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Humans typically move their eyes in “scanpaths” of
fixations linked by saccades. Here we present
DeepGaze III, a new model that predicts the spatial
location of consecutive fixations in a free-viewing
scanpath over static images. DeepGaze III is a deep
learning–based model that combines image information
with information about the previous fixation history to
predict where a participant might fixate next. As a
high-capacity and flexible model, DeepGaze III captures
many relevant patterns in the human scanpath data,
setting a new state of the art in the MIT300 dataset and
thereby providing insight into how much information in
scanpaths across observers exists in the first place. We
use this insight to assess the importance of mechanisms
implemented in simpler, interpretable models for
fixation selection. Due to its architecture, DeepGaze III
allows us to disentangle several factors that play an
important role in fixation selection, such as the interplay
of scene content and scanpath history. The modular
nature of DeepGaze III allows us to conduct ablation
studies, which show that scene content has a stronger
effect on fixation selection than previous scanpath
history in our main dataset. In addition, we can use the
model to identify scenes for which the relative
importance of these sources of information differs most.
These data-driven insights would be difficult to
accomplish with simpler models that do not have the
computational capacity to capture such patterns,
demonstrating an example of how deep learning
advances can be used to contribute to scientific
understanding.

Introduction

Humans, primates, and some other animals do
not perceive all of their field of view in the same
resolution. Instead, in the fovea, corresponding to a
small central area in the field of view, receptor density

in the retina is very high and decays in the periphery
toward the boundary of the field of view. In order to
gather high-resolution information about our visual
environment, we have to make eye movements, directing
the fovea toward whatever seems most relevant or
interesting at that moment. When viewing static scenes,
eye movements typically consist of fixations, where the
gaze fixates a certain image location with only very
little movement, and saccades, segments of high gaze
velocity where the gaze moves from one fixation point
to the next.

The principles governing such scanpaths of fixations
have already been the subject of substantial research.
Yarbus (1967) noticed that scanpaths differ visually
when giving observers different tasks. The seminal
model of Itti et al. (1998) provided a computational
implementation of the feature integration theory of
Treisman and Gelade (1980). Originally intended to
explain effects on search duration in visual search, it
was soon also applied to predict fixation locations when
free-viewing images (Peters et al., 2005) and kickstarted
the field of saliency models, computational models
that predict a saliency map highlighting image areas
that are likely to attract fixations. Originally, saliency
models stayed close to the original feature integration
theory and mainly made use of low-level features,
for example, by simple pop-out detection (Itti et al.,
1998), natural image statistics (Zhang et al., 2008), and
information theory (Bruce & Tsotsos, 2009). Over time,
for many researchers, saliency became synonymous with
free-viewing fixation prediction, and models started to
include high-level information such as object locations
(Judd et al., 2009); for an extensive overview of saliency
models, see Borji and Itti (2013). With the advent of
deep learning, transfer learning from deep features
massively boosted prediction performance (Kümmerer
et al., 2015a, 2017). Today, all high-performing saliency
models make use of deep features transferred from
other computer vision tasks.
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Figure 1. Humans explore still images in scanpaths consisting of fixations linked by saccadic eye movements (left). Static saliency
models such as DeepGaze II predict the average fixation density over the image, independent of where a participant might have
looked before (center left). DeepGaze III models human scanpaths by predicting a distribution over possible next fixations given a
previous scanpath history and the image (center right). Iteratively sampling from this conditional distribution allows the sampling of
new scanpaths from the model (right).

