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Abstract: This review is an update about the addition of nanomaterials in cementitious composites
in order to improve their performance. The most common used nanomaterials for cementitious
materials are carbon nanotubes, nanocellulose, nanographene, graphene oxide, nanosilica and
nanoTiO2. All these nanomaterials can improve the physical, mechanical, thermal and electrical
properties of cementitious composites, for example increase their compressive and tensile strength,
accelerate hydration, decrease porosity and enhance fire resistance. Cement based materials have a
very complex nanostructure consisting of hydration products, crystals, unhydrated cement particles
and nanoporosity where traditional reinforcement, which is at the macro and micro scale, is not
effective. Nanomaterials can reinforce the nanoscale, which wasn’t possible heretofore, enhancing
the performance of the cementitious matrix.

Keywords: cementitious nano-composites; nanomaterials; mechanical properties

1. Introduction

Cement is the second single most widely used material after water. In 2014 the global
cement production had already exceeded 4.18 billion tones [1]. Cementitious composites are
preferred due to their high compressive strength, low-cost preparation, simple production
process and convenience of use [2]. However, these composites have many disadvantages
such as low tensile capacity, poor deformation performance and high cracking tendency
which affect the long-term durability of structures. Furthermore, in harsh environments
they typically suffer from physical, chemical and biological damage leading to degradation
and service life shortening. Due to its porous structure [3], in most cases the attack and
deterioration initiates from the surface of the material.

Several studies have shown that the interfacial transition zone (ITZ) in concrete, i.e.,
the zone surrounding the aggregates, is the weakest part in concrete having relatively large
pores and high porosity, higher than the porosity of bulk cement paste [4]. It is obvious
that porosity in cementitious materials play a major role because provides the primary
transport route of substances in and out of cement-based materials, so the size and the
structural features of pores affect the mechanical properties, the fluid diffusion characteris-
tics and finally the durability of the material [5,6]. Moreover, it is well known that concrete
demonstrates a very low tensile strength (2–8 MPa) which typically is ten times smaller
than its compressive strength [7]. It is important to overcome all these issues in cement-
based materials so the durability of structures could be improved. The common method of
improvement includes the use of reinforcement in macro and micro scale, like fibers and
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fillers, but cementitious matrices demonstrate defects/porosity at the nanoscale, where
traditional reinforcement is not effective.

It is well known that nanoscale materials demonstrate excellent physical and chem-
ical characteristics presenting improved mechanical, electrical and thermal properties,
low density and excellent chemical and thermal stability. A large number of different
nanomaterial types exist so cementitious nanocomposites with very different properties
can be designed improving the life-cycle of cementitious materials [8]. Nanostructures
such as nanofibers, nanotubes and nanoparticles like nano-TiO2 and nano-SiO2 can be used
to reinforce the cementitious matrix developing a new generation of high-performance,
and multifunctional cementitious composites that was not possible heretofore.

In the past decade, the publications concerning nanotechnology in the construction
sector have increased dramatically (Figure 1). Analyzing the data, it was observed that
the main focus (~58% of the total publications) has been on the incorporation of carbon
nanotubes (CNTs) (Figure 2) followed by nanosilica (~34% of the total publications) and
nanotitania (~7% of the total publications). The studies are mainly focusing on the nano-
materials’ effect on the performance of the cementitious matrix without addressing their
possible impact on human health and the environment. Therefore, it is mandatory to
address the main nanomaterials’ drawbacks. Unfortunately, there are conflicting results in
the literature regarding the pathologic effects of nanomaterials. As a result, their possible
interaction with our biological system is still unknown. Additionally, their increased cost,
compared to the same materials at a larger scale, is a considerable drawback, however, in
most cases their optimum concentration is quite low making their cost comparable or even
lower than conventional materials. Moreover, the fact that in order to take advantage of
their excellent properties they need to be well dispersed into the matrix adds an additional
step on the development of the composites that could be an issue at large scale applications.
Finally, the nanocomposites developed should be evaluated in relation to sustainability and
their environmental and economic consequences. A recent review, includes additional in-
formation on some of the recent concrete nanocomposites, analyzing them on the spectrum
of ecological sustainability, and economic benefits [8].

