions, HA has a high turnover rate, with as
much as one third degraded to LMW fragments and replaced,
each day. Lymphatic vessels drain considerable amounts of HA
via receptor-facilitated uptake (utilizing receptors such as HARE,
LYVE-1, and layilin), after which it is predominantly cleared in
the liver. A small proportion is cleared by the kidneys (~10%)
and only 1-2% is excreted in the urine (3, 49, 50). In tissues
containing high amounts of native HA (skin, cartilage, and joints),
a significant amount is degraded locally, by processes involving
HYAL-mediated cleavage and receptor-aided internalization, via
CD44 and RHAMM (49, 51, 52).

Hyaluronan fragmentation can occur via enzymatic or non-
enzymatic processes. Enzymatic cleavage of HA by Hyal involves
the hydrolysis of β-1-4 linkages in the HA chain (13). Six genes
for Hyals have been identified in the human genome (Hyal-1–4,
PH-20, and HYALP1), although only five of these encode protein
products (not HYALP1) and of which only four can catabolize HA
[notHyal-3 (49)].Hyal-1 cleavesHAover awideMWrange, down
to oligo-HA fragments of only four or six saccharides in length
(53). In contrast, Hyal-2 appears to cleave polydisperse HMW-HA
to 20 kDa fragments (54), although the lower limit of HA size that
Hyal-2 can digest is still unclear. Both intracellular (byHyal-1) and
extracellular (by Hyal-2) degradations of HMW-HA are CD44-
dependent (55). PH-20 degrades polydisperse HA to oligo-HA
(including HA disaccharides), but its expression is almost exclu-
sively limited to sperm, where it degrades HA in the cumulus layer
of oocytes to facilitate fertilization (56). Reactive oxygen/nitrogen
species (ROS/RNS) are also capable of non-enzymatic HAdepoly-
merization and fragmentation. This is a non-selective process,
resulting in HA fragments of various lengths (57–60).

Under homeostatic conditions Hyal-1 is expressed in the major
parenchymal organs, such as the liver, kidney, spleen, and heart,
at low levels in lung, skeletal muscle, and placenta, and is also
detectable in plasma and urine. In comparison, Hyal-2 is highly
expressed in most tissues. Interestingly, neither isoform has been
detected in the brain (13). Hyal-1 exists as a 56 kDa glycoprotein
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present in tissues and plasma and as a proteolytically processed
45 kDa form that is only found in plasma (12). Whether these
two forms cleave HA to dissimilar fragments or have distinct
preferences for HA polymers of different MWs remains to be
elucidated. Hyal-1 is active at an acidic pH (53), suggesting that
at a cellular level it may reside in lysosomal compartments. Hyal-
2 shares many of the characteristics associated with Hyal-1; it has
a MW of 55 kDa, also exists as a proteolytically processed smaller
form and is optimally active at an acidic pH. In contrast, Hyal-2
contains a glycosylphosphatidylinositol (GPI) linkage, thus teth-
ering it to plasma membrane surfaces. There is a consensus that
Hyal-2 may also localize to lysosomes, although there is some
conflicting evidence that suggests this may not be the case (12).
It is also unclear if membrane-tethered Hyal-2 is involved in
releasing cell-associated HA from the pericellular environment in
order that it can be integrated into the ECM.Hyal-3 is somewhat of
an anomaly; strong transcriptional expression has been detected
in bone marrow, testes, and kidney, although no changes in HA
accumulation were observed in Hyal-3-deficient mice (61). To
date, no activity has been detected in vivo, although Hyal-3 may
contribute to HA metabolism and fragmentation by altering the
activity of Hyal-1 (62).

Evidence for Hyal Expression, Activity, and Hyal-
or ROS-Dependent HA Fragmentation During
Disease Progression In Vivo
Any augmentation to Hyal expression, activity, or receptor-
mediated lymphatic drainage has the potential to result in the
accumulation of smaller bioactiveHA fragments in tissue, and this
has proven to be a hallmark of a variety of pathological conditions
in vivo. Indeed, the genetic disorder mucopolysaccharidosis IX
arises due to a mutation of Hyal-1. This mutation attenuates the
ability of the enzyme to degrade HA, resulting in increased levels
of HA in plasma and elevated storage of mucopolysaccharide in
lysosomes (63). Table S1 in Supplementary Material documents
changes in HA MW distribution in a variety of biological settings,
which in some instances have been correlated with, or arise as
a result of alterations in Hyal content. This is certainly true in
inflammatory disease; platelet-derived Hyal-2 increases the accu-
mulation of HA fragments that in turn stimulate monocytic IL-6
and IL-8 production and downstream inflammatory responses in
the local milieu (64). Furthermore, human CD14+ monocytes
from normal as well as myelomonocytic lineages from leukemia
patients express Hyal on their cell surface, thereby possessing
the potential to degrade HA in the circulation as well as upon
their recruitment to sites of disease (65). Increased Hyal activity,
together with increased levels of LMW-HA has been reported in
highly inflammatory atheromatous plaques during cardiovascular
disease (66). Diabetes also correlated with increased Hyal expres-
sion in vascular tissue, with increased HA fragmentation (67).
Conversely, increased deposition of MMW–HMW-HA led to
severe cardiac dysfunction inHyal-2-deficientmice (68). A variety
of lung disorders have been examined for correlations between
Hyal levels and HA fragmentation. Hyal-1 expression is increased
in amodel of pulmonary hypertension leading to accumulation of
HA fragments (69). Airway smooth muscle cells from asthmatic
or chronic obstructive pulmonary disease (COPD) patients have
a reduction in average HA MW (250 kDa) versus healthy controls

(>700 kDa) that correlates with increased expression of Hyal-
1 (70). Furthermore, increased Hyal-2 expression, together with
decreased HAS2 expression has been reported in patients with
COPD (71). Generation of ROS, combined with increased Hyal-
2 activity also increases HA fragmentation (72). ROS-dependent
HA fragmentation was also supported in two other separate
studies, where exposure to cigarette smoke and subsequent ROS
generation reduced pulmonary native HA (>500 kDa) to LMW-
HA [70 kDa (73)], whereas pulmonary ischemia was associated
with increased accumulation of LMW- and MMW-HA fragments
[30-495 kDa (74)]. Interestingly, this latter study showed that
HA fragmentation resulted solely from ROS activity, and not via
Hyal degradation. In a model of skin injury, UVB irradiation of
organotypic epidermal cultures induced Hyal, HAS, and CD44
expression, leading to an accumulation of LMW-HA fragments
(75). HA fragmentation has also been recognized as a biological
marker for rheumatoid arthritis (76). Indeed, TNFα-stimulated
synovial fibroblasts from arthritic mice show increased levels of
LMW-HA (77).