However, while saliency models only predict the
spatial fixation distribution when viewing still images,
the fixations of a scanpath are known to be highly
dependent on each other. Oculomotor biases influence
saccade amplitudes and directions, but also task and
memory can affect the order in which image regions
are scanned and whether a certain image region is
explored at all. Scanpath models try to take these effects
into account. By predicting not only spatial fixation
locations (e.g., by the means of a saliency map) but
also whole scanpaths of fixations, they can model the
effect of earlier fixations in a scanpath on later fixations
and therefore the exploration behavior. While the
field of scanpath modeling has not received as much
attention as the field of saliency modeling, recent years
have seen a substantial number of models of scanpath
prediction, mostly focused on free-viewing scanpaths
(see Kümmerer & Bethge, 2021, for an extensive
overview of models of scanpath prediction). The model
of Itti et al. (1998) modeled sequences of fixations via a
winner-takes-all (WTA) module that got inhibited after
each fixation to encourage a new fixation. Boccignone
and Ferraro (2004) proposed to model scanpaths as a
constrained Lévy flight, that is, a random walk where
the step length follows a Cauchy–Lévy distribution
and therefore is very heavy tailed. Engbert et al.
(2015) and Schütt et al. (2017) proposed a mechanistic
model of scanpaths that implemented an attention
and an inhibition mechanism with certain decay
times to predict a sequence of fixations. Le Meur and
Coutrot (2016) combined a saliency map with saccade
direction and amplitude biases. Adeli et al. (2017)
took inspiration from neuroscience and transformed a
retinotopic saliency map to superior colliculus space
where the fixation selection was implemented. Clarke
et al. (2017) proposed the saccadic flow baseline for
capturing oculomotor biases independent of image
content. Assens et al. (2017) used deep neural networks
to predict different spatial fixation distributions
depending on the amplitude of the previous scanpath
history and combined this with a bias toward short

saccades to generate a scanpath. Xia et al. (2019) built a
variational autoencoder model of image statistics over
the previous fixations and selected fixations where the
internal model had the largest reconstruction error.
Sun et al. (2019) used recurrent neural networks to
model attention and suppression to certain spatial and
semantic features over a sequence of fixations. Yang
et al. (2020) used inverse reinforcement learning to train
a policy in a deep learning model that mimics human
scanpaths in visual search. Schwetlick et al. (2020)
extended the attention and inhibition mechanism in the
model of Engbert et al. (2015) to include perisaccadic
attentional dynamics.

Recently, we conducted an extensive review and
benchmark of free-viewing scanpath models and
found that only few scanpath models reach higher
performance than state-of-the-art spatial saliency
models (Kümmerer & Bethge, 2021). This was even the
case when the scanpath models were modified to use
these state-of-the-art saliency models as their internal
priority map—indicating that whatever conditional
information these models attempt to capture made
predictions worse than sampling independent locations
from the saliency map. It appears that many of the
proposed mechanisms of fixation selection, although
often firmly based in results from neuroscience and
vision science, do not account for the most important
effects governing dependencies between fixations in a
scanpath.

Moreover, it is difficult to even estimate how well
sequences of fixations could be predicted in theory.
In the case of the two-dimensional spatial fixation
distribution p(x, y | I ) for an image I , it is fairly simple
to estimate the ground truth distribution, for example,
with Gaussian kernel density estimates from empirical
data. In the case of scanpath prediction, however,
the relevant distribution p(x0, y0, . . . , xN, yN | I )
or p(xN, yN | x0, y0, . . . , xN−1, yN−1, I ) is very
high-dimensional. Estimating it from empirical
data using a kernel density would require massive
numbers of scanpaths to be recorded for each image
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in order to capture all possible dependencies between
fixations.

Therefore, there is a need for high-performing
computational models of scanpath prediction. Even
if such a model were a complete black box, it would
provide value for the field by estimating how well
scanpaths can be predicted in theory. While learning,
it can combine information from many different
scanpaths on many different images and eventually
provide a better estimate of the empirical scanpath
distribution for each image than would be possible
from the available ground truth data for this image
alone. Interpretable models of scanpath prediction then
can use such high-performing models to put their own
prediction performance in perspective and quantify
how relevant the proposed mechanisms are for fixation
selection.

To that end, we present DeepGaze III, a deep
learning–based model of free-viewing scanpath
prediction. DeepGaze III is an extension of
DeepGaze II, our state-of-the-art model of spatial
fixation prediction. We fit the parameters of
DeepGaze III on scanpaths of human subjects
free-viewing natural scenes. We find that the model
substantially outperforms the previous state-of-the-art
scanpath models on free-viewing human scanpath
data. DeepGaze III reproduces several key statistics of
human scanpaths, such as the saccade amplitude and
direction distribution. Using a series of ablation studies
and other modifications of the model architecture,
we gain insights into several factors that affect the
fixation selection process. We analyze the effects of
image content and scanpath history on the fixation
selection process as well as the possible kinds of
interactions between them; we disentangle the overall
tendency to fixate close to the center of the image into
the contributions from photographer bias, oculumotor
bias, and remaining central fixation bias; and we
quantify how the contribution of different factors
on gaze placement changes over the course of a
scanpath.