Molecules 2021, 26, x FOR PEER REVIEW 2 of 20 
 

 

scale, like fibers and fillers, but cementitious matrices demonstrate defects/porosity at the 
nanoscale, where traditional reinforcement is not effective. 

It is well known that nanoscale materials demonstrate excellent physical and chem-
ical characteristics presenting improved mechanical, electrical and thermal properties, 
low density and excellent chemical and thermal stability. A large number of different 
nanomaterial types exist so cementitious nanocomposites with very different properties 
can be designed improving the life-cycle of cementitious materials [8]. Nanostructures 
such as nanofibers, nanotubes and nanoparticles like nano-TiO2 and nano-SiO2 can be 
used to reinforce the cementitious matrix developing a new generation of 
high-performance, and multifunctional cementitious composites that was not possible 
heretofore. 

In the past decade, the publications concerning nanotechnology in the construction 
sector have increased dramatically (Figure 1). Analyzing the data, it was observed that 
the main focus (~58% of the total publications) has been on the incorporation of carbon 
nanotubes (CNTs) (Figure 2) followed by nanosilica (~34% of the total publications) and 
nanotitania (~7% of the total publications). The studies are mainly focusing on the na-
nomaterials’ effect on the performance of the cementitious matrix without addressing 
their possible impact on human health and the environment. Therefore, it is mandatory 
to address the main nanomaterials’ drawbacks. Unfortunately, there are conflicting re-
sults in the literature regarding the pathologic effects of nanomaterials. As a result, their 
possible interaction with our biological system is still unknown. Additionally, their in-
creased cost, compared to the same materials at a larger scale, is a considerable draw-
back, however, in most cases their optimum concentration is quite low making their cost 
comparable or even lower than conventional materials. Moreover, the fact that in order to 
take advantage of their excellent properties they need to be well dispersed into the matrix 
adds an additional step on the development of the composites that could be an issue at 
large scale applications. Finally, the nanocomposites developed should be evaluated in 
relation to sustainability and their environmental and economic consequences. A recent 
review, includes additional information on some of the recent concrete nanocomposites, 
analyzing them on the spectrum of ecological sustainability, and economic benefits [8]. 

. 

Figure 1. Publications on nanotechnology in cementitious composites per decade. 

0

250

500

750

1000

1250

1500

1750

2000

2000s1980s 2010s

 

 

Pu
bl

ic
at

io
ns

 n
um

be
r

Decades
1990s

Figure 1. Publications on nanotechnology in cementitious composites per decade.
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Figure 2. Publications (%) on each nanomaterial with application on the construction sector.

The present review article provides information on the impact of all the different
types of nanomaterials typically used for reinforcing cement-based materials such as
carbon nanotubes, nanosilica and nano-TiO2, nanographene, graphene oxide and nanocel-
lulose. Important information on the structure, synthesis, dispersion methods and key
performance characteristics of nanocomposites produced using the different nanomaterials
studied is provided. Moreover, information on the effect that different nanomaterials have
on the mechanical properties (compressive and flexural strength, fracture toughness and
elastic modulus), hydration, porosity, smart properties, and other properties (fire resistance,
freeze-thaw and electromagnetic adsorption) of the cementitious matrix is presented.

2. Nanomaterials Typically Used in Cement-Based Materials
2.1. Carbon Nanotubes

Carbon nanotubes (CNTs) consist of rolled graphite nanosheets and are typically di-
vided in two general types. The single-walled nanotubes (SWCNTs), which were developed
in 1993, and have only one wall forming a tube, and multi-walled nanotubes (MWCNTs),
having multiple tubes which can slide against each other. The diameter of CNTs is between
1 and 100 nm and the surface area is usually in the range of 100–700 m2/g [9]. The diameter
of SWCNTs range from 0.4 to 3 nm, while their length ranges from 1 to 50 µm. The diameter
of MWCNTs range from 1.4 to 100 nm and their length range from 0.1 to 100 µm. Their
aspect ratio is typically around 1000 [10]. The density depends on the diameter, number of
walls in MWCNTs and the length. SWCNTs have high cost, so MWCNTs are preferable in
cement-based materials.