Alterations in Hyal expression, activity, and HA fragmentation
have also been reported in some oncogenic settings. Increased
expression and activity of Hyal-1 and Hyal-2 were observed in a
study of patients with colorectal cancer, with the highest activity
found in the advanced stages of the disease (78). Overexpression
of Hyal-1 also promoted mammary tumor growth and increased
tumor angiogenesis (79). Increased Hyal activity together with
the accumulation of HA fragments promoted pancreatic tumor
cell motility (30), and the tumor cell line H460M (derived from
human lung cancer) was also reported to produce high levels of
Hyal, although not its own HA (80). Hyal expression has been
found at elevated levels in other malignancies, including head
and neck (81), prostate (82), brain (83), and urinary tract (84).
Further reports suggest that increased Hyal levels might serve
as a diagnostic marker for the onset and progression of bladder
and epithelial ovarian cancer (58, 85, 86). However, evidence
exists that contradict these findings. A study of patients with
endometrial cancer indicated that tumor tissues had elevated HA
levels and correlated with lower expression of Hyal-1 and Hyal-2
compared to healthy controls (87). Decreased Hyal expression has
also been reported in squamous cell head and neck carcinoma (88)
aswell as lung cancer (89). Furthermore, increasedHyal activity by
genetic manipulation or intravenous administration suppressed
tumor growth in models of colon and breast carcinoma, respec-
tively (90, 91). In a separate study, ablation of HA in the tumor
stroma by intravenous injection of Hyal decreased intratumoral
fluid pressure and consequentially increased drug penetration in
a model of pancreatic ductal carcinoma (92).

Collectively, current evidence suggests that HA synthesis and
degradation are delicately balanced. The likelihood exists that
alterations in either HA synthesis or degradation can have
profound consequences on the other, which may account for
opposing outcomes in disease progression. Indeed there is some
evidence that supports this notion. Overexpression of HAS1 in
prostate cancer was shown to be anti-tumorigenic; however, over-
expression of both HAS1 and Hyal-1 increased HA fragmentation
that in turn promoted tumor cell proliferation and metastasis
(93). Furthermore, Hyal-1 expression in cancer cells themselves
functioned as both a tumor promoter and tumor suppressor in
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prostate carcinoma (82). In a separate study in breast cancer,
expression of antisense HAS2 (ASHAS2) increased accumulation
of HMW-HA, while simultaneously causing the downregulation
of Hyal-2. Combined, this inhibited the initiation and progression
of primary and metastatic tumor progression (94).

The Opposing Effects of Native HA versus
HA Fragments on ECM Function,
Receptor-Mediated Signaling, and Disease
Outcome

HMW-HA - Keeping Tissues in Check?
As discussed, HA in its native state is found in a HMW form
(>1000 kDa) that influences normal homeostatic functions in a
variety of ways. HMW-HA has the ability to trap large amounts of
water, thus possessing biophysical properties that serve to lubri-
cate, hydrate, or space-fill tissues such as joints and connective
tissue (13, 95). Its hydrophilic attributes also allow it to act as a
molecular sieve and affect fluid absorption rates to and from tissue
through changes in its concentration (96). HMW-HA possesses
biomechanical properties, and none more so is this evident than
during development. The maturing embryo is surrounded by a
soft, hydrated matrix, rich in HMW-HA. Soft matrices are com-
monly considered to inhibit cellular adhesion and proliferation.
Uniquely, the HA-rich microenvironment during development
facilitates growth and development of tissues, including neuronal
growth (97), limbs (98), blood vessels, and the heart (99). The
presence of HMW-HA is critical to normal embryogenesis, as
targeted deletion of HAS2 results in embryonic lethality, due to
abnormal heart development (99). These distinct biomechanical
properties of HA in soft tissue have recently been confirmed
in vitro, whereHA-rich soft substrates, as opposed to collagen-rich
substrates of the same degree of stiffness but lacking HA, pro-
moted cell spreading, focal adhesion and stress-fiber formation,
and normal cell function (100). This might explain how embry-
onic cells are able to adhere, proliferate, and differentiate under
soft conditions during development. It is interesting to speculate
whether one may extend this hypothesis to wound healing; one of
the first events in the formation of granulation tissue (for example
in skin wounds) is an accumulation of HA in a soft fibrin matrix.
The HA may serve to facilitate cell migration in the early stages
of wound healing, prior to the onset of fibroproliferation, and
the generation of a stiffer substratum as a result of increased
matrix deposition. A HA-rich fibrin clot may enable swift tissue
remodeling and healing in the face of initially soft conditions.

High molecular weight-HA-specific signaling has been shown
to result in favorable outcome on cell and tissue function in adult
tissues in response to environmental cues. In in vitro wound
healing models, the incorporation of HMW-HA into collagen gels
enhanced gel contraction, vascular smooth muscle cell (VSMC)
cell spreading, filopodia formation, and pericellular accumulation
of collagen fibers via the HA receptor CD44 (101). HMW-HA also
promoted actin stress-fiber arrangement, lamellipodia formation,
and cell migration (but not proliferation) in VSMCs (102). Inhibi-
tion ofCD44 blockedHA–CD44–RhoA-mediated events, with the
exception of migration, whereas inhibition of RHAMM (another
HA receptor) and downstream Rac signaling only inhibited