Theory

One cannot expect to perfectly predict the scanpath
of an observer on a given image. First, we don’t
expect human scanpaths themselves to be perfectly
deterministic. The brain state of each observer will be
different, due, for example, to differing memory and
interests, and also, there is noise in neural firing and in
the oculomotor system, which can create additional
stochasticity in the scanpaths. Second, even if scanpaths
were completely deterministic, the space of possible
scanpaths is high-dimensional such that it is unlikely we
will ever have enough data to perfectly learn the rules
determining scanpaths.

For this reason, in this work, we approach the
scanpath prediction problem using probabilistic
generative modeling. Via the encoded probability
distribution, probabilistic modeling gives our model the
ability to express the diversity in possible scanpaths
and their relative likelihood. Probabilistic modeling is
a very well-established approach that has been applied
before in the field of fixation prediction (Vincent et al.,
2009; Barthelmé et al., 2013; Kümmerer et al., 2015b).
Here, we are interested in modeling the distribution of
scanpaths given an image and the initial central fixation
p( f1, f2, f3, . . . , fN | f0, I ). We condition on the seen
image, because clearly, the content of the image will
affect how observers move their gaze over the image. We
also condition on the initial fixation, because the initial
fixation in the data we model is not a free fixation made
by the observer, but enforced through the experimental
setup and will clearly affect the following fixations.

To make the full distribution over scanpaths
p( f1, f2, f3, . . . , fN | f0, I ) more tractable, we apply
the chain rule. We split up the full distribution into
a product of conditional probabilities, one for each
fixation given all previous fixations in the scanpath:

p( f1, f2, f3, . . . , fN | f0, I ) =
N∏

i=1

p( fi | f0, . . . , fi−1, I )

This approach has been applied in many contexts to
make complex distributions more tractable, for example,
in natural image statistics (Hosseini et al., 2010; Theis
et al., 2012) and also for scanpath prediction (Schütt
et al., 2017; Schwetlick et al., 2020; Malem-Shinitski
et al., 2020). In the case of scanpath modeling, it is
especially natural. Beyond being a mathematical trick
to make the distribution more tractable, it resembles
how we assume scanpaths are generated in the brain:
Evidence from neuroscience (Kalesnykas & Sparks,
1996; Girard & Berthoz, 2005) suggests that while
fixating a point in an image, the brain selects where
to saccade to next by incorporating task, oculomotor
biases, and memory. In other words, where we looked
before influences where we might look next. This is
captured in the conditional distributions for each
fixation p( fi | f0, . . . , fi−1, I ).

We can generate new scanpaths from the model by
sampling from its distribution, making use of the chain
rule decomposition. We start by sampling the first free
fixation f1 from p( f1 | f0, I ). Then we use the sampled
fixation f1 to sample the second free fixation f2 from
p( f2 | f0, f1, I ) and so on until we get a scanpath of the
desired length. In fact, even without the mathematical
justification, most models of scanpath prediction
adhere to this principle by generating scanpaths fixation
by fixation, where each previous fixation affects which
future fixations might occur: Effectively, a scanpath
forms a sequence of consecutive decisions.

In order to assess how well any given scanpath
is predicted by the model, we can compute its



Journal of Vision (2022) 22(5):7, 1–27 Kümmerer, Bethge, & Wallis 4

log-likelihood log p( f1, f2, f3, . . . , fN | f0, I ). The
log-likelihood is a principled measure of prediction
performance (see Kümmerer et al., 2015b, for an
extensive discussion of log-likelihood in the context of
spatial fixation prediction). The product decomposition
of the distribution transfers into a decomposition of
the log-likelihood, which can be written as the sum
over the conditional log-likelihoods for each fixation:
log p( f1, f2, f3, . . . , fN | f0, I ) = ∑N

i=1 log p( fi |
f0, . . . , fi−1, I ). To make the log-likelihoods more
comparable over scanpaths, it is useful to normalize
by the length of the scanpath and therefore simply
compute average log-likelihoods per fixation. This
number quantifies how well each fixation is predicted
on average. By scoring scanpath prediction as average
log-likelihood per fixation, we effectively reduced
scanpath prediction to the case of spatial fixation
prediction. The only difference is that for each fixation,
we do not evaluate the scanpath history independent
distribution p( f | I ) but the conditional distribution
p( fi | f0, . . . , fi−1, I ).

