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Residual mucosal inflammation along with chronic systemic immune activation is an 
important feature in individuals infected with human immunodeficiency virus (HIV), and 
has been linked to a wide range of co-morbidities, including malignancy, opportunistic 
infections, immunopathology, and cardiovascular complications. Although combined 
antiretroviral therapy (cART) can reduce plasma viral loads to undetectable levels, res-
ervoirs of virus persist, and increased mortality is associated with immune dysbiosis 
in mucosal lymphoid tissues. Immune-based therapies are pursued with the goal of 
improving CD4+ T-cell restoration, as well as reducing chronic immune activation in 
cART-treated patients. However, the majority of research on immune activation has 
been derived from analysis of circulating T cells. How immune cell alterations in mucosal 
tissues contribute to HIV immune dysregulation and the associated risk of non-infectious 
chronic complications is less studied. Given the significant differences between mucosal 
T cells and circulating T cells, and the immediate interactions of mucosal T cells with 
the microbiome, more attention should be devoted to mucosal immune cells and their 
contribution to systemic immune activation in HIV-infected individuals. Here, we will 
focus on mucosal immune cells with a specific emphasis on CD4+ T lymphocytes, such 
as T helper 17 cells and CD4+Foxp3+ regulatory T cells (Tregs), which play crucial roles 
in maintaining mucosal barrier integrity and preventing inflammation, respectively. We 
hypothesize that pro-inflammatory milieu in cART-treated patients with immune activa-
tion significantly contributes to enhanced loss of Th17 cells and increased frequency 
of dysregulated Tregs in the mucosa, which in turn may exacerbate immune dysfunction 
in HIV-infected patients. We also present initial evidence to support this hypothesis. 
A better comprehension of how pro-inflammatory milieu impacts these two types of cells 
in the mucosa will shed light on mucosal immune dysfunction and HIV reservoirs, and 
lead to novel ways to restore immune functions in HIV+ patients.
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systeMiC aCtiVation and GUt 
MUCosaL dysBiosis in HiV disease

Human immunodeficiency virus (HIV) associated systemic 
immune activation constitutes persistent immune dysfunction 
associated with chronic non-infectious events that include 
cardiovascular, hepatic, and renal disease, as well as non-
AIDS malignancies in cART-treated patients (1–3). Immune 
reconstitution inflammatory syndrome (IRIS) also comprises 
of immune abnormalities, although in patients with advanced 
immunodeficiency and underlying opportunistic infections 
(4, 5). While cART has dramatically changed the fatal course 
of the epidemic in HIV-infected patients, continuous treatment 
poses significant challenges in terms of costs and clinical safety. 
Moreover, despite profound reductions in acute opportunistic 
infections, persons with treated HIV infection are surviving to 
experience residual inflammation and HIV-associated chronic 
end-organ diseases. Antiretroviral therapy also has variable 
effects in terms of completely reconstituting immune func-
tions. Patients who do not respond to cART completely, i.e., the 
immunologic non-responders (INR), can maintain much lower 
peripheral CD4+ T-cell counts (e.g., <350 cells/μl), despite 
durable suppression of plasma viral loads to undetectable 
levels for many years. In patients successfully responding to 
cART (immune responders; IR; defined variably as CD4 >500 
cells/μl), residual disease manifests as milder inflammation and 
immune senescence. In both settings, the persistence of viral 
reservoirs in latently infected cells in adipose and lymphoid 
tissues are evident (2, 3, 6–12). These reservoirs contribute to 
rapid rebound of virus replication upon cART termination. 
Thus, even in the cART era, persistent immune dysregulation 
predisposes patients to AIDS and non-AIDS clinical events, 
and also may be linked to persistence of HIV.

Ongoing HIV replication, microbial translocation products, 
and co-infections have been shown to stimulate the expression 
of type-1 interferons (IFNs) as well as other pro-inflammatory 
cytokines in immune cells in blood and in lymphoid tissues (6, 9, 
10, 13–15). These cytokines accelerate residual disease progres-
sion by promoting effector CD4+ cell activation and increasing the 
pool of cells permissive to HIV-1 infection in lymph nodes and 
mucosal lymphoid tissues (16). Furthermore, loss of Th17 cells 
and breaches in gut epithelial barriers facilitate increase in sys-
temic levels of bacterial products, prompting persistent immune 
activation and HIV reactivation (6, 17), and independently pre-
dicting mortality in HIV patients and simian immune-deficiency 
(SIV)-infected rhesus macaques (9, 18–20). While early cART 
treatment can reverse to a significant extent the HIV-inflicted gut 
mucosal injury (20, 21), restoration of CD4+ T cells in gut lamina 
propria is minimal to incomplete, when compared to findings 
in uninfected controls (15, 22–28). While these studies begin 
to further our understanding of gut mucosal dysbiosis (6, 9, 17, 
29–35), to date, most of the research on HIV-dependent immune 
activation has been derived from analysis of circulating T cells 
(21, 36–40). Further studies are required to examine regional 
or local effects of inflammation and inflammatory products, as 
well their site-specific effects on mucosal CD4+ T cells and HIV 
reservoirs. Because mucosal Th17 cells and regulatory T cells 

