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Fibroblast transition 
to an endothelial “trans” state 
improves cell reprogramming 
efficiency
Megumi Mathison1,2, Deepthi Sanagasetti1,2, Vivek P. Singh1, Aarthi Pugazenthi1, 
Jaya Pratap Pinnamaneni1, Christopher T. Ryan1, Jianchang Yang1 & Todd K. Rosengart1*

Fibroblast reprogramming offers the potential for myocardial regeneration via in situ cell 
transdifferentiation. We explored a novel strategy leveraging endothelial cell plasticity to enhance 
reprogramming efficiency. Rat cardiac endothelial cells and fibroblasts were treated with Gata4, 
Mef2c, and Tbx5 (GMT) to assess the cardio-differentiation potential of these cells. The endothelial 
cell transdifferentiation factor ETV2 was transiently over-expressed in fibroblasts followed by GMT 
treatment to assess “trans-endothelial” cardio-differentiation. Endothelial cells treated with GMT 
generated more cTnT+ cells than did cardiac fibroblasts (13% ± 2% vs 4% ± 0.5%, p < 0.01). Cardiac 
fibroblasts treated with ETV2 demonstrated increased endothelial cell markers, and when then 
treated with GMT yielded greater prevalence of cells expressing cardiomyocyte markers including 
cTnT than did fibroblasts treated with GMT or ETV2 (10.3% ± 0.2% vs 1.7% ± 0.06% and 0.6 ± 0.03, 
p < 0.01). Rat cardiac fibroblasts treated with GMT + ETV2 demonstrated calcium transients upon 
electrical stimulation and contractility synchronous with surrounding neonatal cardiomyocytes, 
whereas cells treated with GMT or ETV2 alone failed to contract in co-culture experiments. Human 
cardiac fibroblasts treated with ETV2 and then GMT likewise demonstrated greater prevalence of 
cTnT expression than did cells treated with GMT alone (2.8-fold increase, p < 0.05). Cardiac fibroblast 
transitioning through a trans-endothelial state appears to enhance cardio-differentiation by 
enhancing fibroblast plasticity.

Abbreviations
Actc1	� Actin alpha cardiac muscle 1
cTnT	� Cardiac troponin T
CXCL12	� C-X-C motif chemokine ligand 12
ESM1	� Endothelial specific molecule 1
ETV2	� ETS variant transcription factor 2
FACS	� Fluorescence-activated cell sorting
FBS	� Fetal bovine serum
GFP	� Green fluorescent protein
GJA1	� Gap junction protein alpha1
GMT	� Gata4, Mef2c and Tbx5
HUVEC	� Human umbilical vein endothelial cell
iCM	� Induced cardiomyocyte-like cell
Pln	� Phospholamban
RCF	� Rat cardiac fibroblast
REC	� Rat cardiac microvascular endothelial cell

Since the first demonstration a decade ago of the possibility of cardiac cellular reprogramming, a wide variety of 
transcription factors, microRNAs and chemicals have been shown to induce the transdifferentiation of cardiac 
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fibroblasts into “induced cardiomyocytes” (iCMs)1–9. Despite encouraging observations that cardiac transdif-
ferentiation improves post-infarct cardiac function in small animal models, limits on the efficiency of this pro-
cess, especially in human cells, has catalyzed the search for more effective cardiac reprograming strategies10–14. 
Evidence that epigenetic repression of gene activation in higher order species may underlie cell resistance to 
reprogramming suggests that enhancing cell plasticity—the susceptibility of cells to transdifferentiation – may 
represent a promising strategy for enhancing cell reprogramming efficacy6, 14, 15.

Endothelial cells possess the capacity to undergo a native cell transdifferentiation process termed endothelial 
mesenchymal transition (EndMT), which is characterized by enhanced cell plasticity16–19. During development, 
endothelial cells likewise share a common mesodermal progenitor with cardiomyocytes. We therefore hypoth-
esized that endothelial cells may represent a “plastic” cell target more conducive to cardio-differentiation than are 
fibroblasts. Given however the relative scarcity of endothelial cells compared to fibroblast in the infarct milieu, 
we theorized that it would be desirable to transdifferentiate fibroblasts into endothelial cells as our primary 
reprogramming target, and then use these cells as a substrate for the application of our cardio-differentiating 
factors. In this report, we describe the efficacy of this strategy using the vascular endothelial cell master regulator 
ETS variant 2 (ETV2) to induce an endothelial cell “trans-state,” which in turn enhanced our ability to generate 
iCMs from cardiac fibroblasts20–23.