See Kümmerer and Bethge (2021) for an
extensive review of this way of scanpath modeling
and how it relates to both nonprobabilistic
scanpath models and spatial fixation prediction
models.

Model

Our scanpath model DeepGaze III is a generative
probabilistic model as discussed in the previous
section. Given an image I and a partial scanpath
f0 = (x0, y0), f1 = (x1, y1), . . . fi−1 = (xi−1, yi−1)
that a subject might have made so far, where x
and y denote spatial fixation coordinates and the
subscript indicates the fixation’s number in the
sequence, the model predicts a conditional fixation
distribution p( fi | f0, . . . , fi−1, I ) (Figure 1, center
right). To make the model more tractable, we use
only a limited number k of most recent fixations
p( fi | f0, . . . , fi−1, I ) = p( fi | fi−k−1, . . . , fi−1, I )
and assume that the conditional probability does
not depend on how many fixations have been
made before these most recent fixations, that is,
p( fi | fi−k−1, . . . , fi−1, I ) = p( f j | f j−k−1, . . . , f j−1, I ).
For most results presented in this article, we use
k = 4, that is, DeepGaze III takes the four most recent
fixations made by the subject into account—the current
fixation and the three previous fixations.

Figure 2 visualizes the DeepGaze III model
architecture. The architecture of DeepGaze III can
be seen as an extension of the architecture of the
DeepGaze II model for spatial saliency prediction
(Kümmerer et al., 2017). DeepGaze III receives as input
an image (upper left) and the scanpath history (lower
left) and outputs the conditional fixation distribution,
which is a two-dimensional probability density and

encodes where the model expects the subject to fixate
next (lower right). The image is downscaled by a factor
of 2 and processed with the convolutional part of the
DenseNet 201 deep neural network (Huang et al., 2017).
By extracting the activations for multiple layers from
DenseNet for the given input image, we compute a deep
representation of the image. More precisely, we use
the layers denseblock4.denselayer32.norm1,
denseblock4.denselayer32.conv1, and
denseblock4.denselayer31.conv2, resulting
in a total of 2,048 channels. These channels are
concatenated and fed into the spatial priority network,
a small readout network (Kümmerer et al., 2017) of
three layers of 1 × 1 convolutions with 8 channels, 16
channels, and 1 channel, respectively. Before each layer,
the input is normalized using LayerNorm (Ba et al.,
2016), and after each layer, the softplus nonlinearity
is applied. The spatial priority network outputs a
single feature map that we call a spatial priority
map, since it is supposed to encode the image-driven
relevance of each image area. In many other models,
it would be called a saliency map. We use the term
priority map to emphasize that, while in this work
we focus on free-viewing, the architecture itself is
not restricted to that but could also incorporate task
information.

Parallel to the spatial priority network is a scanpath
network that processes the scanpath history. Each
fixation that the model receives information from
is encoded into three spatial feature maps encoding
Euclidean distance and difference in x and y coordinates
(Figure 2b). Our main model receives information
about up to four previous fixations. The three feature
maps for each of those four fixations are fed into
four 1 × 1 convolutions that output 128 channels
each. The outputs of the four convolutions are added
up before being fed to the remaining part of the
scanpath network. However, for early fixations in a
scanpath, there might not yet be four previous fixations
in the scanpath. In these cases, the convolutions for
nonexisting fixations are simply ignored. The remaining
part of the scanpath network is simply another 1 × 1
convolutional layer with layer norm and 16 output
channels.