(Tregs) are critical determinants of microbial translocation and 
inflammation, it is important to study the precise interactions 
between these cells and various parameters of systemic immune 
activation.

iMMUne aCtiVation CorreLates to 
inCreased HiV reserVoir siZe

High level of immune activation is strongly associated with 
depletion of CD4+ T cells and increased proliferation of CD4+ 
T cells (41, 42). Expression of the nuclear antigen Ki67 is a rec-
ognized marker of cells that have recently been cycling and/or 
dividing. While higher expression of Ki67 negatively correlates 
with absolute CD4+ counts, it positively correlates with a larger 
size of the viral reservoir. While it is unclear, how increased 
proliferation and HIV reservoir size are linked, these data 
suggest that increased T-cell proliferation might also provide a 
mechanism for the maintenance of the HIV reservoir. Increased 
cycling and higher Ki67 protein expression further correlate with 
higher expression of PD-1, a marker that can be up-regulated as a 
result of homeostatic or antigen-induced proliferation, and T-cell 
exhaustion (43–46). There is a strong association between PD-1 
and the immune activation marker Ki67 in CD4+ T cells from 
cART-treated individuals (29, 42). Consistent with these data, 
reduced PD-1 expression correlates with lower immune activa-
tion in HIV-elite controllers, the HIV+ infected individuals with 
immune control of viral loads (46, 47). Transcriptomic analyses 
of PD-1+ cells isolated from blood also suggest a significant 
increase in IFN-γ response genes and IL-6 response genes in 
INR with higher immune activation, compared to IR with lower 
immune activation (Figure  1). How PD-1 expression in CD4+ 
T cells contributes to HIV reservoir size and immune activation 
remains to be investigated. Notably, IL-6 and IFN-γ are found at 
increased levels in individuals with higher of immune activation 
(36, 40, 48). Future studies are required to examine the regulatory 
aspects of these cytokines in the context of immune activation, 
PD-1 expression, Th17 and Treg cells in HIV+ patients. A recent 
study shows that activated CD4 T cells co-expressing PD-1, 
along with CCR7, CXCR5, and CCR6, may represent a highly 
functional population that is more susceptible to HIV infection 
and selectively lost in chronic HIV infection (49). Because 80% 
of the peripheral T cells reside in mucosal compartments such as 
gut (27, 50), which also constitutes a rich reservoir, it is critical 
to understand immune activation effects and the reservoir size, 
in the context of PD-1 expression and CD4+ T-cell homeostasis 
in the mucosa. Moreover, how immune activation impacts PD-1 
expression on Th17 cells and Tregs, and whether these cells harbor 
HIV reservoirs in the mucosa remain to be investigated.

aLterations in MUCosaL Cd4 t-CeLL 
HoMeostasis dUrinG cart 
treatMent in HiV-inFeCted patients