Methods
Cell and vectors.  All animal experiments were approved by Institutional Animal Care and Use Committee 
(IACUC) at Baylor College of Medicine and all methods were carried out in accordance with the NIH guidelines 
(Guide for the care and use of laboratory animals) and under protocol AN-6223, approved by the IACUC. These 
studies were conducted and are reported in compliance with relevant elements of ARRIVE guidelines.

Commercially procured rat cardiac microvascular endothelial cells (AS One International Inc., SantaClara, 
CA) were cultured on fibronectin-coated dishes in EGM-2 medium supplemented with 10 ng/ml VEGF and 
bFGF (Lonza, cc-3156, cc-3162). Cardiac fibroblasts were isolated from adult rat cardiac tissues harvested from 
6- to 8-week-old Sprague–Dawley rats (Envigo International Holding Inc., Hackensack, NJ) using standard 
cell explant protocols, and cultured in DMEM, 10% fetal bovine serum (FBS), and 1% penicillin/streptomycin. 
Human cardiac fibroblasts (PromoCell GmbH, Heidelberg, Germany) were cultured in Medium 106 (Gibco, 
ThermoFisher) supplemented with low serum growth supplement kit (S003K, Gibco, ThermoFisher).

Lentivirus vectors encoding ETV2 tagged with yellow fluorescent protein (Venus), or encoding Gata4, Mef2c 
orTbx5 tagged with green fluorescent protein (GFP), or GFP alone were prepared from relevant plasmids by 
the Baylor College of Medicine Gene Vector Core, as previously described4, 5, 10. Plasmids for human ETV2 and 
reverse tetracycline-controlled transactivator (rtTA) were gifts from Dr. Rinpei Morita, Department of Microbiol-
ogy and Immunology, Keio University, Tokyo, Japan. An adenovirus vector expressing VEGF (AdVEGF-All6A+) 
based on an Ad5 serotype backbone with deletions in the E1 and E3 regions and containing an artificial splice 
sequence cassette was prepared by the Belfer Gene Therapy Core Facility at Weill Cornell Medical College, New 
York, NY.

Cell reprogramming.  To assess cardio-differentiation efficiency, endothelial cells and cardiac fibroblasts 
cultured in EGM-2 medium supplemented with 10 ng/ml VEGF and bFGF were treated for 14 days with len-
tivirus encoding Gata4, Mef2c and Tbx5 (GMT) or GFP alone at a multiplicity of infection (MOI) of 20. To 
induce ETV2 expression, rat cardiac fibroblasts were treated with lentivirus encoding ETV2 and a second len-
tivirus encoding rtTA (MOI of 20 each) in EGM-2 medium supplemented with SingleQuots (cc-4176, Lonza). 
ETV2 was overexpressed in ETV2/rtTA-treated cells by doxycycline addition (100 ng/ml) into the cell culture 
media for a period of 10 days for rat cardiac fibroblasts, but for a period of only 3 days for human cardiac fibro-
blasts because of the rapid proliferation of these cells. As a control, naïve cells received only doxycycline. Three 
days after doxycycline removal, cells were treated with lentivirus encoding GMT (20 MOI) and maintained for 
14 days in iCM medium (DMEM with 10% FBS and 20% M199).

For cell contractility studies, neonatal rat cardiomyocytes isolated from 0 to 3 days old neonatal rat pups were 
cultured DMEM and M199 in a 4:1 ratio and supplement with 10% horse serum, 5% fetal bovine serum, as previ-
ously described15. Adult rat cardiac fibroblasts treated with GFP-labeled reprogramming factors were harvested 
and re-plated onto cultures of neonatal rat cardiomyocytes at a ratio of 1:10 in DMEM/M199/10% FBS medium12.