Finally, the output of spatial priority network and
scanpath network is combined in the fixation selection
network, again a network of 1 × 1 convolutions, this
time with 128 channels, 8 channels, and 1 channel.
The output of the fixation selection network is
blurred with a Gaussian convolution and added to
a center bias prediction after it is normalized with a
softmax to output the conditional fixation distribution
p(x, y | xi−1, yi−1, . . . , xi−4, yi−4, I ).

The learnable parameters of the model are the
parameters of the three readout networks, the width of
the Gaussian convolution, and the weight of the center
bias. This results in a total number of 28,601 learnable
parameters, most of which (20,488) are in the first layer
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Figure 2. The DeepGaze III model. (a) Model architecture consisting of spatial priority network, scanpath network, and fixation
selection network. A viewed image is processed with the spatial priority network to compute a spatial priority map. Information
about the previous fixations a subject made is processed with the scanpath network and then combined with the spatial priority map
in the fixation selection network. Finally, the prediction is blurred, combined with a center bias, and converted into a probability
distribution by a softmax. (b) In order to make the model aware of the previous scanpath history, we encode the last four fixations of
the scanpath history into three two-dimensional feature maps each. These feature maps are the Euclidean distance and difference in
x and y coordinate to the encoded fixation. Here, we show the encoding feature maps for the last two fixations. In the feature map
examples shown here, we superimpose the last three saccades with arrows. The current fixation location is in the bottom left and the
previous fixation location is in the center right. Colors indicate the value of the feature map for each pixel, with blue indicating
positive values and red indicating negative values. Gray lines indicate values of zero.

of the spatial priority network. The channel sizes of the
readout networks have been chosen via experimentation
to allow sufficient computational capacity while keeping
the number of parameters within a reasonable range.
It would be possible to replace the three readout
networks with just one readout network that receives a
concatenation of image features and scanpath features.
However, by splitting it into multiple modules, we can
pretrain the spatial priority network without using
scanpath data. This substantially reduces computation
time, speeds up training, and also allows ablation
studies.

Methods

Datasets

We use the publicly available MIT1003 dataset (Judd
et al., 2009) to conduct our experiments. The MIT1003
dataset consists of 1,003 images of mainly color natural
scenes with a longer side of 1,024 pixels. The authors of
the dataset collected eye movements from 15 subjects
with a 3-second presentation time and made scanpaths

of fixations available. In training, we resized all images
to be either 1,024 × 768 or 768 × 1,024 pixels in size
to make batch processing easier. Unlike most works
on static saliency, we do not exclude the initial forced
central fixation from the scanpaths, since we want to
allow models to model the influence of the first fixation
on later fixations. However, the initial forced fixation
is not included in evaluations; it is only used when
informing models about previous fixations: We evaluate
on exactly the same fixations as other works using
MIT1003.

For pretraining, we also use the SALICON dataset
(Jiang et al., 2015). It consists of mouse traces of human
observers that explored images by means of moving
a high-resolution “fovea” over an otherwise blurred
image on a computer screen. SALICON includes
mouse data for 10,000 training and 5,000 validation
images. We use the 2015 version of the dataset.

To test model generalization to new images, we
also evaluate prediction performance on the MIT300
dataset. It is the hold-out test set of the MIT/Tuebingen
Saliency Benchmark (Judd et al., 2012; Kümmerer
et al., 2018) and consists of eye movement data from
45 subjects on 300 images under conditions otherwise
identical to the MIT1003 dataset. Unless stated
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otherwise, all results and visualizations presented below
are from MIT1003.

We repeat some analyses on the CAT2000 dataset
(Borji & Itti, 2015). It consists of 2,000 images with a
resolution of 1,900 × 1,080 pixels evenly distributed
over 20 categories such as indoor, outdoor, cartoons,
art, and line drawings with eye movement data of
12 observers per image over a presentation time of 5
seconds. We apply the same preprocessing procedure
as reported in Kümmerer and Bethge (2021), which
mainly involves adding the missing initial central forced
fixation to the scanpaths. As for MIT1003 andMIT300,
we do not evaluate prediction performance on the initial
forced fixation since it is not voluntary.