Intestinal epithelial barrier dysfunction causes an imbalance 
between the immune system, and mucosal repair and regen-
eration during primary HIV infection (51–54). Emerging 
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FiGUre 1 | transcriptome profiling of Cd4+ t cells in peripheral blood mononuclear cells shows upregulation of interferon-γ and iL-6 JaK-stat 
responses in Cd4+pd-1+ t cells of inr patients. Enrichment of the IFN-γ response pathway (at FDR = 0.14) (above) and IL-6 JAK-STAT3 signaling pathway 
(below) in CD4+PD-1+ cells, identified by performing GSEA on the genes differentially expressed comparing INR (higher immune activation) to IR (less immune 
activation) among HIV/cART-treated patients. (a) Upregulation of the IFN-γ response pathway (at p-value <5% and FDR <15%) and (B) IL-6 JAK-STAT3 signaling 
pathway in CD4+PD-1+LAG3− T cells, identified by performing GSEA on the genes differentially expressed comparing HIV-infected INR with IR patients. The color 
scale indicates the log fold-change of the gene being positively expressed and upregulated in the immune failure patients compared to the IR patients.
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evidence suggests that the disruption of gut mucosal CD4+ T-cell 
 homeostasis, beyond just the depletion of CD4+ T cells, con-
tributes to persistent systemic CD4+ T-cell activation and HIV 
pathogenesis in untreated and chronically treated HIV+ patients 
(9, 39, 55–57). However, CD4+ T-cell subsets in the gut and other 
mucosae are significantly different from CD4+ T-cell popula-
tions in peripheral blood in healthy individuals (58, 59). CD4+ 
T lymphocytes residing in the gut mucosa are predominantly of 
memory phenotype, and are prone to be more activated due to 
altered cytokine milieu, interactions with gut microbiota, and 
constant antigenic exposure (8, 25, 26). Gut CD4+ T cells also 
typically express the major HIV co-receptor CCR5, and the α4β7 
integrin that promotes gut homing of T cells and can also facili-
tate HIV transmission (60, 61). The percentage of infected CD4+ 
T cells is much higher in gut mucosa than in circulation as HIV 
RNA is detectable in 60% of gut CD4+ T cells. By contrast, HIV 
RNA is detectable only in 0.01–1% of peripheral CD4+ T cells 
during acute infection (23). The underlying mechanisms for these 
differences are unclear. Unlike peripheral CD4+ T cells, the major-
ity of reconstituted gut CD4+ T cells is central, transitional, and 
effector memory T cells, which are likely in a hyper-inflammatory 
state secreting cytokines that further stimulate HIV replication in 
patients treated with cART (27). Given these differences between 
peripheral and mucosal CD4+ T cells, and the contribution of 
CD4 imbalance to mucosal dysbiosis and systemic inflamma-
tion, it is important to gain a better understanding on CD4 T-cell 
homeostasis in the gut and other mucosa.

Most studies demonstrate a partial CD4+ T-cell restoration 
in HIV-infected individuals treated with cART (27). One study 
examined immune reconstitution in the gut using serial biopsies 
of rectosigmoid mucosa derived from cART-treated individuals. 

It revealed that HIV-mediated CD4+ T-cell depletion is more 
significant in immune-effector sites, such as the lamina propria 
compared to immune-inductive sites, such as the lymphoid tis-
sue. Furthermore, longitudinal examination of individuals with 
acute HIV infection revealed that while CD4+ T-cell reconstitu-
tion by cART is complete in immune-inductive sites, it is only 
partial in mucosal immune-effector sites, compared with healthy 
HIV-uninfected controls (24, 62). While only limited studies have 
been performed to date in the context of acute and primary infec-
tion, evidence suggest that cART initiation early in the course 
of infection correlates to better gut CD4 T-cell reconstitution. 
In addition to changes in CD4+ T-cell numbers within the gut 
mucosa, altered trafficking of peripheral CD4+ T cells to gut has 
been proposed as a mechanism contributing to reduced CD4+ 
T-cell reconstitution in HIV-infected individuals undergoing 
treatment (23, 60, 61, 63).