HA-mediatedmigration (102). HMW-HA also enhancedmyocar-
dial repair when transplanted simultaneously with bone marrow
mononuclear cells in the heart following myocardial infarc-
tion. The HMW-HA provided a favorable microenvironment for
transplanted cell adhesion and proliferation, leading to reduced
inflammation and cardiomyocyte apoptosis, as well as increased
angiogenesis and cardiac performance (103). HMW-HA also
increased CD44- andNF-κB-dependent SNAIL2 expression lead-
ing to increased fibroblast invasion (104). Indeed, the role of
HMW-HA in response to injury has been studied quite exten-
sively. In the skin, HMW-HA improved permeability barrier
function in aged epidermis via CD44-dependent mechanisms
(105). This may in part be attributed to HMW-HA–CD44-
dependent mechanisms that control keratinocyte differentiation
(106). HMW-HA also enhanced excisional wound contraction
compared with saline-treated controls (107). In a diabetic wound-
healing model, this was associated with enhanced angiogenesis,
TGF-β, and transglutaminase II expression, restoration of cyclin
B1/Cdc2 complex and increased mechanical strength (108). Inde-
pendently, HMW-HA was shown to mitigate astrocyte activation
in vitro and in vivo leading to a reduction in scarring (109). Fur-
thermore, daily subcutaneous administration of a HMW-HA for-
mulation (HYAL-BV 5200) inhibited neointimal formation and
macrophage recruitment following balloon catheter-induced vas-
cular injury in cholesterol-fed rabbits (110). Our group reported
that the tissue response to vascular injury was CD44-dependent.
HMW-HA inhibited mesenchymal cell cyclin D1 expression and
subsequent cell proliferation via a CD44-dependent and Skp2-
dependent mechanism (111). HMW-HA may also control the
response to injury by reducing VSMC apoptosis mediated via
TLR4, CD44, and downstream PI3K signaling (112).

Many of the protective/healing effects associated with HMW-
HA in response to injury can be attributed to its suppressive effects
on the inflammatory response. HMW-HA (1600 kDa) completely
blocked monocyte and neutrophil infiltration and MIP-2 and
TNFα induction in a model of sepsis-induced lung injury, thus
attenuating the injury response (113). T-cell-mediated liver injury,
as well as the release of pro-inflammatory cytokines TNFα, IFNγ,
MIP2, and IL-4, was also inhibited by administration of HMW-
HA (114). HMW-HA increased SDF1b-induced CXCR4 signaling
and cell motility, increased vessel sprouting, and angiogenesis.
This process was again HA–CD44 dependent, with CD44 phys-
ically interacting with CXCR4 in the presence of the CXCL12
ligand (115).

High molecular weight-HA is also able to enhance immuno-
suppression via binding to the surface receptor TLR4 leading to
an increase in the release of the immunosuppressive cytokine IL-
10 (116). Interestingly, this immunosuppressive effect has recently
been suggested as a mechanism in infectious disease; HMW-HA
impaired virus phagocytosis by macrophages and thus increased
viral survival within the blood (117).

HMW-HA and Cancer Progression
The protective effect of HMW-HA is also evident in tumorige-
nesis. Treatment with HMW-HA inhibited post-chemotherapy
tumor growth in a human colon carcinoma xenograft model in
NSG mice (118). HMW-HA antagonized the pro-inflammatory
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effects of IL-1β-treated chondrosarcoma cells, decreasing COX2,
MMP-1, and MMP-13; promoting Akt; and suppressing MAPKs
and NF-κB signaling, via PPARγ-dependent signaling (119).
HMW-HA also inhibited migration of fibrosarcoma cells. Inter-
estingly, this effect was fibrosarcoma cell line-specific and did
not occur in any of the other cancer cell lines that were tested
(120). Conversely, overexpression of HAS2 (presumably leading
to increased accumulation of HMW-HA) facilitated the reversion
of cancer cells to a stem cell-like state via Twist and TGF-β signal-
ing and thus promoted tumor cell survival (121). It is, however,
unclear if this survival was due directly to HMW-HA signaling,
or due to further degradation of the accumulated HMW-HA and
pro-oncogenic signaling as a result of an accumulation of HA
fragments.

Oligo-HA - the Gloves are Off
Whereas evidence points to HMW-HA as protective and facilitat-
ing in the restoration of homeostasis in pathological settings, the
effects of oligo-HA could not be more further removed. Many of
the effects exerted by oligo-HA in pathological conditions occur
via receptor-mediated signaling in immune cells leading to the
promotion or protraction of inflammation. Oligo-HA induces
the phenotypicmaturation of humanmonocyte-derived dendritic
cells (DCs) and the production of inflammatory cytokines IL-1β,
TNFα, and IL-12. Interestingly this was not mediated via the HA
receptors CD44 or RHAMM and was partly mediated indirectly
via TNFR (122). Subsequently, DC maturation by oligo-HA was
found to be mediated by its binding to TLR4 (and downstream
p38/p42/44 MAP-kinase pathways). This was confirmed in vivo,
as oligo-HA induced DC emigration from skin, as well as their
phenotypic and functional maturation in the spleen (123). Oligo-
HA administration to resting monocytes increases the expres-
sion of the scavenger receptor (CD36), uptake of oxidized LDL
and their transendothelial migration. This particular response
was CD44-dependent and mediated in part via the PKC path-
way (124). Together, these data suggest that CD44 is directly
implicated in prolonged inflammatory responses in many auto-
inflammatory conditions such as atherosclerosis. Furthermore, it
suggests that CD44 may promote the conversion of macrophages
to foam cells within lesions, leading to increased lesional lipid
accumulation and immune cell content, conditions that favor
lesion rupture, a risk factor for heart attack and stroke.

Oligo-HA receptor-mediated cell responses are not limited to
the immune system. Endothelial cells (ECs) in particular are
impacted by oligo-HA. Oligomers of 6, 8, and 10 disaccharides
(but not 4 subunits) promoted EC proliferation and VEGF secre-
tion (125). Increased EC proliferation in response to oligo-HA
also increased tube formation, upregulation of the adhesion pro-
teins ICAM andVCAM as well as the release of pro-inflammatory
cytokines (126). In vivo, oligo-HA has been reported as one of
the predominant mechanisms by which ECs respond to injury,
with these responses mediated via oligo-HA–TLR4-dependent
mechanisms (127). However, ECs also express ICAM and CD44,
both of which can bind oligo-HA and potentially mediate cellu-
lar function (128, 129). Indeed, oligo-HA was shown to induce
rapid upregulation of immediate-early genes c-fos, c-jun, jun-
B Krox-20, and Krox-24, responsible for angiogenesis, in a

CD44-dependent manner. Additionally, immediate-early gene
signaling was not sufficient to induce EC proliferation and was
only induced upon long-term treatment with oligo-HA (129).
Oligo-HA is also capable of inducing pro-inflammatory signals
in chondrocytes. IL-1β treatment induced inflammatory signal-
ing pathways that were mediated via oligo-HA–CD44 activation,
leading to an increase inNF-κB, TNFα, IL-6,MMP-13, and iNOS,
as well as the CD44 receptor itself (130).