Fluorescence‑activated cell sorting (FACS) analysis.  For FACS analysis, cells were washed, trypsi-
nized and fixed with fixation buffer (BD Biosciences, San Jose, CA) as previously described5, 10. Fixed cells were 
permeabilized with Perm/Wash buffer (BD Biosciences, San Jose, CA). For cTnT expression analysis, cells were 
incubated with primary cardiac troponin T (cTnT) antibody, (ab8295, 1:400) and secondary Alexa Fluor 647 
(ab150107, 1:2000). For CD31 expression analysis, conjugated BV786 CD31 antibody (BD 744382, 1:100) was 
used. For CDH1 and CDH2 analysis, CDH1(ab76055,1:100) and CDH2 (ab18203, 1:100), secondary antibodies 
Alexa Fluor 405(ab175658, 1:2000) and Alexa Fluor 647 (ab150079, 1:2000) were used respectively. For human 
cells, primary (ab8295, 1:400) and secondary Alexa Fluor 647 (ab150107, 1:2000) antibodies were used for cTnT 
expression analysis. All analyses were performed by a LSR Fortessa cell sorter (BD Biosciences, Franklin Lakes, 
NJ) with FlowJo software (FlowJo, LLC, Ashland, Ore).

qRT‑PCR analysis.  For qPCR studies, total RNA was extracted using TRIzol (Invitrogen) according to the 
vendor’s protocol. RNAs were then retro-transcribed to cDNA using iScript Supermix (Bio-Rad). qPCR was per-
formed SYBR Green PCR Master Mix (Thermo Fisher Scientific) on a ViiA 7 Real-Time PCR System (Thermo 
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Fisher Scientific). Results were normalized by comparative CT method with glyceraldehyde 3-phosphate dehy-
drogenase (GAPDH). All primer sequences are listed in Table 1.

Immunofluorescence analysis.  Immunofluorescence studies were performed after 4% paraformaldehyde 
fixation and permeabilization of cells with 0.5% Triton-X solution. Cells were then blocked with 10% goat serum 
and incubated with primary antibodies against cTnT (1:300 dilution; Thermo Fisher Scientific), α-actinin (1:400 
dilution; Sigma-Aldrich, St. Louis, MO) and CD31 (1:400 dilution, Abcam ab64543). Goat anti-mouse Alexa 
568 was used as the secondary antibody (1:1000 dilution; Thermo Fisher Scientific). Images were captured at 
the Core Fluorescence microscope and analyzed using ImageJ. To quantify marker-positive cells, the number of 
marker- positive cells and total cells quantified marked by DAPI (4’, 6-diamidino-2-phenylindole) staining were 
counted in three random images (10 × magnification) selected by an investigator blinded to treatment group.

Measurements of contractility and calcium transient.  Cell contractility (cell shortening) and cal-
cium transients were measured in co-culture studies at room temperature. To perform these studies, cells were 
placed in a Plexiglas chamber which was positioned on the stage of an inverted epifluorescence microscope 
(Nikon Diaphot 200), and perfused with 1.8 mmol/L Ca2+‐Tyrode’s solution containing (in mmol/L): NaCl 140, 
KCl 5.4, MgCl2 1, CaCl2 1.8, HEPES 5, and glucose 10, pH 7.4. Field-stimulation was provided by a Grass S5 
stimulator using platinum electrodes placed alongside a cell culture bath containing 1.8 mM Ca2+, with bipo-
lar pulses delivered at voltages 50% above myocyte stimulation thresholds. Contractions of iCMs from ran-
dom fields were videotaped and digitized on a computer. For Ca2+ signal measurements, cells were loaded with 
2 μmol/L of Fura‐2/AM (Life Technologies) and alternately excited at 340 and 380 nm at 0.5 Hz by use of a Delta 
Scan dual‐beam spectrophoto-fluorometer (Photon Technology International, Edison, NJ). Ca2+ transients were 
expressed as the 340/380‐nm ratios of the resulting 510‐nm emissions. Data were analyzed using Felix software 
(Photon Technology International)10, 15.

Statistical analysis.  Statistical analysis was performed using SAS version 9.2 (SAS Institute Inc, Cary, NC). 
Unpaired Student’s t-test or ANOVA was used for data analysis. Data are presented as the mean ± SEM, unless 
otherwise indicated. If ANOVA was significant for more than 2-group comparison, Bonferroni correction for 
ANOVA was followed for each pair comparison.