While many of the HIV mucosal studies focus on gut/rectal 
mucosa, there are only a few studies that have examined CD4+ 
T  cells in oral mucosa during SIV/HIV infection (64, 65). 
Although CD4+ T cells are depleted during SIV infection (66), 
it is not known whether persistent CD4+ T-cell perturbations 
post cART treatment contribute to immunopathogenesis in the 
oral mucosa. Oral opportunistic infections (67) and altered oral 
microbiome/mycobiome profiles (68–71) are important features 
of oral inflammation that have been linked to a wide range of 
pathologies, including periodontitis and oral cancer in HIV+ 
cART-treated patients (72–75). The oral microbiome comprises 
over 600 prevalent bacterial taxa and fungi, with distinct subsets 
predominating in different habitats (68, 70, 76–78). Similar to 
commensal dysbiosis and microbial translocation in the gut 
(79), perturbations in the oral microbiome, or opportunistic 
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FiGUre 2 | (a) Loss of Th17 cells in biopsies of transverse colon in HIV patients on cART. Frozen blocks of the biopsies were fixed, immunofluorescent stained 
using α-RORγt antibody (red) and 6-diamidino-2-phenylindole (DAPI) (nucleus; blue), and assessed by confocal microscopy. Confocal micrographs (left) and 
statistics (right). HIV infection induces Treg cell loss (B), but CD161 up-regulation in Tregs (C) in HTC. Three days after in vitro HIV infection, we stimulated the tonsillar 
cells using α-CD3 (T-cell receptor activation) and α-CD28 antibodies, and assessed the cells by flow cytometry 3 days later. Representative flow cytometric analyses 
show Foxp3+ Treg cell count (left), and Treg/Th17 ratio (right) (gated on CD4+ cells) (B), and CD161 expression in Foxp3+ cells (C). (d) CD161 expression on FOXP3+ 
CD4 T cells in HIV-1 infected IR and INR patients. Shown are the frequencies of CD161+ cells gated on CD3+, CD4+, FOXP3+ CD127−CD25+ in 10 IR (Median age 
47.8, 7M 3F, median CD4 count 910 c/ul), 10 INR (Median age 51.9, 7M 3F, median CD4 count 270 c/μl), and 8 HIV-uninfected healthy controls (HIV−Cont.). 
PBMCs were stained with the fluorochrome-conjugated antibodies, acquired by LSRII Fortessa and analyzed by flowjo. Anova test was used for multi-comparison 
analysis using graphPad Prism software. ***P < 0.0001.
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pathogenic infections, and associated inflammatory products 
(67, 70, 71, 80–86) may also contribute to oral immune dysregula-
tion and HIV disease progression. While many of the microbial 
markers in the serum and plasma point to intestinal leakiness, it 
is not known whether these markers reflect microbial dysbiosis or 
systemic leakage of microbial products from the oral mucosa. We 
and others have begun to examine oral mucosa in HIV+cART-
treated patients and in SIV infection, and found alterations in 
oral epithelial cells and CD4+ T cells (66, 87, 88). However, the 
underlying immune mechanisms of HIV-associated immune 
activation in the context of mucosal CD4+ T-cell profiles, HIV 
reservoirs, and immune restoration during chronic HIV disease 
are still unclear.

th17 CeLL CHanGes in MUCosaL 
iMMUne patHoGenesis

Th17 cells are CCR6+, ROR-γt+, IL-17-producing CD4+ T cells 
that have a pivotal role in maintaining the epithelial barrier in 
the mucosa (89, 90). They play an important role in host defense 
against fungi and extracellular bacteria, and their importance 
is evident in mice and Autoimmune Polyendocrinopathy 
Candidiasis Ectodermal Dystrophy (APECED) patients (90–92). 
The protective roles of gut mucosal Th17 cells in HIV disease is 
becoming increasingly clear, and Th17 cell loss has been linked 

to loss of mucosal epithelial integrity, and results in multiple 
deleterious sequelae, including microbial translocation and 
gut inflammation (20, 93–95). Incomplete Th17 restoration in 
the gut despite long-term cART is also linked to persistence 
of immune activation (21, 23, 51, 93, 96–98). Fewer Th17 cells 
have been observed in the sigmoid colon of HIV-infected INR 
individuals (CD4 cell count <350 cells), compared to HIV-
uninfected individuals. We also found in colon biopsies that the 
frequency of ROR−γt+ Th17 cells was substantially reduced in 
cART-treated HIV+ patients, compared to uninfected controls 
(Figure 2A). Previous studies have shown that CCR6+ memory 
and effector Th17 cells in both peripheral blood and inflamed 
tissues are preferential targets for HIV-1 infection (99). Though 
underlying mechanisms are unknown, more recent observations 
show specificities in HIV infection, where Th17 cells specific to 
Tetanus toxoid and Candida albicans were more permissive to 
HIV infection, than were CMV specific Th17 cells (99). These 
results may point to how specific cytokine milieu, or toll-like 
receptor (TLR) signaling components that differ with each 
infection, may determine the susceptibility of Th17 cells to HIV 
infection. While the loss of Th17 cells contributes to gut microbial 
translocation and systemic inflammation during HIV infection 
(20, 39, 63, 65, 93, 95, 100–105), the causes for incomplete Th17 
cell restoration in the mucosa is unclear. In addition to the local 
effects on Th17 cells in lamina propria and MALT, perturbations 
in trafficking of Th17 cells can also alter Th17 homeostasis in the 
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gut mucosa of HIV-infected persons (57, 63). For example, in 
INR patients, a significant increase in α4β7 positive peripheral 
Th17 lymphocytes positively correlates with integrated pro-viral 
DNA in rectum lymphoid cells compared to IR (106). Whether 
defective migratory capacities and increased HIV infection of 
gut Th17 cells contribute to impaired reconstitution of Th17 cells 
in the gut mucosa remain to be studied in different cohorts of 
HIV+ individuals. Specific components of the gut microbiome are 
known to stimulate the expression of cytokines in innate immune 
cells, which in turn can affect the generation and expansion of 
Th17 cells. Because gut microbiome is altered in HIV+ individuals 
(71, 79, 107), it is likely that it contributes to alterations in Th17 
cell numbers and functions. Enhancement of microbiota using 
probiotics has been shown to modulate mucosal and systemic 
immune functions and improve GI tract immunity there by 
mitigating inflammatory sequelae, ultimately improving prog-
nosis in HIV+ individuals (108). However, it remains to be seen 
whether the products of pathogenic microbes from co-infections, 
opportunistic commensals, differentially affect Th17 cell recon-
stitution in the gut. In our future studies, we will determine how 
inflammatory signals, such as microbial TLR ligands, affect Th17 
cell viability in the context of their sensitivity to apoptosis and 
pyroptosis in mucosa and lymphoid tissues (REF).