2.1.1. Dispersion

One very important factor when preparing CNTs reinforced cementitious materials
is the CNTs distribution inside the matrix. Due to the van der Waals forces CNTs have
the tendency to agglomerate and form bundles (Figure 3), when used as received leading
to a drop in the mechanical performance. It has been proved that conventional concrete
mixers are not able to disperse CNTs into cement paste directly [11]. So usually, the CNTs
are dispersed first into water and then are mixed with the cementitious particles. There
are physical and chemical methods for CNTs dispersion. Some known techniques are
sonication, ball milling, mechanical stirring and surfactants. Ball milling is a powder



Molecules 2021, 26, 1430 4 of 20

milling method which is used in order to break the agglomerations of CNTs formed by
van der Waals forces and it is suitable when dispersing CNTs in high concentrations [12].
Nevertheless, this method decreases the CNTs’ aspect ratio [13,14]. Mechanical stirring is a
shear mixing method, which usually is used with sonication, but is not able to disperse
CNTs well in aqueous solutions, therefore it is used as a preliminary treatment for the
CNTs suspension [15,16]. Sonication provides the required energy to overcome the van
der Waals interactions [17]. Surfactants with long chains can be adsorbed on the CNTs,
the hydrophobic part of the surfactant is adsorbed at the sidewalls or the end of the
tubes through van der Waals forces [10]. An effective dispersion of CNTs in water can be
achieved by applying ultrasonic energy and in combination with the use of a surfactant [18].
Another dispersion technique has been suggested using Pluronic F-127 as a novel dispersing
agent. This method increases stiffness, fracture energy and ductility [19].
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The most common method to estimate the stability and quality of CNT dispersion,
is ultraviolet-visible (UV-vis) spectroscopy [20]. Different structures can cause different
characteristic peaks, in terms of chirality and diameter. The disadvantage of this method
is that it is not able to speculate the shortening effect of sonication on the CNTs [21,22]
Scanning electron microscopy (SEM) is the most commonly used method for assessment
of dispersion of CNTs in hardened cement. This method is able to intuitively reflect the
distribution of CNTs and the failure mode of the bond between CNTs and the cementitious
hydration products [18,23–25].

2.1.2. Cement Hydration

According to several studies, the addition of CNTs to cement matrix can accelerate the
hydration of cement at approximately 78%. This acceleration has many advantages such as
earlier finishing of surfaces, reduction of the hydraulic pressure on forms, sooner removing
forms, decrease of curing time and compensation for the reaction of low temperature on
strength development [26–30].

2.1.3. Porosity, Water Absorption, Permeability and Microstructure

The addition of CNTs in the matrix decreases its porosity, water absorption and perme-
ability, because CNTs can fill in the pores between the cement hydration
products [31–34]. This is a great advantage because porosity, water absorption and per-
meability are the main factors that affect durability and service life of the material. Mi-
crostructure analysis by SEM and MIP tests have indicated that MWCNTs with diameter
of 10–20 nm demonstrate the best effect on optimizing pore structure [35]. A recent study
combining nanoindentation with elemental mapping and X-ray scanning microtomogra-
phy shows that higher density hydrated phases are forming at a CNTs concentration of
0.5 wt% [36]. In general, porosity increases with increasing diameter of MWCNTs. Smaller
diameter of MWCNTs effectively improve the pore size distribution and reduce porosity in
cement-based materials resulting to a denser microstructure [35,37].
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2.1.4. Mechanical Properties

CNTs are well known to improve the mechanical performance of the cementitious
matrix. According to a recent review [38], the incorporation of CNTs in cement paste can
result to a maximum improvement in the compressive and flexural strength of 83.33% [39]
and 30% [34], respectively. In case of a mortar matrix, the percentages are dropping
reaching a maximum of ~35% for the compressive strength [40] and 28.04% for the flexural
strength [41]. When a concrete matrix is used, the maximum improvements achieved are
similar (38.62% and 38.63%, respectively) [42]. In all the above studies, several optimum
CNT percentages were used ranging from 0.02 up to 0.5 wt%.

The concentration of CNTs is one of the determining factors of the mechanical perfor-
mance of CNT/cement nanocomposites. Typically, the compressive and flexural strength of
the matrix increases with the CNT addition until a certain concentration is reached [43–45].
Once the optimum concentration is exceeded, it starts decreasing. The observed reduc-
tions at high CNT concentrations occur because CNTs are forming agglomerations within
the matrix. As a result, localized stresses are developed weakening the strength of the
nanocomposite.