Results
Endothelial cells are more efficiently reprogrammed into cardiomyocyte‑like cells than are 
cardiac fibroblasts.  qPCR analysis performed 14 days after rat cardiac fibroblasts and cardiac microvascu-
lar endothelial cells were infected with lentivirus encoding GMT demonstrated increased expression of the car-
diomyocyte marker genes cTnT and Actc1 in GMT-treated endothelial cells vs GMT-treated cardiac fibroblasts 
(p < 0.05; Fig. 1a). FACS analysis likewise demonstrated that 13% ± 2% of endothelial cells treated with GMT 
expressed cTnT compared to 4% ± 0.5% of GMT-treated cardiac fibroblasts (p < 0.01; Fig. 1b). Immunofluores-
cence studies correspondingly demonstrated a greater proportion of cTnT and α-actinin positive cells in GMT-
treated endothelial cells vs fibroblasts (Fig. 1c).

ETV2 induces expression of endothelial cell markers in cardiac fibroblasts.  qPCR analysis of rat 
cardiac fibroblasts induced to overexpress ETV2 demonstrated significantly increased expression of the endothe-
lial cell markers CD31 (5.4-fold, p < 0.05), endothelial specific molecule-1 (2.5-fold, p < 0.05) and angiogenesis 

Table 1.   Primer sequences used for quantitative reverse transcriptase polymerase chain reaction. *Human.