A certain degree of inflammation and, therefore, the generation
of some oligo-HA is a normal part of the body’s response to
insult. That being said, excess oligo-HA has often been shown
to be detrimental to healing, causing protracted inflammation
thus favoring disease progression. In contrast, the effects of oligo-
HA on resident mesenchymal cells suggest that it may facilitate
tissue recovery and healing. Sustained delivery of oligo-HA by
nano-particles increased elastin synthesis and lysl oxidase expres-
sion in rat SMCs to facilitate aortic remodeling following injury
(131). Topical application of oligo-HA promoted keratinocyte
proliferation and increased skin thickness and barrier function,
in a CD44-dependent manner (105). Wound healing models
have also revealed that administration of oligo-HA accelerates
wound healing by promoting wound closure, the accumulation
of M1 and M2 macrophages, release of TGF-β (132), enhanced
angiogenesis, lymphogenesis, and ECM deposition (133). Oligo-
HA-accelerated wound closure was both CD44- and RHAMM-
dependent. Interestingly, although fibroblast proliferation was
increased, myofibroblast differentiation within the granulation
tissue did not change (132). Protective roles for oligo-HA have
also been reported in cardiovascular disease. Together with TGF-
β, oligo-HA, but not larger HA polymers (20, 200, or 2000 kDa),
cooperatively enhanced elastin matrix regeneration in VSMCs
(134), whereas oligo-HA administration protected against neoin-
tima formation in the aorta following balloon catheter injury
in vivo (135). Oligo-HA can also upregulate hsp72 expression by
enhancing the activation of HSF1 in response to hyperthermia
in synovial cells, which acts as a protective mechanism by sup-
pressing cell death (136). A separate recent study suggests a sep-
arate biochemical mechanism by which oligo-HA may facilitate
healing. The covalent transfer of heavy chains (HCs) from inter-
α-inhibitor (IαI) to HMW-HA via the protein product of tumor
necrosis factor-stimulated gene-6 (TSG-6) forms a HC–HMW-
HA complex, a pathological form of HA that promotes the adhe-
sion and retention of leukocytes to HA matrices (137). The
transfer of HCs to HMW-HA is a reversible event mediated by
TSG-6, whereas HC transfer to oligo-HA is irreversible. Treat-
ment of HA–HC-rich synovial fluid from arthritic mice with
oligo-HA and TSG-6 irreversibly shuttled HCs from pathological,
HMW HC–HA to the oligo-HA. This suggests that oligo-HA
could thereby facilitate the restoration of HA matrices in the
inflamed joint to its normal, unmodified state, by removing HCs
from HMW-HA, through more efficient clearance of HCs from
tissue (138).

Oligo-HA and Cancer Progression
The current literature is divided upon whether oligo-HA (as
well as LMW–MMW-HA as discussed later) promotes or sup-
presses tumor growth and metastasis. Complexities arise due to
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the wide and more varied effects that oligo-HA appears to have
on tumors, compared to the effects it has on non-transformed
cell types in other pathological conditions. This no doubt stems
from the simple fact that tumors can develop in almost all tissues,
from different cellular origins, and as a result of different muta-
tions/environmental cues, to the point where you are in effect,
looking at the role of one molecule (oligo-HA) on an ever increas-
ing number of functionally and pathologically distinct, tumors. A
number of these opposing effects are discussed below.

Oligo-HA induces CXCR7 expression in a TLR4-dependent
manner, leading to the proliferation of W3 papillary thyroid car-
cinoma cells in vivo (28). In another independent study, oligo-
HA preferentially stimulated a physical association between CD44
with TLR2, TLR4 and the recruitment of MyD88 and actin
filament-associated protein 110 (AFAP-110), leading to NF-κB
translocation and downstream expression of IL-1β and IL-8 in
MDA-MB231 breast cancer cells. Combined, this promoted tumor
cell invasion (139). Oligo-HA also upregulated the expression and
acute phosphorylation of c-met, leading to proliferation, differen-
tiation, and invasion of human chondrosarcoma cells. This effect
was dependent on oligo-HA–CD44 interaction and signaling, and
not observed with any other HA MW size (29). Similarly, oligo-
HA, but not LMW- or HMW-HA, induced MMP-9, -13, and
uPAR in Lewis lung carcinoma (LLC) tumor cells, thus facilitating
matrix remodeling and tumor cell migration. Interestingly, this
response was not dependent on the interaction of HA with CD44,
RHAMM, or TLR4 (140). More complex roles of oligo-HA with
CD44 have also been reported in pancreatic carcinoma. Oligo-
HA, generated by Hyal degradation, enhanced the cleavage of
CD44 and its release into the ECM,which in turn enhanced tumor
cell motility. This phenomenon was abrogated upon inhibition of
HA–CD44 binding. This suggests that tumor cells enhance their
own CD44 cleavage via Hyal activity and oligo-HA generation to
promote their own motility, tumor invasion, and metastasis (30).
In contrast, oligo-HA has the ability to kill many types of tumor
cells by triggering apoptosis, while leaving normal cells unaffected.
In an interesting extension of these findings, chemo-resistant
tumor cells became drug-sensitive when treated in combination
with oligo-HA (141). Indeed, this may be one mechanism by
which oligo-HA inhibits the growth of B16F10 melanoma growth
in vivo (142). This phenomenon has been observed in other tumor
models and appears to be a response that is dependent on oligo-
HAandCD44 interaction.Oligo-HA, competitively blocked bind-
ing of endogenous HMW-HA to CD44, consequently attenuating
downstream signaling to the PI3K/Akt cell survival pathway, lead-
ing to inhibited tumor growth and apoptosis (143, 144). Further-
more, oligo-HA suppressed glioma growth in vivo, in part through
inhibiting recruitment of progenitor BRCP+ stem cells (145).
There is also evidence that oligo-HA abrogated cell-associated
matrices and HA retention via CD44 in osteosarcoma, resulting
in apoptosis and importantly, suppression of the formation of lung
metastases (31).