Training

DeepGaze III is trained using maximum likelihood,
that is, we maximize the average of the log-likelihood
per fixation log p( fi | fi−1, fi−2, fi−3, fi−4, I ). More
precisely, we average the log-likelihoods first over all
fixations of an image and then over all images.

The training of DeepGaze III has multiple phases.
First, the scanpath network is completely removed,
converting the model into a purely spatial model that is
essentially a version of DeepGaze II. In Phase 1, the
spatial model is pretained on the SALICON dataset,
using the spatial positions of the points in the mouse
traces as proxy for fixations. In Phase 2, training of the
spatial model is continued on the MIT1003 dataset,
ignoring from each scanpath the initial central fixation,
which is not a free fixation and therefore should not be
predicted. In this phase and all subsequent phases, we
use 10-fold cross-validation: We split the images into 10
parts, and for each cross-validation fold, we use eight
parts for training, use one part for validation, and keep
one testing part for our analyses. In subsequent phases
of training on MIT1003, for each cross-validation fold,
the model will be initialized from the corresponding
fold of the previous phase, to ensure that the images
of the test folds have never been seen by a model in
earlier phases of training. Phases 1 and 2 allow us
to efficiently pretrain the spatial priority network:
In the spatial setting, all fixations for an image are
evaluated on the same fixation density and therefore

can be processed together. In Phase 3, for the first
time, the scanpath network is included in the model.
It is trained on the MIT1003 dataset, but the first
layer of the spatial priority network (a fully connected
layer from 2,048 inputs to 8 outputs, where most of
the parameters of the model are located) is kept fixed.
This allows us to find good values for the scanpath
network and even allow the model to adapt the spatial
priority network to some degree, while avoiding to
run into overfitting problems in the spatial priority
network. Finally, in Phase 4, the first layer of the
spatial priority network is again included in training
to fine-tune all trainable parameters. For training, the
ADAM optimizer (Kingma & Ba, 2017) was used with
a learning rate schedule specific for each training phase
(see Table 1).

For evaluation and analyses on MIT1003, for each
image, we use the parameters from the cross-validation
fold, which contained this image in the testing split of
the dataset. For evaluation on MIT300, we average
predictions over all cross-validation folds.

For comparison purposes, we also train versions
of DeepGaze III without the spatial priority network
or without the scanpath network, resulting in
image-independent and scanpath-independent baseline
models.

To estimate the effect of random seeds and noise in
training, the full training process was repeated eight
times. All reported model scores are average scores over
the repeated training runs.

Training on the CAT2000 dataset is identical to
training on MIT1003. We make sure that categories are
balanced over cross-validation folds. Due to the larger
dataset, both in terms of image size and number of
fixations, we did not repeat the training multiple times
on the CAT2000 dataset.

Model evaluation

We evaluate models with respect to how well they
predict each fixation of a scanpath given the previous
fixations made by a subject. We treat each fixation in
a scanpath as a decision to saccade to a new image
location, and we evaluate how well each of these
decisions are predicted.

Training phase Dataset Details Initial learning rate Decay epochs

Phase 1 SALICON Scanpath network removed 0.001 15, 30, 45, 60, 75
Phase 2 MIT1003 Scanpath network removed 0.001 3, 6, 9, 12, 15
Phase 3 MIT1003 First layer of spatial priority network fixed 0.001 10, 20, 30, 31, 32
Phase 4 MIT1003 All learnable parameters trained 0.00001 3, 6, 9

Table 1. Learning schedule. For each training phase, we indicate the used dataset, details of what was trained, initial learning rate,
and the epochs after which the learning rate was decayed by a factor of 10. After the last stated epoch, training was stopped.
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For a probabilistic model, this means evaluating
the predicted conditional fixation distribution
p(x, y | x0, y0, . . . , xi−1, yi−1, I ), for example, using
metrics like average log-likelihood. For models that
do not predict a probabilistic fixation distribution,
instead we use the internal priority map (Kümmerer &
Bethge, 2021): All included nonprobabilistic models
build an internal model state over the previous ground
truth fixations of the scanpath. In order to sample the
next fixation, they construct a priority map encoding
which image locations they consider good candidates
for the next fixation and then apply, for example,
winner-takes-all to select the next fixation. The main
difference between conditional fixation distributions
and conditional priority maps is that the latter do not
have to be probability distributions, and fixations might
be selected using a different strategy than probabilistic
sampling from the distribution.