Gene (rat) Forward Reverse

cTnT AGG​CTC​ACT​TCG​AGA​ACA​GG ATT​GCG​AAT​ACG​CTG​CTG​T

Actc1 GAT​TAT​TGC​TCC​CCC​TGA​GCG​ GTG​TAA​GGT​AGC​CGC​CTC​AGAA​

Pln GTG​ACG​ATC​ACA​GAA​GCC​AAGG​ TGA​CAG​CAG​GCA​GCC​AAA​CG

Gja1 GAA​CAG​TCT​GCC​TTT​CGC​TG AAG​GAC​CCA​GAA​GCG​CAC​GT

CD31 CTC​AGT​CGG​CTG​ACA​AGA​TG AGG​CTT​GCA​TAG​AGC​AGC​AT

CXCL12 CCC​TGC​CGA​TTC​TTT​GAG​ GCT​TTT​CAG​CCT​TGC​AAC​A

ESM1 GGG​GAA​ACC​TGC​TAC​CGT​A CTC​CTT​GCA​ATC​CAT​CCC​GAAC​

Gata4 CCG​GGC​TGT​CAT​CTC​ACT​AT GAG​AGC​TTC​AGA​GCC​GAC​AG

Mef2c GAC​AAG​TAC​AGG​AAA​ATT​AAC​GAA​GA TGG​GAG​GTG​GAA​CAG​CAC​

Tbx5 GCA​CAG​AAA​TGA​TCA​TCA​CCAA​ GGC​CAG​TCA​CCT​TCA​CTT​TG

Twist AGC​TAC​GCC​TTC​TCC​GTC​T TCC​TTC​TCT​GGA​AAC​AAT​GACA​

Zeb1 GCC​AAC​AGA​CCA​GAC​AGT​GTT​ CGC​ATT​CGT​CAT​CTT​TTA​CG

CDH1 GGC​TTG​GAT​TTT​GAG​GCC​AAGC​ GCG​ATC​TCC​AGA​CCC​ACA​CC

CDH2 GGA​AGC​TGG​CAT​CTA​TGA​AG CTC​CAT​TGG​AGT​CAC​ATT​GGC​

GAPDH GGC​ACA​GTC​AAG​GCT​GAG​AATG​ ATG​GTG​GTG​AAG​ACG​CCA​GTA​

ETV2* AGG​GAA​CAA​GCT​GGC​AGG​GCT​TGA​A TCC​AGC​ATG​TCT​CTG​CTG​TCG​CTG​T
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Figure 1.   Endothelial cells are more efficiently reprogrammed into cardiomyocyte-like cells than are cardiac 
fibroblasts. Rat cardiac fibroblasts (RCF) and rat cardiac microvascular endothelial cells (REC) were treated with 
lentivirus encoding GFP or GMT (20 MOI) for 14 days (n = 3). (a) qPCR analysis demonstrating that cTnT and 
Actc1 expression was significantly increased in GMT-treated endothelial cells compared to GMT-treated cardiac 
fibroblasts (*p < 0.05). (b) Quantification of FACS data demonstrating an increased percentage of cTnT+ cells 
in GMT treated endothelial cells compared to GMT treated cardiac fibroblasts (**p < 0.01) (c) Immunostaining 
demonstrating the increased prevalence of cTnT+ and α-actinin+ cells in GMT-treated endothelial cells 
compared to GMT-treated cardiac fibroblasts. Scale bar: 100 μm.
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marker, C–X–C motif chemokine ligand 12 (7.5-fold, p < 0.001) compared to fibroblasts without induced ETV2 
overexpression (Fig. 2a). FACS likewise demonstrated increased expression of the endothelial cell marker CD31 
in ETV2-induced compared to non-induced fibroblasts (28% ± 4% vs 4% ± 2%, p < 0.01; Fig. 2b), as confirmed 
by immunofluorescence studies (Fig. 2c).

ETV2 induction prior to GMT treatment enhances the reprogramming of rat cardiac fibro-
blasts into cardiomyocyte‑like cells.  Rat cardiac fibroblasts overexpressing ETV2 demonstrated greater 
expression by qPCR of the cardiomyocyte markers cTnT and Actc1 compared to naive cells (cTnT, 3.7-fold, 
p < 0.01, Actc1, 2.3-fold, p < 0.01) (Fig.  3a). Rat cardiac fibroblasts treated with GMT after ETV2 induction 
(“ETV2 + GMT”) demonstrated significantly greater expression by qPCR of cTnT (2.4-fold increase, p < 0.01), 
Actc1 (32-fold increase, p < 0.001) and phospholamban (2.9-fold increase, p < 0 0.001) compared with fibroblasts 
treated with GMT alone (Fig. 3a). GMT administration led to equivalently increased expression of the cardio-
myocyte marker Gja1 expression regardless of ETV2 expression (Fig. 3a).

FACS analysis likewise demonstrated that significantly more ETV2 + GMT treated rat cardiac fibroblasts 
expressed cTnT compared to cells treated by GMT or ETV2 alone (10% ± 0.2% vs 2% ± 0.1% and 0.6% ± 0.03%, 
respectively; p < 0.01; Fig. 3b). Immunocytochemistry confirmed the increased prevalence of cTnT and α-actinin 
positive cells following fibroblast treatment with ETV2 + GMT versus GMT treatment alone (Fig. 3c).

Quantification of cells positive for cTnT and α-actinin markers utilizing immunofluorescence-stained images 
showed that 45% ± 2% of the cells were cTnT positive in ETV2 + GMT treated cells compared to 18% ± 4% of 
the cells in GMT alone treated cells (p < 0.05) and 49% ± 1% of the cells were α-actinin positive in ETV2 + GMT 
treated cells compared to 23% ± 1% of the cells in GMT alone treated cells (p < 0.001) (Fig. 3d). Moreover, fibro-
blasts treated with ETV2 + GMT showed myosin filament structure, suggesting the generation of more mature 
iCMs by ETV2 pre-treatment of cells vs GMT treatment alone (Fig. 3c).

Although rat cardiac fibroblasts treated with GMT + ETV2 were not observed to contract independently after 
up to 8 weeks in culture, ∼ 3% of rat cardiac fibroblasts treated with GMT + ETV2 demonstrated contractility 
synchronous with surrounding cardiomyocytes after 6 weeks of co-culture with neonatal cardiomyocytes, as 
verified by their GFP expression (Fig. 3e; Supplemental video S1–S3). In comparison, cells treated with GMT 
or ETV2 alone failed to contract in co-culture experiments (Fig. 3e; Supplemental videos S1–S3). Cells treated 
with GMT + ETV2 also demonstrated calcium transients upon electrical stimulation that was synchronous with 
their contractile function, whereas calcium transients were not observed after stimulation of cells in other treat-
ment groups (Fig. 3e).

ETV2 induction prior to GMT treatment enhances the reprogramming of human cardiac fibro-
blasts into cardiomyocyte‑like cells.  Human cardiac fibroblasts also demonstrated increased cardio-
differentiation efficiency after ETV2 induction compared to cells treated with GMT alone. Specifically, qPCR 
analysis demonstrated that human cardiac fibroblasts treated with ETV2 + GMT expressed significantly higher 
cTnT compared to cells treated by GMT alone (2.8-fold increase, p < 0.05; Fig. 4a). Immunocytochemistry like-
wise demonstrated the increased prevalence of cTnT and α-actinin expression in human cardiac fibroblasts fol-
lowing treatment with ETV2 + GMT versus cells treated with GMT alone (Fig. 4b).