2.1.5. Electrical Properties

Cement-based materials generally have low electrical conductivity and no self-sensing
behavior. CNTs can form an electrically conducting network inside the insulating ma-
trix [46] and enhance its electrical conductivity [47], when they are used at an optimum
amount [47,48]. The addition of CNTs into cement paste results to a sharp decrease in the
electrical resistance [49,50] and, at the same time provides the matrix with piezoresistive
characteristics [49,51,52]. Compared to other carbon nanomaterial types CNTs demonstrate
better self-sensing characteristics under cyclic compression [53]. The electrical properties
of the CNT nanocomposites can be affected by numerous factors: CNTs content, dispersion
level, intensity and frequencies, w/c ratio, moisture content, etc.

2.1.6. Durability

The potential of cementitious CNT nanocomposites to resist degradation caused by
the surrounding environment can be understood by studying their durability properties.
Several studies have been published, showing the effects of CNTs on autogenous [54–56]
and drying shrinkage [57–59], creep [60], carbonation [61], chloride ion penetration [61–63]
etc. In all of the studies reported above, a positive impact on the durability performance of
the nanocomposite was observed with the CNT addition. Only Dalla et al. [64], in contrast
to the results reported by other authors, have reported an increasing trend in the chloride
ion penetration possibly because the measurement reflects not only chloride ions, but the
total of ions contained to the mixture.

2.2. Cellulose
2.2.1. Cellulose Nanocrystals

Cellulose nanocrystals (CNCs) are rod-like nanoparticles (usually 0.05–0.5 µm in
length and 3–5 nm in width) which can be extracted from plants and trees [65]. They are
typically produced in powder form. Raw CNCs, their morphology (SEM image) and
transmission electron microscope image of dispersed CNCs are shown in Figure 4 [66].
They have some special properties like high elastic modulus and strength, low density, reac-
tive surfaces, which allow functionalization and are immediately water-dispersible without
the use of surfactant or modification [65]. More advantages of CNCs are their renewability,
sustainability, low toxicity, low cost (evaluated production costs of <10$/1b). Because they
are extracted from physical sources like plants and trees, CNCs are biodegradable, carbon
neutral and have not environmental and health risk [65,67]. One method to extract the
CNCs is through sulfuric acid hydrolysis of Eucalyptus dry-lap cellulose fibers, resulting
in a 0.81 wt.% CNC surface-grafted sulfate content [68]. The CNC source and production
method strongly affects the properties of the CNC-cementitious nanocomposites [69].
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Figure 4. (a) Raw CNCs; (b) their scanning electron microscopy image; (c) transmission electron microscope image of
dispersed CNCs. Reproduced from Lee et al. [66] with permission from Elsevier.

The CNCs in the fresh cement paste are separated in two types: the “free” CNCs
(fCNCs) in the water and the “adsorbed” CNCs (aCNCs) on cement surface. Both types of
CNCs are in solution, the main difference between them is that the aCNCs are difficult to
move, as they stick to the cement particles and the fCNCs can unobstructedly move in the
aqueous suspension. The majority of CNCs (>94%) are aCNCs [70].

CNCs can enhance the mechanical performance of cementitious composites. Thanks
to their small size could possibly reduce inner fiber spacing, prevent micro-cracking and
therefore increase the strength of the matrix [68]. They can also increase the flexural
strength of cement paste about 50% [71], increase the compressive strength by 27% [72]
and 44% when surface modified [73]. Possibly they can increase the degree of hydration,
especially at early age [74], because they could provide a channel for water transporting
through the hydration products ring to the unhydrated cement particles [68]. They were
also found to improve the frost resistance after 50 freeze-thaw cycles [72]. As expected,
CNC were found to have no effect or slightly increase the resistivity of the matrix [75].
At low concentrations (<0.2%), CNC can improve cement rheology reducing yield stress by
up to 54% [76]. On the contrary, at much higher amounts (>0.5%), a tenfold increase in the
yield strength is observed [76]. The incorporation of CNCs reduces the porosity, improving
the microstructure of the matrix [77].