treg CHanGes in MUCosa

CD4+CD25+Foxp3+ Tregs are critical for immune balance and 
effective functioning of the immune system, both in normal and 
diseased states. They control inflammation by (1) producing 
immunosuppressive cytokines (109) and (2) inducing cytokine 
deprivation apoptosis of effector CD4+ T cells (110). They have 
therapeutic potential in many disease settings, such as infections, 
cancer, autoimmune diseases, and transplantation (109, 111–113). 
Severe autoimmunity and inflammation in the absence of Tregs in 
immune dysregulation, polyendocrinopathy, enteropathy, and 
X-linked inheritance (IPEX) patients and during mucosal infec-
tions (90–92), highlight the importance of Tregs in immune home-
ostasis. Because immune diseases are characterized by increase or 
decrease in numbers and function of Tregs, there is considerable 
interest in identifying pathways that control the stability and 
viability of Treg cells. The stability of Foxp3+ Tregs and generation 
of dysfunctional Foxp3+ cells at inflammatory disease sites also 
constitute an active area of immunology research. However, the 
functional effect of Tregs on HIV immune pathogenesis is poorly 
understood (114–116). Recent studies show that Tregs may not be 
detrimental to anti-HIV effector responses as previously thought. 
Tregs directly inhibit HIV-1 replication in activated T cells (117), 
and do not suppress antigen specific anti-HIV CD8 responses 
(47, 118). Moreover, Tregs in circulation strongly correlate with 
decreased generalized T-cell activation (47, 100–102, 119–129), 
showing that they may also play critical roles in mitigating 
immune hyper-activation. On the contrary, some studies suggest 
that Tregs have a role in suppressing immune response to HIV 
and mucosal pathogens (130). Absence of markers to distinguish 
natural and induced FOXP3+ cells, functional and dysfunctional 
Tregs, and limitations in assessing functions of FOXP3+Tregs partly 
play a role in generating these discrepancies (65, 120, 130–132). 

Given that FOXP3 and CD25 are expressed transiently on human 
effector cells, another important caveat is the sole usage of FOXP3 
or CD25 as Treg markers in most HIV studies.

Although HIV infection causes depletion of CD4+ Tregs lead-
ing to their lower absolute cell numbers in blood and gut mucosa 
(133), FOXP3+ Tregs are observed in increased proportions in 
relation to Th17 cells in gut mucosa and oral mucosa during SIV/
HIV infection (64, 65, 93, 134). Given the reciprocal relation-
ship between Th17 cells and Tregs, Treg/Th17 ratio may be more 
important than the absolute levels of either one of the subsets 
independently (21, 94, 103, 131, 132, 135–139). Consistently, 
increased Treg/Th17 cell ratio correlates to more advanced 
disease in immune non-responders (CD4 <350 cells/μl), viral 
load, plasma levels of sCD14, sCD163, and IL-1RA (markers 
of monocyte activation), as well as increased T-cell activation 
(93, 96, 104, 116, 138, 140–142). However in HIV+ patients with 
elevated levels of immune activation, it is not clear whether 
the Tregs are functional or dysfunctional, or natural or induced 
(130, 132, 136, 143). Our data also show that HIV-infected oral 
tonsillar cells show an increase in Treg/Th17 ratio (Figure 2B). 
Increased frequencies of Tregs can be attributed to indolemine 
2,3 dioxygenase (IDO) produced by plasmocytoid DCs, which 
can promote Treg induction during HIV-1 infection (144). We 
hypothesize that increased proportions of Tregs may also be 
attributed to preferential apoptosis or pyroptosis of conventional 
CD4+ T cells, including Th17 cells in the mucosa. We have previ-
ously shown that conventional CD4 T effector cells are highly 
susceptible to FAS-mediated apoptosis compared to Tregs in vitro 
and in vivo (145). In our future studies, we will examine whether 
differential sensitivities of Th17 cells and Treg cells to FAS medi-
ated apoptosis and, or pyroptosis, also contribute to increased 
Treg/Th17 ratio in mucosa during HIV infection. We will also 
determine whether Tregs are just altered in proportions, and if 
increase in the dysfunctional Foxp3+ cells contributes to HIV 
disease progression in the immune activation scenario.