Both conditional fixation distributions and
conditional priority maps can be evaluated using
common saliency metrics. Here, we evaluate AUC
(Judd et al., 2009) and NSS (Zhao & Koch, 2011).
For probabilistic models, we can additionally report
average log-likelihood relative to a uniform baseline
model as “LL” and the information gain, which is
average log-likelihood relative to the center bias baseline
model, as “IG” (Kümmerer et al., 2015b). While IG,
AUC, and NSS are commonly used to predict spatial
fixation prediction models, simply by applying them to
conditional predictions (and consequently evaluating
each conditional prediction only on the one fixation
that actually followed the given fixation history of the
scanpath in question), they become sensitive to how well
the model predicts the dependency between fixations
in a scanpath. See Kümmerer and Bethge (2021) for
an extensive summary of this evaluation method as
well as details about how to apply it to existing models.
We consider log-likelihood the most principled metric
(Kümmerer et al., 2015b) and therefore use it as a main
metric for all our internal analyses of DeepGaze III.
For ranking all included models, which includes
nonprobabilistic models and models trained on other
datasets, we use the AUC metric. The AUC metric is
only sensitive to the rank ordering of the prediction and
therefore penalizes models least for not being optimized
on the same dataset as we are using. Ideally, we would
optimize and evaluate each model with maximum
likelihood as in Kümmerer et al. (2015b), but this is
much more computationally demanding for scanpath
models than for static saliency models.

Many papers on scanpath modeling score the
prediction quality of models by generating scanpaths
from the model and comparing the generated scanpaths
to human scanpaths using scanpath similarity
metrics such as ScanMatch (Cristino et al., 2010) or
MultiMatch (Jarodzka et al., 2010). However, these
metrics can result in unreliable scores. For example,

wrong models can score higher than the ground truth
model even in simple and realistic cases. For this
reason, we do not evaluate scanpath similarity metrics
in the main paper. However, for comparison purposes,
we include model scores for the scanpath similarity
metrics ScanMatch and MultiMatch in the Appendix.
For a much more extensive discussion of scanpath
model comparison as applied here and the problems of
scanpath similarity metrics for the purpose of model
comparison, we refer to Kümmerer and Bethge (2021).

Baseline models

To put the performance scores of models into
perspective, we include several baseline models: The
uniform model predicts fixations to be independently
and uniformly distributed over the image. The center
bias model quantifies how well fixations can be predicted
without knowing the specific image that is being viewed
and models the general tendency to look at the center
of an image (Tatler, 2007). It is a Gaussian KDE
model that uses the fixations of all other images to
predict fixations on a given image and has an additional
uniform regularization component. Its parameters
are chosen for maximum likelihood on the MIT1003
dataset. The spatial gold-standard model is a mixture
of a Gaussian KDE model that uses the fixations of
all other subjects on the same image, the center bias
model, and a uniform model. The underlying intuition
is that fixations will usually be close to fixations of
other subjects. But sometimes, especially due to the
limited data per image, they will be better predicted by
the general viewing tendency encoded in the center bias,
and occasionally, subjects will make seemingly very
random fixations. The parameters of the KDE and the
mixture weights have been selected to reach maximum
likelihood on the MIT1003 dataset with respect to the
leave-one-subject-out cross-validation performance.