2.2.2. Cellulose Filaments

Cellulose filaments (CF) are cellulosic fibrils with diameter in the nanoscale, from
30 to 400 nm, and micrometric length of about 100–2000 µm. They have a high aspect ratio
of 100–1000 [78]. Figure 5 illustrates a field emission gun-scanning electron microscopy
(FEG-SEM) image of a dried 0.10% CF suspension [79]. CF exhibit an intrinsic hydrophilic
nature and a hygroscopic character. The hydrophilicity of CF among with their tendency
to create a percolating network of filaments plays a crucial role in their viscosity modifying
effect [79]. On the other hand, the hygroscopicity of CF affects the internal curing effect
observed with CF [80]. CF materials have been found to influence the flexural strength
of cement composites up to 25% [81]. Furthermore, CF have reported to increase the
compressive strength up to 16%, the splitting tensile strength up to 34% and the energy
absorption up to 96% [79,81].
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2.2.3. Cellulose Nanofibers

Cellulose nanofibers (CNF) are about 5-500 nm wide and 1–5 µm long with 50–70%
crystallinity, possessing electrostatic charge and an extremely high surface area [81,82].
CNFs also have uniform dispersion, high chemical tunability, exceptional hydrophilicity,
great colloidal properties and reinforcing potential [81,83,84]. Figure 6 shows a transmission
electron microscope image of CNFs in an aqueous solution [85]. All of the studies report
that the addition of CNFs improve the degree of hydration [86–90]. CNF can increase both
the flexural and compressive strength, possibly because of a higher degree of hydration and
densification in the cement paste microstructure, but they lower the workability [91–95].
In particular, the incorporation of CNFs at a low concentration (0.1%) resulted in an increase
in flexural strength and energy absorption by 106% and 184%, respectively [85]. Moreover,
a 2.7 times increase in the flexural strength of mortars reinforced with algal cellulose
nanofibers has been reported [96]. Regarding their effect on durability, the use of carboxyl
rich CNF in cement was found to reduce shrinkage and the associated cracking [97].
The sulphate penetration and subsequent dimensional alteration in cementitious systems
with CNF has been studied [98]. It was concluded that adding CNF to cementitious
systems the sulphate penetration could be decreased. It is possible that nanofibers act as a
water reservoir promoting internal curing [98]. CNFs have been reported to be suitable
nanoreinforcing material for use in extruded cementitious composites [99].
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2.3. Graphene

Graphene nanomaterials, that are typically produced from graphite, display a unique
atom-thick sp2 bonded 2D structure [100]. Thanks to this structure, graphene has various
special properties like ultrahigh tensile strength and elastic modulus, high specific surface
area, electrical and optical conductivity [101–103].

2.3.1. Graphene Nanoplatelets

Graphene nanoplatelets (GNPs) are nanoparticles formed from graphene stacks. GNPs
consist of several layers of graphene sheets with a lateral size (diameter) of a few microme-
ters and with thickness less than 100 nm [104]. SEM images of GNPs without dispersion
(as received) and dispersed with a polycarboxylate superplasticizer (PS), a naphthalene
superplasticizer (NS) and a melamine superplasticizer (MS) are shown in Figure 7 [105].
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To aid with their dispersibility in aqueous solutions, GNPs have been treated with
polycarboxylate based superplasticizers [106–109], methylcellulose [110], silica fume [111],
polyoxyethylene (40) nonylphenyl ether [112,113], sodium dodecyl benzene sulfonate
(SDBS) [114,115] and melamine [116]. The morphology and chemical composition of the
polycarboxylate based superplasticizers strongly affects the electrical properties and the
self-sensing characteristics of the nanocomposite [106,108]. In most of the cases, the GNP
aqueous suspensions were ultra-sonicated to further aid their dispersion [106,107,111]. The
reinforcing effect and dispersion of GNPs are both strongly affected by the dispersing agent
concentration and the ultrasonic energy application [109]. Raise of GNPs concentration
reduces the slump flow and increases the yield stress and plastic viscosity [117,118].