are tregs dysFUnCtionaL  
in HiV disease?

Emerging evidence shows that Tregs become dysfunctional and 
acquire capacity to produce inflammatory cytokines (146–149), 
despite the expression of FOXP3, during infections and inflamma-
tory diseases. Such pro-inflammatory cytokine producing poly-
functional FOXP3+ cells are shown to have lost their suppressive 
capacities in the context of certain diseases, such as psoriasis 
and inflammatory bowel diseases (146, 147, 149). Our previous 
findings show that TLR-2 signaling in the context of IL-6 induces 
pro-inflammatory IL-17A production in Tregs transiently during 
an oral mucosal infection. While transient increase of IL-17A 
producing Tregs during an acute infection is not detrimental, 
the persistence of pro-inflammatory cytokine producing Tregs is 
strongly associated with inflammation (146, 149, 150). Similarly 
during HIV infection, pro-inflammatory cytokines, such as IL-6, 
commensal bacteria, and their metabolites may affect FOXP3+ 
cells, induce Treg plasticity, and trigger an increase in dysfunc-
tional Tregs (146, 147, 149). For example, IL-6 and soluble IL-6 
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receptor are observed at increased levels in cART-treated HIV 
patients, especially in those with a history of immune restora-
tion disease (36). Increased IL-6 levels may contribute to Treg 
dysregulation that may further lead to the vicious loop of exacer-
bating mucosal and systemic immune dysbiosis in these patients. 
Another parameter that could affect Treg stability is TLR signaling. 
Excessive TLR signaling in the context of immune activation may 
also control Treg expansion and plasticity during HIV infection. 
HIV-1 infection is known to modulate TLR responses by altering 
TLR expression and activation levels, and regulating responses of 
innate immune cells to TLR stimulation, which may subsequently 
affect immune activation levels. Given the prevalence of microbial 
co-infections in HIV+ patients [e.g., Mycobacterium tuberculosis 
(151–153), Porphyromonas gingivalis periodontitis (67, 154), and 
Candida infections (75, 83)], increased soluble TLR expression 
and signaling may also arise from these opportunistic infections. 
These co-infections can cause an increase in dysregulated Tregs, 
and sustain chronic inflammation during HIV-1/SIV infection. 
Consistent to this hypothesis, the percentage of TLR-2- and 
TLR-4-expressing Tregs, and the levels of TLR-9 signaling are sig-
nificantly increased in HIV+ patients with CD4 cell counts <500 
cells/ml in whole blood, correlating with their immune activation 
(132, 155, 156). Further studies are required to determine how 
co-infections and TLR signals contribute to homeostasis and 
dysfunction of FOXP3+ Tregs in the mucosa.