MMW-HA and LMW-HA - Caught in the Middle?
Low molecular weight-HA and MMW-HA fragments are fre-
quently detected as polydisperse fractions with overlapping
MW distributions. They could be considered intermediate frac-
tions, and arise due to partial fragmentation due to varying

concentrations of Hyal, ROS/RNS, as well as the availability of
cleavage sites depending on HA interactions with its receptors
and other ECM proteins. There is also the possibility that these
fractions contain nascent HA that has not yet reached its full
length. Taking this into account, MMW-HA and LMW-HA have
roles that overlap with either HMW-HA or oligo-HA.

Low molecular weight–MMW-HA has been reported to
facilitate the differentiation of many mesenchymal cells that
are activated as a normal response following injury, including
chondrocytes (146), fibroblasts [together with their expression
of growth factors FGF-2 and KGF (147)], keratinocytes (148),
and VSMCs. VSMC differentiation was associated with increased
collagen deposition (149). LMW-HA improved dermal excisional
would repair, associated with increased expression of CD44 and
RHAMM and deposition of type-III collagen in aged mice (150).
A separate study also showed improved age-related skin func-
tion, when HA was administered to patients with skin atro-
phy in a CD44-dependent manner (151). Topical administration
of LMW-HA also acts as a scavenging agent following xenobi-
otic treatment (and ROS generation), promoting wound healing
in excisional and incisional wound models (152). In the lung,
LMW-HA protected against porcine pancreatic elastase-induced
bronchoconstriction (153). Its protective effect against elastase
was confirmed in a second model where aerosolized LMW-
HA blocked experimental emphysema induced by intra-tracheal
administration of elastase (154). Conversely, administration of
LMW-HA exacerbated ozone-induced airway hyper-reactivity in
a CD44-dependent manner, also in the lung, whereas treatment
with HMW-HA protected against ozone injury (155). LMW-
HA, via TLR4-mediated receptor binding, induced neutrophil
apoptosis via an IFNβ, TRAIL/TRAILR-dependent mechanism,
thus protecting against prolonged inflammation following injury
(156). LMW-HA has also been reported to induce apoptosis
of myeloid cells via CD44-dependent, tyrosine kinase signaling
(157). Its protective effects have additionally been reported in
the liver and intestine, by preventing hepatocellular apoptosis
via NF-κB (158) and the expression of murine β-defensin 3 (an
ortholog of human β-defensin 2) via TLR4, respectively (159).

Low molecular weight-HA and MMW-HA promote inflam-
mation through direct and indirect signaling mechanisms.
Directly, polydisperse LMW–MMW-HA increases inflammatory
gene expression and decreases anti-inflammatory signaling in
macrophages by downregulating surface expression of A2aR,
via CD44 and PKC (160). LMW–MMW-HA binding to HARE
has also been shown to activate pro-inflammatory NF-κB sig-
naling (161). Conversely, LMW–MMW-HA activates the innate
immune response via TLR2 and MyD88 (162). LMW-HA can
mobilize leukocytes but not hematopoietic progenitor cells to
the circulation (163) and increase NO production in primary
macrophages (164). Importantly, the activation of elicited, ver-
sus resident peritoneal macrophages by LMW-HA have dis-
tinct requirements. Both cell types produce pro-inflammatory
cytokines (including IL-12) in response to LMW-HA via LMW-
HA–CD44 signaling; however, resident macrophages require
adhesion-dependent priming to respond to LMW-HA (165).
Other pro-inflammatory cytokines released following LMW-HA
stimulation include MIP1-α, MCP-1, RANTES, and Crg-2 (166).
LMW–MMW-HA is also a potent stimulator of eicosanoids
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(including induction of COX2 and PGE2 production via ERK1/2
p38 and JNK signaling) in primary humanmonocytes andmurine
wild-type bone marrow-derived monocytes. This activation was
also dependent on a HA–TLR4/MyD88 pathway (167). LMW-
HAcan also influencemacrophage polarity.M0 (undifferentiated)
and M2 (pro-fibrotic) macrophages can be switched to an M1
(pro-inflammatory) phenotype after a short period of stimulation
with LMW-HA (167). However, prolonged exposure to LMW-HA
can induce the M2 phenotype (168).

Indirectly, LMW–MMW-HA can stimulate the production of
pro-inflammatory stimuli from other cell types. Lung epithelial
cells, chondrocytes, liver ECs, and VSMCs release a number
of pro-inflammatory cytokines in response to LMW-HA via its
binding to CD44 or TLR4, including TNFα, IL-1β, MMP-13,
and iNOS (169–174). In VSMCs, LMW-HA also stimulated cell
proliferation and migration via CD44 through ERK1/2 and RhoA
signaling (173, 175). One study also found that TLR4 interacts
with CD44 in response to LMW-HA and together act as a brake
in LMW-HA-induced lung inflammation (176). In vivo, LMW-
HA promoted splenocyte proliferation, macrophage activation,
while suppressing angiogenesis in chicken embryos (177). LMW-
HA is critical in the induced fetal growth response to uterine
ischemia/reperfusion via TLR4 (178). LMW-HA also decreases
the rate of early wound contraction in skin (107), but increased
total number of recruited macrophages in the granulation tis-
sue (132).