GNP/cementitious nanocomposites demonstrate improved mechanical performance.
The use of 0.05% GNPs by weight of cement increased the 28d flexural strength by
16.8% [110] and 25.2% [112]. A low dosage of 0.033% increased the 28d splitting ten-
sile strength by 131.6% [119]. Similarly, a low concentration of 0.06% GNPs increased
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the compressive and flexural strength by 30.6%, 27.8%, respectively [115]. 2 vol% GNPs
increased the compressive strength and elastic modulus of the cementitious matrix by
54% and 50%, respectively [120]. Graphene/cementitious mortars with 0.4 wt% of cement
GNPs demonstrated substantial improvements in their fracture behavior with the addi-
tion of GNPs. Fracture energies that are up to 1700% higher than the control values are
reported [121]. The macroscopic hardness measured with indentation tests was doubled
for cement paste reinforced with 1% GNPs [107].

GNPs alter the matrix microstructure, refine the pore structure [113,115,122,123],
and reduce the porosity [105,107,110,112,115]. A recent in-depth study shows that GNPs
depress the meso pores resulting to a denser microstructure [124]. The degree of cement
hydration is promoted by GNPs [113,122], especially at an early age [105,110,112,115].
Possibly, the hydrolytic free calcium ions are absorbed by the GNPs leading to the oriented
ettringite growth close to the GNPs rather than the cement particles leaving more space on
their surface for ion exchange leading to more hydration products production, especially
at early age [113]. Nanoindentaion tests have shown a reduction of the porous phase
and low-density C-S-H gel and an increase of the high-density C-S-H gel, suggesting
the development of a denser microstructure for the graphene-reinforced matrix [125].
The addition of 10% GNPs significantly improves the thermal diffusivity of about 75% at
25 ◦C and 60% at 400 ◦C [126]. Similar results were obtained by Piselo et al. [127], GNPs
were found the most effective carbon nanomaterial to increase thermal conductivity and
diffusivity. A concentration of 2.5% decrease the water penetration depth, chloride diffusion
coefficient and chloride migration coefficients by 64%, 70% and 31%, respectively [123].
A more recent study shows that chloride penetration depth and coefficient can be decreased
by ~37% and ~42%, respectively with the introduction of GNPs of as little as 0.02% [113].
Rapid chloride penetration tests suggest that GNPs addition decelerate the chloride ions
migration [128]. Similar response was obtained by Tong et al. [125], the chemical attack
induced by an acidic solution was shown down at the GNP nanocomposites. A 15%
reduction in the diffused solar reflectance, uniform in the overall spectrum, has been
reported [127]. A slight increase in density (+5.4%) was observed with 0.01wt% GNPs [129].

Increasing the GNPs amount can lower the electric resistivity of the cementitious
matrix [118,130,131]. The electrical properties of the GNP nanocomposites (electrical resis-
tivity and conductivity) are influenced by the GNP concentration and follow a percolation
law [116,120,131].

The addition of GNPs provides the cementitious matrix with stable repeatable piezore-
sistive characteristics even after several cyclic quasi-static and dynamic compressive load-
ings [120]. The electrical resistance change increases with more severe damage and when
the measurement is performed closer to the damaged area [132]. The piezoresistive proper-
ties of the GNP nanocomposite are strongly affected by the lateral size of the platelets [133].
An increased change in the electrical resistance was recorded when GNPs with larger lateral
size (25 µm) were used [133]. GNP with high C/O atomic ratio demonstrate improved elec-
trical conductivity and display piezoresistive characteristics at lower concentrations [130].
A full scale reinforced concrete beam incorporating the GNP nanocomposite was developed
by Rehman et al. [117]. Possibly, crack propagation could be successfully predicted using
the GNP nanocomposites [117]. A more recent study shows that GNP/concrete can be
used to detect damage [134].

2.3.2. Graphene Oxide (GO)

GO consists of a hexagonal carbon network holding hydroxyl and epoxide functional
groups on its basal plane and carbonyl and carboxyl groups located at the sheet edges [135].
Typically, the preparation of GO involves three steps, oxidation (in which functional
groups containing oxygen were inserted into graphite to make hydrophilic oxide), filtration
(in which the remaining ions were removed by using deionized water) and exfoliation
(in which GO is subject by ultrasonication) [136]. GO is one of the most generally used
2D nanosheet in cementitious materials [137–139]. Two recent reviews provide in depth
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information on the effect of GO in the cementitious matrix [140,141]. Tanking this into
account this review is focused on providing the most recent scientific results that are not
included in the previous reviews and also inform on the main effects of GO addition into
the cementitious matrix.