Pro-inflammatory cytokine producing FOXP3+ cells have 
been associated with immune dysregulation, and can be 
identified by a recently described novel marker, CD161 (147, 
149). CD161 also defines a Th1/Th17 poly-functional subset of 
resident memory T  lymphocytes (157, 158). In the context of 
autoimmunity, pathogenic CD161+ memory cells are resistant to 
Treg-mediated suppression, which may be another mechanism of 
loss of immune homeostasis (159). We observed that HIV infec-
tion of tonsillar cells induced CD161 expression in Tregs (23 ± 6 
versus 44 ±  5%, P <  0.05) (Figure  2C). These results support 
the possibility that HIV infection may contribute to increased 
CD161 expression and Treg dysfunction in mucosa. Consistent to 
these data, we also found that a higher proportion of FOXP3+ 
cells were CD161 positive in INR (with higher immune activa-
tion), compared to IR patients (with lower immune activation) 
in the peripheral blood (Figure 2D). How IL-6 and TLR-ligands 
enhance CD161 expression, and how CD161 expression con-
tributes to Treg dysfunction during HIV infection are areas of 
intense investigation in our laboratories. In addition to FOXP3+ 
Tregs, FOXP3 negative T-regulatory type-1 (Tr1) cells are major 
producers of IL-10, and may have a beneficial role in control-
ling immune activation in early HIV infection (160). However, 
a recent cross-sectional study in patients with non-progressive 
HIV-1 infection showed that concentrations of TGF-β1 and 
IL-10 are significantly decreased in their plasma, while IL-1β, 
IL-12p70, and TNF-α are increased, compared to patients with 
progressive infection (161). Another study also showed that the 
protein levels of IL-1β, IL-6, and IL-10 were significantly lower 
in plasma of HIV-1-exposed seronegative individuals than 
HIV-1-infected patients. These data show that disease and infec-
tion progression are associated with increased IL-10 and basal 
pro-inflammatory responses (162). The relationship between 

IL-10 and Foxp3+ Tregs remains to be seen. Taken together, since 
induction, stability, and functions of FOXP3+ Tregs largely depend 
on the cytokine milieu, detailed studies focusing on Treg plasticity 
and dysfunction in HIV+ patients with distinct cytokine will sig-
nificantly improve our understanding of immune dysregulation 
in HIV these patients (109, 163, 164). Such studies will ascertain 
if the reduction of Treg dysfunction will mitigate HIV-associated 
immune activation, which in turn would also result in fewer sus-
ceptible target CD4+ T cells, and an environment that prevents 
efficient HIV replication in vivo.

tHerapeUtiC interVentions 
ModULatinG th17 CeLLs and tregs

Despite the development and optimization of cART that success-
fully suppresses HIV replication in majority of HIV+ patients, 
a treatment that can cure HIV disease is not yet available. It is 
unlikely that one single approach will lead to a cure for AIDS. The 
interaction between HIV and CD4+ T cells is complex and involves 
contrasting effects with respect to virus replication (165). On the 
one hand, CD4+ T cells serve as mediators of antiviral immune 
responses. It has also been reported that depletion of CD4+ T cells 
prior to SIV infection in rhesus macaques in fact is associated 
with higher viral loads, expansion of pro-inflammatory mono-
cytes, and massive activation and infection of macrophages and 
microglia that appear to be the predominant population of pro-
ductively infected cells (141). These data highlight the protective 
roles of CD4+ T cells in modulating inflammation and reducing 
the viral burden. On the other, proliferating CD4+ T cells are main 
targets for infection and viral replication. Residual inflammation 
promotes HIV reservoir persistence by triggering the infection 
of susceptible cells, and both these processes are inextricably 
interrelated in a vicious cycle. Therefore, therapies should be 
targeted to reduce immune activation and inflammation and HIV 
persistence, as well as enhancing antiviral functions. A previous 
study has shown that interleukin-21 (IL-21) treatment restores 
not only the Th17 cells in the gut mucosa, but also dramatically 
reduces immune dysfunction in rhesus macaques (104, 141, 142). 
IL-2 had been employed as a cART adjuvant in phase III clinical 
trials, but did not restore gut mucosal CD4+ T cells (166), failing 
to confer any clinical benefit. Despite successful CD4+ T-cell 
expansion in peripheral blood, IL-2 also expanded Treg like CD25+ 
cells, increased the levels of IL-6 and D-dimer, inflammation, and 
activation of the coagulation cascade (167, 168). Whether the 
expanded Treg-like cells were FOXP3+, or were dysfunctional, was 
not assessed in those studies. Recombinant human IL-7 (r-hIL-7) 
has emerged as another candidate immune-based therapy that 
could succeed in expanding T cells and inducing the expression 
of gut homing receptor α4β7, without expanding Treg cells and 
induction of pro-inflammatory cytokines during administration 
(57, 169). Phase I studies have demonstrated the effect of r-hIL-7 
on expansion of T cells (57, 170) and suppressing colonic and 
systemic inflammation in chronic HIV infection. While IL-7 is 
a gamma-chain cytokine that could promote Treg survival (171), 
the direct impact of r-hIL-7 treatment on Th17 cells and Tregs 
have not been addressed to date in HIV+ patients.
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ConCLUsion