LMW–MMW-HA and Cancer Progression
In the tumor microenvironment (TME), LMW–MMW-HA has
the potential to influence cancer cells, stromal cells, ECs, and
infiltrating inflammatory cells. Specifically, LMW-HA facilitates
tumor cell adhesion and migration. In fibrosarcoma, this was
shown to be dependent on LMW-HA–RHAMM binding, which
influenced downstream FAK and ERK1/2 signaling (179). LMW-
HA enhanced proliferation (though MAPK and c-fos signaling)
and adhesion of LM8 murine osteosarcoma cells with increased
MMP-2 secretion. Adhesion in these cells was shown to be
dependent on CD44 (180). In fact, LMW-HA–CD44-dependent
signaling has been reported in a number of carcinoma cells to
activate NF-κB signaling via a Ras-PKCζ-IκB cascade (181), and
thus may be one of the many ways in which LMW-HA pro-
motes tumor progression by the activation of cell proliferation.
However, much like what has been found for oligo-HA in the
TME, LMW–MMW-HA can also inhibit growth of some tumors.
MMW-HA stimulated iNOS and subsequent NO production and
apoptosis in DCs in vivo in glioma. This process was depen-
dent on HA–CD44 interaction and suggests that HA in gliomas
may contribute to immunosuppression by promoting apoptosis
of infiltrating immune cells (182). In contrasting findings to
those above, LMW-HA inhibited colorectal carcinoma growth
in vivo, by inhibiting tumor cell proliferation via Akt signaling
(183). The TME was also affected; LMW-HA induced immunity
against the carcinoma by stimulating DC migration, prolifera-
tion, and the release of IL-12 and IFNγ, while simultaneously
decreasing their release of immunosuppressive IL-10. Interest-
ingly, these responses occurred in a CD44 and TLR4-independent
manner (184).

CD44 - An Important Regulator of HA-Mediated
Signaling in Cancer?
Among the receptors involved in HA signaling, CD44 is the most
abundant, expressed in almost all tissues and across nearly every
cell type. Additionally, this type I transmembrane protein is able
to bind almost all HAMWspecies, with the exception of oligo-HA
fragments smaller than six saccharides in length (16). Combined,
these two contributing factors can arguably account for the variety
of different functions of HA–CD44 interactions in vivo, any of
which could have important outcomes on tumorigenesis.

As well as being bound to the plasma membrane, CD44 can
exist as a cleaved, matrix-associated fragment and as a solu-
ble protein and can independently affect cellular function (185,
186). CD44 also exists as a number of splice variants, which are
commonly expressed in tumor cells (6). These variants encode
additional segments in the membrane proximal region of the
extracellular domain that can be differentially glycosylated (187,
188). The CD44 cytoplasmic domain is known to be required for
HA binding, the formation and retention of pericellular matrix,
and CD44-mediated endocytosis of HA (189, 190). Furthermore,
cell adhesion via HA binding can be regulated in part by variable
glycosylation of its CD44 extracellular domain, as increased gly-
cosylation inhibits HA recognition (191). These post-translational
modifications (N andO glycosylation) of CD44 also affect its abil-
ity to signal and shed from the cell surface; however, CD44 cleav-
age can also occur via a glycosylation-independent mechanism
via MMP cleavage (192). Interestingly, murine M0 macrophages
when stimulated to induce pro-inflammatory M1 polarization
(with LPS/IFNγ), upregulate their CD44 expression and ability
to bind HA. Conversely, M0 macrophages polarized to the anti-
inflammatory M2 phenotype (with IL-4) also upregulate CD44
expression but with no increase in HA binding. This difference
was a consequence of the loss of chondroitin sulfation on CD44 in
M1s and conversely an upregulation of chondroitin sulfation on
CD44 in M2s (193). It is as-yet unclear if this dynamic physiolog-
ical regulation of hyaluronan binding also influences the pheno-
typic differences between the two cell types and the inflammatory
state of the TME. Nevertheless, the ability to alter macrophage
polarization via CD44 offers a potentially new mechanism to
target the inflammatory response in vivo, in the context of tumor
progression as well as other inflammatory conditions, such as
wound healing, lung injury, and atherosclerosis.

CD44 knockout mice are viable and fertile with a modest
phenotype; progenitor cell egress from the bonemarrow is slightly
impaired (194). However, under pathological conditions, deletion
of CD44 has profound effects on tissue architecture, signaling, and
disease outcome. In a model of non-infectious lung injury, CD44-
null mice succumb to unremitting inflammation with impaired
clearance of neutrophils, persistent accumulation of LMW-HA,
and impaired activation of TGF-β. This phenotype was partially
restored by reconstitution with CD44+ bone marrow-derived
cells (195). In contrast, we previously reported that CD44 pro-
motes auto-inflammatory disease progression in a mouse model
of atherosclerosis. CD44 expression correlated with increased
lesional macrophage and HA content and VSMC activation (196).
Furthermore, CD44 on both bone marrow-derived and non-
bone marrow-derived cells was important; CD44 on leukocytes
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in part promoted the disease via enhancing macrophage and T-
cell recruitment to lesions in vivo. Leukocyte to EC adhesion
and transmigration was also CD44-dependent as wasmacrophage
activation. CD44 on VSMCs also promoted their migration and
proliferation (197). Interestingly, we also reported that CD44 is
selectively upregulated in athero-prone regions, and CD44 signal-
ing impacts gene expression profiles in the vasculature, includ-
ing those genes involved with focal adhesion formation, ECM
deposition, inflammation, and angiogenesis (198).