GO compared to other types of carbon nanomaterials is easier to disperse in water due
to the electrostatic repulsion and hydrophilic nature [142,143]. However, homogeneous
distribution in the cementitious matrix is difficult to be achieved due to the presence of
alkaline ions, e.g., Ca2+, K+,Na+, OH–, in large concentrations, in the fresh state of the
matrix [140,141]. The repulsion forces between the GO nanomaterials are depleted resulting
to the re-agglomeration of the GO which occurs promptly after their introduction in the
cement paste. This hinders the full exploitation of the excellent GO physicochemical and
mechanical properties in the cement-based matrix.

Typically, a surfactant in combination with ultrasonication is employed to disperse
the GO in the aqueous solution [144,145]. In the majority of the studies a polycarboxylate
based superplasticizer, which is fully compatible with the matrix, is proposed as a dis-
persing agent [146–148]. Special attention should be paid on the amount of the dispersant
used, and the method that it is used. For example, addition of the dispersing agent at
the GO suspension has been found to be much more effective that adding it to the GO-
cement mix (GO suspension mixed with cement first) [148]. The molecular structure of the
superplasticizer and specifically the length of the side or main chains, the polymer molec-
ular weight and the anchor groups, are some factors that strongly affect their dispersion
performance [106].

GO reduces the workability of the cement matrix [149]. GO due to its hydrophilic
nature and its large surface area absorbs water. As a result, an increased friction between
the cement grains occurs deceasing the flowability of the nanocomposites.

Recent studies have shown that, the addition of GO improves the interfacial transition
zone (ITZ) microstructure reducing its thickness and porosity [150,151]. Substantial reduc-
tion in water permeability was also reported [152]. Inserting a really small dosage like
0.04–0.05 wt% of GO increases the compressive strength and flexural strength of Portland
cement by 33–46% and 59–75%, respectively [152,153]. Similarly, the incorporation of
0.1% reduced GO (rGO) improved the compressive strength along with other properties
(water absorption, ultrasonic pulse velocity, carbonation and fire resistance) [154]. Ther-
mal conductivity and thermal diffusivity coefficient were also found to improve when
using 1.2 wt % rGO [155].

2.4. Nanosilica

Nanosilica (Nano-SiO2, NS) and silica fume (SF), which are categorized as inorganic
materials, can significantly improve the pore structure because of the filling effect and
positive impact on hydration and microstructure [156]. A recent study reports that hy-
drothermal SiO2 nanoparticles can increase the rate of hydration of clinker minerals by
20–30% [157]. The microstructure of SF and NS is shown in Figure 8.
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NS is usually produced by the sol-gel method by the hydrolysis process of trimethylethoxysi-
late or tetraethoxysilane, and its particle size is often lower than 100 nm. Because of its pozzolanic
reactivity and the small particle size (the nanoparticles can fill the spaces between particles of gel
of C-S-H, acting as a nano-filler), nanoSiO2 can improve the compressive strength of cementitious
materials and can make the microstructure denser [158–160]. SF and NS are also a new kind of
surface protection materials according to a previous study [3]. That is because SF and NS can
improve chloride penetration resistance, so can enhance the corrosion resistance ability of concrete.
SF may introduce a higher reactivity, that is why it has a greater hydration acceleration effect than
NS [161,162].

A previous study [163] showed that the pozzolanic reaction products of nanoSiO2
are more compact than those of silica fume. Furthermore, it was concluded that nanoSiO2
could make the hardened cement mortar less water-absorbable via exploring either its high
pozzolanic reactivity or its filler effect on the surface of the mortar. In another study [164]
it was shown that when very small nanoSiO2 particles were added in the cementitious
materials at a low concentration, they absorbed onto Ca(OH)2 hydration product and at
the same time acted as nucleation sites, which would advantage the hydration process.
Further addition of nanoSiO2 up to 5% had negative impact on the microstructure of
cementitious composites because of nanoSiO2 particles agglomeration. A more recent
study, reports that the incorporation of NS refines the pore structure and reduces the pore
volume of cement pastes with ultra-high volume fly ash [165]. Similarly, the microstructural
studies of Sikora et al. confirmed that NS significantly affects the pore characteristics of
concretes, thus resulting in concretes with denser and stronger microstructures [166].
Several researchers have reported that 1% NS is the optimum percentage to enhance the
mechanical properties (both the compressive and flexural strength) of the cementitious
matrix [167–171]. NS has been also shown to improve the durability of the matrix by
reducing its water absorption, capillary absorption, rate of water absorption, co-efficient
of water absorption and water permeability compared to normal concrete [158]. It is also
reported that the addition of silica nanoparticles reduced the chloride ion penetration
significantly [172].