ETV2 treatment induces cell plasticity and cardiogenic marker expression in cardiac fibro-
blasts.  As a potential explanation for the enhanced cardio-differentiation potency of ETV2 + GMT treatment 
compared to cell treatment with GMT alone, we observed the increased expression of (pro-plasticity) EndMT 
pathway markers such as Twist (p < 0.05), Zeb1 (p < 0.08) and CDH2 (p < 0.01) in ETV2 overexpressing vs naïve 
rat cardiac fibroblasts, (Fig. 5a). FACS analysis likewise demonstrated increased CDH2+/CDH1+ ratio (indicator 
of EndMT) compared to naive fibroblasts (7.9 ± 0.5 vs 1.7 ± 0.1, p < 0.01; Fig. 5b). We also observed the upregu-
lation of the cardiogenic genes Gata4 (p < 0.01), Mef2c (p < 0.05), and Tbx5 (p < 0.01) in rat cardiac fibroblasts 
overexpressing ETV2 compared to naïve cells (Fig. 5c).

Discussion
Efforts to induce the direct transdifferentiation of fully differentiated adult cells have been spurred by the ini-
tial discovery by Yamanaka over a decade ago that adult somatic cells could be de-differentiated into induced 
pluripotent stem (iPS) cells and these could be re-differentiation into a wide variety of cell types24. Interestingly, 
the vast majority of these efforts have used mesenchymal cells, and fibroblasts in particular, as their starting cell 
target25. As the vista for such efforts has advanced to potential human applications, the relatively poor transdif-
ferentiation efficiency of human cells have become increasingly problematic challenges to the advancement of 
this tissue regeneration strategy26–29.

The resistance of mature cells to reprogramming is believed to arise from greater epigenetic controls over 
(reprogramming) gene activation in higher versus lower order species10, 26–31. Work by our group and others sug-
gest that “pro-plasticity” counter-strategies that could make target cells more susceptible to reprogramming may 
represent a useful approach to overcoming this hindrance, as opposed to the commonly used strategy of adding 
a greater number of factors to reprogramming cocktails6–11, 15, 26–30. In this paper, we specifically demonstrate 
that the pro-plasticity characteristics of the naturally occurring EndMT pathway can be leveraged to enhance 
cardiac fibroblast reprogramming into an induced cardiomyocyte phentotype, as evidenced by the enhanced 
susceptibility of endothelial vs fibroblast to cardio-differentiation. We demonstrate that preconditioning cardiac 
fibroblasts with ETV2 prior to GMT increased cardiomyocyte marker gene expression compared to cells treated 
with ETV2 or GMT alone. Importantly, about 3% of ETV2 + GMT treated cells demonstrated contractility when 
co-cultured with neonatal cardiomyocytes, reflecting a level of functional cardiodifferentiation.



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:22605  | https://doi.org/10.1038/s41598-021-02056-x