CD44 is known to facilitate the rolling and adhesion of circulat-
ing leukocytes on the endothelium, and subsequent transendothe-
lial migration (14, 199–201). Targeted inhibition of HA–CD44
binding using a synthetic peptide inhibits leukocyte adhesion and
trafficking in vivo (202). HMW-HA–CD44 binding in calveolin-
enriched microdomains (CEMs) in ECs also promotes barrier
function, via the recruitment of c-met, Tiam1, Rac1, dynamin
2, and cortactin to CEMs and their redistribution to areas of
cell–cell contact (203, 204). Any alterations to HA–CD44 interac-
tion could, therefore, potentially alter the recruitment of immune
cells or the intravasation of tumor cells to the blood stream
or extravasation to tissue during metastasis. Administration of
LMW-HA suppresses A2aR (a negative regulator of inflamma-
tion) via CD44 binding and downstream PKC signaling follow-
ing lung injury in vivo (160). The HA receptor TLR4 has been
shown to interact directly with CD44 in order to limit LMW-
HA-induced lung inflammation in vivo (176). Antisense CD44
inhibited HA binding, tumor growth, and metastasis of colorectal
carcinoma cells to the liver (205). Furthermore, peptide inhibition
of CD44–HA binding significantly reduced seeding and tumor
growth of intravenously introduced B16-F10 melanoma cells in
lungs in a model of metastasis (206). Indeed, HA–CD44 interac-
tion has been implicated in the growth of a number of cancers
(6). The growth-inhibitory and tumor-suppressive effects of p53
act in part via its ability to bind to a non-canonical sequence in
the CD44 promoter, thus inhibiting CD44 expression and down-
stream tumor-promoting signaling in breast cancer cells (207).
Furthermore, a separate study found that human miRNAs miR-
373, and miR-520c suppressed CD44 expression, leading to the
promotion of breast tumor cell migration and invasion in vitro
and in vivo (208). The standard form of CD44 (CD44s) and
CD44v6 are involved in breast cancer cell adhesion and motil-
ity via interactions with HA (209). This increased cell motility
perhaps occurs as a result of modulation of CD44 into clusters
by HMW-HA on the plasma membrane (210). CD44 clusters
facilitate cell binding and internalization of HA thus enabling
invasion from tumor masses into the surrounding ECM (211).
Observation of neuroblastoma cells revealed that these CD44
clusters localized to filopodia and focal bleb-like protrusions in
neuroblastoma cells that enabled migration and invasive growth
into brain tissue (212). In another study, chondroitin sulfate E
fragments enhanced CD44 cleavage and tumor cell motility upon
degradation. Much like LMW-HA, these degradation products
modulated tumor cell adhesion andmigration by binding toCD44
(213). In a separate finding, the non-coding 3′UTR of CD44
was found to act as a binding site for miRNAs that targeted
the genes for Col1α1 and fibronectin. Overexpression of the
CD44 3′UTR in MDA-MB231 cells antagonized the effects of the

miRNAs on their specific targets and upregulated collagen and
fibronectin expression that in turn enhanced tumor cell migration
and metastasis in vivo (214).

Stromal expression of ECM proteins and GAGs is increased
in activated fibroblasts in the TME and is thought to promote
tumor cell migration. Thus, targeting CD44 signaling in stro-
mal cells in the TME may also provide a separate avenue to
target tumorigenesis. Indeed, CD44 has been implicated in stro-
mal cell function in a number of pathological settings. CD44
facilitates the healing response, by promoting fibroblast infiltra-
tion, proliferation, myofibroblast differentiation, and ECM depo-
sition and remodeling following myocardial infarction (215, 216).
Fibroblast migration is mediated by CD44-dependent TGF-β
activation that promotes stress-fiber formation and directional
migration (217). The HA receptor RHAMM may also facilitate
cell migration via the regulation of CD44–Erk1/2 complexes at
the cell surface (218). Cell proliferation via CD44 is dependent
upon the MW of the HA ligand. In VSMCs, HMW-HA bind-
ing to CD44 selectively inhibits the GTP loading of Rac and
Rac-dependent signaling to cyclin D1 (thereby inhibiting prolif-
eration), whereas LMW-HA binding to CD44 selectively stimu-
lates ERK activation and ERK-dependent cyclin D1 expression
[thus promoting proliferation (175)]. Interestingly, HA binding
to CD44 increases as a function of HA size. Half maximal sat-
uration is reached with a HA MW of only 30 kDa. Reversible
binding was confined to oligo-HA fragments (<10 kDa), with
interactions essentially irreversible with large polymers [>30 kDa
(219)]. The accumulation of oligo-HA in tumors, combined
with increased CD44 expression, may, therefore, be a mecha-
nism to activate alternate, pro-tumorigenic signaling pathways
as a means to bypass and eventually overcome the non-
reversible protective signals stemming from HMW-HA–CD44
binding.

Conclusions, Caveats, and Perspectives

In revisiting the literature, we found that little was known about
how HA MW distribution changes in vivo during disease, espe-
cially when compared with the number of studies that reported
changes in HA content in pathological settings. Much of what is
known about HA MW in disease in vivo has been extrapolated
from in vitro cell culture experiments and only a handful of early
articles where it was analyzed in vivo. Furthermore, the limited
number of studies, which we found that reported the occurrence
of oligo-HA in tissue (five in total) question the pathophysiologic
relevance of oligo-HA, and its effects on cell function in vivo.Many
studies have tested the biological activity of HA (from oligo-HA
to HMW-HA) as an exogenously added ligand to cells in culture
(with some extending these experiments in vivo), and its effects
on cellular signaling, gene/protein expression, and cell behavior;
some revisited how it changed endogenous HA, including its
localization, matrix organization, and cross-linking and turnover,
but very few specifically analyzed its effects on endogenous MW
distribution. One could argue that HA MW analysis is not a
straightforward technology. There are no commercial kits that
allow HA MW profiles to be analyzed in a high throughput fash-
ion. Additionally, care has to be taken to first extract HA from its
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link proteins, HCs, and other ECM molecules with which it forms
higher ordered structures, while simultaneously taking measures
to prevent loss of the smaller oligo-HA fragments during purifica-
tion. The commercially available kits for measuring HA concen-
tration (ELISA and ELISA-like assays) also vary, with some unable
to detect HA polymers accurately at the extremes of theMW spec-
trum (220). On the other hand, thanks to a number of dedicated
groups, a variety of reliable methodologies for HA MW analysis
do exist, using combinations of size-exclusion chromatography
(221), flat-bed polyacrylamide electrophoresis (222, 223), agarose
gel electrophoresis (223–227), gas phase electrophoretic mobil-
ity molecular analysis [GEMMA (228)], or asymmetrical flow
field fractionation with multi-angle light scattering (229, 230),
for continuous HA size profiling. Consequently, we anticipate the
increased use of these robust methodologies to monitor HA size
in various pathological settings in vivo in future studies.