2.5. Nano Titanium Dioxide

Nano titanium dioxide (TiO2, NT) is a 0D nanomaterial which has unique physical
and chemical properties. With NT addition, cementitious composites can become high-
performance, multifunctional and environmentally friendly. Generally, NT is in the form
of powder, sol and slurry, and its particle is spherical or ellipsoidal [173]. A 45.01%
increase in compressive strength [174], a 87.00% increase in flexural strength [175], a 43.48%
increase in tensile strength [176], a 27.00% decrease in the shrinkage strain [177], a 43.90%
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decrease in water vapor penetration coefficient [178], a 60.87% increase in chloride ion
penetration resistance [179], a 75.03% decrease in the corrosion rate in NaCl solution [174],
a 49.81% decrease in the corrosion rate in H2SO4 solution [174] and a 59.11% decrease in
the coefficient of water absorption [180] has been reported with the incorporation of NT
in cementitious matrices. In addition, NT-engineered cementitious composites have an
average NOx abatement of 45% [181] and an organic degradation efficiency of 78% [182].

The different methods used to produce nano titanium dioxide/cementitious compos-
ites are shown schematically in Figure 9. It is observed that researchers should take various
decisions, from the specific characteristics of the NT used to the curing method followed
to prepare the nanocomposites. Most of the studies state that the most crucial issues
considering nanoTiO2 successful implementation are the NT concentration, dispersion
method and mix proportions of the composites [173].
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NT-cementitious composites can be used as [173]: (i) Pavement materials; (ii) Exterior
wall materials, harmful gas and bacteria could be adsorbed on the nano titanium dioxide
surface and neutralized via UV light provided by sun [183]; (iii) Surface materials [184];
and (iv) Inner wall materials, it can get harmful gas off such as formaldehyde, benzene and
increase the indoor air quality [185]. Finally, it is important to report that NT can become
environmental contaminants upon any accidental leakage, and extra research is a necessity
to investigate its impact on human health [173].

3. Conclusions

Nanoscale materials have recently gained excessive attention due to their excellent
physicochemical characteristics such as improved mechanical, electrical and thermal prop-
erties, low density and excellent thermal stability [186–194]. The present article targets to
overview the recent studies published on the use of nanomaterials in cementitious compos-
ites. Cementitious composites have many drawbacks such as low tensile capacity, poor
deformation performance, high cracking tendency, high porosity and the production of
cement for concrete is contributing nearly 8% of global carbon dioxide emission. With the
addition of nanomaterials in cementitious composites it is possible to overcome these issues
and develop a new generation of high-performance, and multifunctional cementitious
composites.

The most widely used nanomaterials in cementitious composites are the carbon
nanotubes followed by graphene-based materials, nanosilica and nano-TiO2. The main
factors affecting the nanocomposites performance are the nanomaterials’ dosage and
dispersion state. Carbon nanotubes can be used to improve the compressive strength,
flexural strength, fracture toughness, hydration, freeze-thaw resistance and electromagnetic
interference of the cementitious matrix as well as decrease its porosity. The use of graphene
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has a higher impact on the tensile strength and Young’s modulus of the matrix compared
to the other nanomaterial types. Nanosilica can be used to significantly improve the
microstructure of cementitious nanocomposites.

Nanotechnology application has the potential to make breakthroughs in concrete
technology. In order to achieve that, future research should be application specific. That is
focusing on developing nanocomposites with targeted improved properties intended for
specific applications. In this aspect, a relationship should be established between optimum
quantity and characteristics of the nanomaterials. Additionally, more research is needed
on the performance of concrete with nanomaterials as researchers have mainly focused
on cement paste and mortar. Finally, more research is needed on the development of
theoretical models that can predict the performance of the cement-based nanocomposites
as function of the nanomaterials’ concentration.
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