www.nature.com/scientificreports/

Figure 2.   ETV2 induces expression of endothelial cell markers in cardiac fibroblasts. Rat cardiac fibroblasts were treated with 
doxycycline with or without administration of lentivirus encoding ETV2 and rtTA (n = 3). (a) qPCR analysis demonstrating 
upregulated expression of endothelial cell markers in ETV2-treated compared to naïve fibroblasts (*p < 0.05; ***p < 0.01). (b) 
Quantification of FACS data demonstrating an increased percentage of cells expressing endothelial cell marker CD31 in ETV2-treated 
compared to naïve fibroblasts (**p < 0.01). (c) Immunostaining demonstrating the presence of CD31+ cells in ETV2-treated compared 
to the absence of CD31+ expression by naïve fibroblasts. Scale bar: 200 μm.
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Figure 3.   ETV2 induction prior to GMT treatment enhances the reprogramming of rat cardiac fibroblasts into cardiomyocyte-like 
cells. Rat cardiac fibroblasts were treated with doxycycline with or without lentivirus encoding ETV2 and rtTA. Three days after 
doxycycline withdrawal, cells were treated for 14 days with lentivirus encoding GFP or GMT (n = 3). (a) qPCR analysis demonstrating 
increased expression of the cardiomyocyte markers cTnT (**p < 0.01) as well as Actc1 and Pln (***p < 0.001) in ETV2 + GMT treated 
cardiac fibroblasts compared to cells treated with GMT alone. (b) Quantification of FACS data demonstrating an increased percentage 
of cTnT+ cells after ETV2 + GMT treatment vs treatment with GMT alone (**p < 0.01). (c) Immunostaining demonstrating the 
increased prevalence of cTnT and α-actinin in cells treated with ETV2 + GMT compared to cells treated with GMT alone. Sarcomeric 
filament structure was clearly identified in GMT + ETV2 groups but not in cells treated by GMT alone. High magnification views 
shown on the right side (top: × 40, bottom: × 100). Scale bar: 100 μm. (d) Quantification of immunostaining demonstrating increased 
number of cTnT-positive (*p < 0.05) as well as α-actinin-positive (***p < 0.001) cells in ETV2 + GMT treated cardiac fibroblasts 
compared to cells treated with GMT alone. (e) Cell contractility assessments of ETV2 (left), GMT (middle) and ETV2 + GMT (right) 
treated cells, as described in “Methods”. Two weeks after treatment with GFP-labeled reprogramming vectors, rat cardiac fibroblasts 
were transferred into co-culture with (untreated) neonatal rat cardiomyocytes (negative for GFP). Upper panel demonstrating GFP 
expression (green) of treated cells after 6 weeks in co-culture. Scale bar 100 μM. Lower panel demonstrating representative peaks from 
GFP-positive cells reflecting contraction (top row) and Ca2+ transients (bottom row) in cells treated with GMT + ETV2. Scale bar 0.5 
Sec.
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Figure 4.   ETV2 induction prior to GMT treatment enhances the reprogramming of human cardiac fibroblasts 
into cardiomyocyte-like cells. Human cardiac fibroblasts were treated with doxycycline with or without 
administration of lentivirus encoding ETV2 and rtTA. Three days after doxycycline withdrawal, cells were 
treated for 14 days with lentivirus encoding GFP with or without GMT (n = 3). (a) qPCR analysis demonstrating 
increased expression of the cardiomyocyte markers cTnT (*p < 0.05) in ETV2 + GMT treated cardiac fibroblasts 
compared to cells treated with GMT alone. (b) Immunostaining demonstrating the increased prevalence 
of cTnT and α-actinin in cells treated with ETV2 + GMT compared to cells treated with GMT alone. High 
magnification views (× 100) are shown on the far right. Scale bar: 100 μm.
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Figure 5.   ETV2 treatment induces cell plasticity and cardiogenic marker expression in cardiac fibroblasts. Rat cardiac fibroblasts 
were treated with doxycycline with or without administration of lentivirus encoding ETV2 and rtTA (n = 3). (a) qPCR demonstrating 
upregulated expression of the endothelial-mesenchymal transition (EndMT) markers Twist (*p < 0.05) and CDH2 (**p < 0.01) in 
ETV2-treated compared to naïve fibroblasts. (b) Quantification of FACS data demonstrating an increased CDH2/ CDH1 ratio 
reflecting EndMT in cells overexpressing ETV2 (**p < 0.01). (c) qPCR demonstrating upregulated expression of cardiogenic markers 
Gata4, Mef2c and Tbx5 in ETV2-overexpressing compared to naïve fibroblasts (* p < 0.05; ** p < 0.01).
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The proposition of our EndMT pro-plasticity strategy is potentially hindered by the prevalence of fibroblasts, 
rather than endothelial cells, as the primary constituent of myocardial scar tissue, and as such have been the 
default target of post-infarct myocardial regeneration strategies. Our demonstration that the endothelial cell 
differentiation factor ETV2 can be used to transition fibroblasts into a “trans-endothelial cell” state addresses 
this challenge, successfully rendering a new target for standard cardiodifferentiation cocktails such as GMT20–23. 
Interestingly, our observation of cardiomyocyte marker expression in ETV2-treated fibroblasts even without 
GMT treatment suggests the potency of the EndMT pathway in driving cardio-differentiation. The teleological 
basis for the predilection of these cells towards such cardio-differentiation may be related to the primacy of 
cardiac tissue as the substrate of the first organ formation during embryologic development32, 33.