Highmolecular weight HA and oligo-HA exist as distinct pools
ofHAwith unique biological properties at the opposite ends of the
HA MW spectrum. On the other hand, LMW-HA and MMW-
HA are frequently detected as polydisperse fractions that often
overlap. When searching for articles related to LMW-HA and
MMW-HA in the literature, we found that the MW range was
not always reported, instead being replaced with the average MW
for the sample. This was found to be very common in earlier
studies, and where LMW-HA or MMW-HA fractions were added
exogenously as extracellular cues to examine their effects on cell
function. These LMW and MMW fractions were purchased from
various companies, with theHA sourced fromvarious tissues from
different species. Those most commonly used included umbil-
ical cord (human), rooster comb, trachea and vitreous humor
(bovine), and a synthetic polymer of HMW-HA produced by
Pharmacia (known as Healon). The polydisperse MW ranges of

HA for these preparations are given in Figure 1. Umbilical cord
HAwas found to be commonly used in the literature as LMW-HA.
We compared umbilical cord HA fractions from three separate
vendors. Remarkably, the MW distribution of umbilical cord HA
was hugely polydisperse and varied depending on the vendor,
ranging from 30-1000 kDa for HA from ICN (MP Biomedicals)
to 900-3500 kDa from Sigma, and 200-3000 kDa when obtained
fromCalbiochem.Twoof the sources of umbilical cordHA (Sigma
and Calbiochem) contained a significant proportion of HMW
(>1000 kDa) HA. This high degree of variation in HA MW may
account for some of the opposing data we found regarding the
function of LMW-HA in the literature where umbilical cord HA
had been used. We were only able to obtain single vendor samples
for tracheal, vitreous humor, and rooster comb HA. The MW
distribution of HA in these fractions in comparison were much
narrower, with tracheal and vitreous humorHA in the 30-300 kDa
range (LMW) and rooster comb at 600-3000 kDa (MMW-HMW).
The synthetic, Healon HA could be considered very high, at
3500-4500 kDa). In order to better understand and compare the
roles of HMW-HA versus HA fragments in future studies, non-
overlapping HA MW samples with reduced polydispersity for
each sized group will help define the often contrasting roles of
HA on cell function. To this end, it appears that using umbilical
cord HA may not be best suited for this purpose. In any case, HA
from this source does not appear to be any longer available, nor
is HA from bovine trachea. This leaves Healon, rooster comb HA,
and vitreous humor HA as three sources, with non-overlapping
MWprofiles that can be confidently used to investigate the unique
individual roles of different HA MWs on tissue function and
disease outcome in future studies. This would be along with the
use of LMW-HA, oligo-HA, and narrow-range HA preparations
manufactured using unique bacterial fermentation technologies

FIGURE 1 | Agarose gel electrophoresis showing the molecular
weight (MW) distribution of commercially available HA (left) and
charted for comparison (right). Molecular weight HA ladder (MWL) was

purchased from Hyalose (combined mega, high, and low ladders). HA MW is
divided into high (HMW >1000 kDa), medium (MMW, 250-1000 kDa), and
low (10-250 kDa).
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FIGURE 2 | Summary and pathological significance of HA size
in vivo. HA molecular weight (MW) is divided into very high (vHMW
6000-12000 kDa; naked mole rat HA), high (HMW>1000 kDa),
medium (MMW 250-1000 kDa), low (10-250 kDa), and Oligo-HA

(<10 kDa). Green text highlights positive roles for each HA MW in
tissue function and recovery, whereas red text favors pathological
decline. Opposing and/or unclear tissue responses are designated in
orange-colored text.

(spearheaded by Hyalose and now offered by other vendors) that
are now readily available (231–233).

Depending on the pathological setting, HA fragmentation may
be good or bad, pro- or anti-inflammatory, aid in tissue recovery
or promote disease progression, as summarized in Figure 2. The
complexity in part arises due to the number of different signaling
mechanisms that result from HA itself acting as a ligand; it can
mediate alternate and often opposing effects via different, yet often
the same receptors. Furthermore, HA in tissue is often found as
a polydisperse molecule, often covering a MW range from 20 to
2000 kDa with no one, specific length of HA polymer dominating
during disease. It is, therefore, interesting that in its polydisperse
state, HA can produce such contrasting signaling cues compared
to what is exerted by native, HMW-HA in homeostasis. It is
possible that changes in HA-mediated cellular signaling occur
when a small percent of this polydisperse-fragmented pool passes
a threshold that is enough to tip the balance and change the
outcome of cellular function. Indeed, we have previously proposed
that CD44 may act as a rheostat for cell proliferation through its
ability to activate alternative signaling pathways via the binding of
HMW-HAversus LMW-HA (22). As small pools ofHA fragments
have the propensity to do this, it is, therefore, conceivable that
therapies to induce even possibly quite modest changes in the
ratio of the active HA fragments would be enough to shift the
balance of signaling in the favor of tissue repair and recovery.
For example, small adjustments in increasing the ratio of HMW-
HA to HA fragments may be enough to keep disease in check.

On the other hand, there may be occasions where decreasing
this ratio, and increasing the levels of specific HA fragments may
also be beneficial. Importantly, the total concentration of HA
fragments versus native,HMW-HAalso needs to bemeasured and
addressed; simply flooding the system with any size HA might
be expected to cause detrimental effects to the tissue. Under-
standing, therefore, how HA MW distribution changes in vivo
in different pathological settings, together with the shifts and
trends that alter HA signaling, will be crucially important in
decidingwhen andwhere to intervene to alter the course of disease
progression.

It is clear that there is a substantial body of work that has
investigated the biological and signaling roles of HMW-HA,
MMW-HA, LMW-HA, and oligo-HA on cell function and dis-
ease outcome. Collectively, the data suggest that using HMW-HA
may be a suitable course of action to aid tissue recovery and a
return to homeostasis (Figure 2). This has certainly been the case
for the treatment of arthritis (234). Other important avenues of
research have pinpointed a pivotal role for HA in the regenerative
properties of fetal tissues, which unlike their adult counterparts,
heal without scarring (235), although the mechanisms by which
this occurs remains to be elucidated. A less well-studied area is
how MMW-HA, LMW-HA, and oligo-HA impact the biophys-
ical and rheological properties of the tissue microenvironment
or the biomechanical properties of HA in the pericellular and
ECM. Going forward, these also offer important and exciting
areas of investigation that may offer new therapeutic perspectives
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on targeting HA biology in tumor and disease progression and
restoration of homeostasis.
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