Residual inflammation can be treated by finding synergies between 
different approaches that are aimed to restore mucosal Th17 cells, 
and reversing Treg dysfunctions in HIV+ patients. Given the (1) 
significant differences between mucosal T cells and circulating 
T cells, (2) immediate interactions of mucosal T cells with the 
microbiome, (3) gut microbial dysbiosis in HIV+ patients, (4) the 
ability of Th17 cells to maintain mucosal barrier integrity, and a 
pronounced loss of Th17 cells in HIV+ patients, and (5) ability of 
Tregs to control immune activation, and the possibilities for them to 
become dysfunctional in HIV+ patients, more research should be 
devoted to mucosal Th17 cells and Tregs, and their contribution to 
systemic immune activation in HIV-infected individuals. A bet-
ter comprehension of these cells will shed light on HIV-mediated 
mucosal immune dysfunction, and possible new interventional 
strategies to restore their functions. Because we hypothesize and 
present in vitro data showing that HIV infection in the context 
of inflammatory milieu may contribute to dysregulation of these 
two lymphocyte subsets in the mucosa (Figures  2 and 3), we 
believe that anti-inflammatory therapeutic strategies increasing 
protective Th17 cells in the mucosa should be employed as a part 
of synergistic approach to cure HIV disease.

MetHods

Human tonsillar Cultures
We obtained tonsils from the discarded tissues from HIV-negative 
patients who undergo tonsillectomy surgery at University 

Hospitals/Case Western Reserve University (Age  =  8–16) 
and infected the bulk human tonsillar cultures (HTC) with 
replication-competent HIV-1 NLAD8-GFP virus stocks (30  ng 
p24/106 cells) that were generated by transfecting HEK293T cells 
with pro-viral DNA. NLAD8-GFP was derived from NL43-GFP-
IRES-Nef (172) by replacing the CXCR4-tropic envelope with 
CCR5-tropic AD8 envelope. The resulting construct expresses 
GFP and Nef on a bi-cistronic mRNA (173, 174).

study Cohort and design
This study included 17 HIV-infected subjects on c-ART for 2 years 
or greater. The individuals were categorized into two groups – 10 
IR who had high CD4+ T-cell counts (CD4 >500 cells/mm3) and 
7 INR who had low CD4+ T cells despite viral suppression (CD4 
>350 cells/mm3). CD4+ T cells from these subjects were sorted for 
cell surface expression of CD3+, CD4+, CD45RO+, CD45RA−, and 
PD-1 in the absence of LAG3, characterized as PD-1+LAG3− cells. 
One thousand cells were sorted for Illumina RNA-Sequencing.

rna-seq pre-processing
Pre-processing of the sequencing data was performed by inte-
grating open source tools and R-Bioconductor packages. The raw 
reads were trimmed off any adaptor sequence contaminants using 
Trimmomatic 0.32, followed by mapping trimmed reads onto 
the Ensembl version of the Human Genome (Grch38) using the 
STAR 2.4.0f1 aligner. The transcript counts were then estimated 
by using HTSeq. The transcript expression was then normalized 
by trimmed mean of M-values (TMM). Any outlier samples 
based on abnormalities in gene expression were removed.

http://www.frontiersin.org/Immunology/
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transcriptomic profiling of rna-seq data
The differences in gene expression profiles comparing INR to 
IR in the CD4+PD-1+LAG3− T cells was determined by fitting a 
generalized linear model (GLM) for every transcript expression. 
The transcript expression was used as the dependent variable and 
the groups of interest as the independent variable. Differentially 
expressed genes were identified by using a likelihood ratio test to 
test if the fold changes are different from 0. Pathways enriched 
among the differential expressed genes were identified by Gene 
Set Enrichment Analysis (GSEA) pre-ranked by the decreasing 
order of −log10(p-value)  ×  sign(log-fold change) of the gene 
with a 1000 permutations. The pathway database used was the 
Hallmark genes (version 5.0) from the Molecular Signatures 
DataBase (MSigDB). The obtained p-values were corrected for 
multiple comparisons by the Benjamini and Hochberg method.

Consent proCedUre

The study staff will talk with the volunteers about the consent 
information. Study participants are free to ask questions about 
this study at any time. If they agree to take part in this study, they 
will be asked to sign the consent form. They will get a copy to 
keep. Before they learn about the study, it is important that they 
know the following:

•	 Their participation is entirely voluntary.
•	 They may decide not to take part in or to withdraw from the 

study at any time without losing the benefits of their routine 
medical care.

Discarded tonsils are collected from minors involved in tonsil-
lectomy surgery. Otherwise minors are not directly involved in 
the study.
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