We used transient (Dox-inducible) ETV2 overexpression strategy in order to minimize the persistence of 
endothelial cell differentiation influences that could have acted in opposition to our cardiodifferentiation treat-
ments. While we did not assess constitutive ETV2 expression to test this hypothesis, prior evidence that sustained 
ETV2 expression prevents cardiomyocyte differentiation and leads to a sustained endothelial cell phenotype 
during embryologic development supports the premise that a “trans-endothelial” state induced by transient 
ETV2 overexpression represents a cell target preferable for cardio-differentiation34.

Interestingly, our current findings are potentially consistent with that of our prior investigations demonstrat-
ing that administration of angiogenic vascular endothelial growth factor (VEGF) to infarcted myocardium prior 
to GMT administration enhances the efficacy of GMT in improving myocardial function compared with use of 
GMT alone4. In these studies, we demonstrated that VEGF induces angiogenesis in the treated infarcted myo-
cardial and presumed that VEGF thus acted to “pre-vascularize” the scar tissue and thereby support the survival 
of subsequently induced cardiomyocytes in the infarct milieu. In recent in vitro studies, we have however now 
demonstrated that like ETV2, VEGF pre-treatment increases the cTnT expression of GMT-treated fibroblasts 
(Supplemental Fig. 1). These findings discount our “pre-vascularization” model as the only potentially cause of 
the enhanced reprogramming effect of VEGF. Given its established human clinical safety record35, 36, and evidence 
that it may also induce endothelial differentiation37, VEGF may thus represent an important potential mediator 
of our “trans-endothelial” strategy in the clinical setting.

In the context of our prior suppositions regarding enhancement of the effects of cardiac reprogramming 
by VEGF in vivo, it is interesting that Lee et al. have also noted that administration of ETV2 at the time of 
coronary ligation improves post-MI cardiac function, although they attributed their observation to ETV2-
mediated endothelial cell proliferation and angiogenesis rather than to cardiac fibroblast—endothelial cell 
transdifferentiation38. In contrast to this observation, which may have salvaged ischemic border zones from 
progressing to infarction, we did not observe an improved post-infarct cardiac function with VEGF treatment 
3 weeks after coronary ligation, likely because of the lack of viable cardiomyocytes in infarcted ventricles4, 39, 40. 
These studies both thus lend support to the premise of adding angiogenic/trans-endothelial to cardiodifferentia-
tion strategies to salvage infarcted myocardium.

Our proposed trans-endothelial strategy poses the theoretical risk of excessive endothelial cell generation and 
vasculature deformation or even hemangioma formation, as previously shown with prolonged administration 
of angiogenic mediators41. This potential risk should be addressed by our proposed transient ETV2 expression 
strategy, which could be provided by regulatable transgenes or limited expression vectors. Assuming comparable 
effects of VEGF and ETV2, the absence of such effects induced by VEGF in animal and human studies likewise 
speaks against the likelihood of this concern42, 43. The theoretical risk of ETV2 inducing dystopic influences on 
the vasculature could also be overcome by the incorporation of fibroblast specific promoters in ETV2 vectors.

Taken together, this study demonstrated that endothelial cells and cardiac fibroblasts transitioned into an 
endothelial cell “trans” state can be transdifferentiated into iCM cells with higher efficiency than are fibroblasts 
not exposed to such interventions. This alternative to a traditional fibroblast-directed strategy may represent 
an important new approach to cardiac cell reprogramming and post-infarct myocardial regeneration in clinical 
post-infarct therapies.

Study limitations.  We have assumed that the pro-plasticity propensities of ETV2-mediated reprogram-
ming of fibroblasts relates to effects of endothelial cell transdifferentiation and/or EndMT pathway activation. 
Recent articles suggest however, that ETV2 may also induce global epigenetic changes that may represent an 
alternative or supplemental pro-plasticity pathway44, 45. We plan to perform additional analysis of global epige-
netic changes such as RNAseq, ATACseq and ChIPseq to further investigate the implications of such mecha-
nisms. In this context, it would be interesting if we are able to identify a specific subset of cardiac fibroblasts more 
susceptible to entering a “pro-plasticity” endothelial cell trans state. We are planning cell lineage tracing studies 
to further explore this avenue of investigation.
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