Other models

Besides our baseline models, we also compare
several other models of scanpath prediction. We
included models that either reached high performance
in our recent scanpath benchmark (Kümmerer &
Bethge, 2021) or that are interesting in terms of
their architecture, for example, by taking inspiration
from neuroscience. We include the model of Itti and
Koch (1998) using the implementation by Walther
and Koch (2006); the STAR-FC model (Wloka et al.,
2018); the MASC model (Adeli et al., 2017); the
IOR-ROI-LSTM model (Sun et al., 2019); the SaltiNet
model (Assens et al., 2017); the Saccadic Flow model
(Clarke et al., 2017); the model of Le Meur and
Coutrot (2016), which we refer to as “LeMeur16”; the
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SceneWalk model (Schütt et al., 2017), and its 2020
extension (Schwetlick et al., 2020), which we refer to
as “SceneWalk20”; and the CLE model (Boccignone
& Ferraro, 2004). Many scanpath models internally
use a static saliency model to model the effect of scene
content. From the above models, this is the case for
MASC, LeMeur16, SceneWalk, SceneWalk20, and
CLE. To make sure that these models do not suffer
from using a worse saliency model than DeepGaze III,
we use the scanpath-independent baseline version
of DeepGaze III as their internal saliency model.
Schwetlick et al. (2020) provided us with parameters
for SceneWalk that have been fitted on MIT1003. For
CLE, we optimized parameters on a subset of 100
images from MIT1003 for maximum likelihood. For all
other models, we use the original parameters provided
by the authors. See Kümmerer and Bethge (2021) for
more details on implementation and parameters for
each model.

Results

Prediction performance

MIT1003
In Table 2, we show prediction performance

of DeepGaze III, the baseline models, and other
included scanpath models on the MIT1003 dataset.
Results are sorted by AUC since not all models allow
evaluation of average log-likelihood. DeepGaze III
reaches best prediction performance in all metrics. In
log-likelihood, DeepGaze III scores 2.442 bit/fixation.
Compared to the next best scanpath model in terms

of log-likelihood (SceneWalk with 2.082 bit/fixation),
DeepGaze III improves performance substantially
by 0.360 bit/fixation. Interestingly, SceneWalk20
reaches lower performance than the original SceneWalk
model. However, unlike the parameters used for
SceneWalk, the parameters of SceneWalk20 are
fitted on a different dataset than MIT1003. The low
performance of IOR-ROI-LSTM in log-likelihood
and information gain is also surprising given that the
model was trained for maximum likelihood. However,
the model applies a very strong saccadic prior after
training, which results in overly confident model
predictions. In the AUC metric, DeepGaze III reaches
a score of 0.916 compared to 0.901 for the next best
scoring scanpath model CLE. Finally, DeepGaze III
reaches an NSS score of 3.257 compared to 2.699 for
SceneWalk.

Except for the uniform and the center bias baseline
models, the Saccadic Flow model and the version of
DeepGaze III without the spatial priority network
(“DeepGaze III w/o spatial priority”) are the only
image-independent models in our evaluation. Here, the
image-independent version of DeepGaze III improves
the log-likelihood by 0.525 from 1.170 bit/fixation to
1.695 bit/fixation (however, the Saccadic Flow model
has access only to the latest fixation location). We
discuss the different ablated models in more detail
below.

MIT300
In Table 3, we show the performance of

DeepGaze III on the MIT300 holdout dataset from
the MIT/Tuebingen Saliency Benchmark (Judd et al.,
2012; Kümmerer et al., 2018) compared to other

Model LL [bit/fix] IG [bit/fix] AUC NSS

Itti&Koch (with WTA network) 0.473 0.271
Uniform 0.000 −0.906 0.500 0.000
STAR-FC 0.662 0.581
MASC 0.719 1.062
IOR-ROI-LSTM −46.821 −47.727 0.744 0.457
SaltiNet 0.720 −0.186 0.790 1.138
Center bias 0.906 0.000 0.801 1.263
Saccadic Flow 1.170 0.264 0.843 1.603
LeMeur16 0.777 −0.128 0.862 2.336
DeepGaze III w/o Spatial Priority 1.695 ± 0.001 0.789 ± 0.001 0.874 ± 0.000 2.266 ± 0.004
SceneWalk20 1.852 0.947 0.885 2.683
DeepGaze III w/o Scanpath 1.945 ± 0.003 1.039 ± 0.003 0.889 ± 0.000 2.582 ± 0.004
SceneWalk 2.082 1.176 0.900 2.699
CLE 1.841 0.935 0.901 1.437
Spatial Gold Standard 2.120 1.215 0.901 2.853
DeepGaze III 2.442 ± 0.010 1.536 ± 0.010 0.916 ± 0.001 3.257 ± 0.016

Table 2. Prediction performance on the MIT1003 dataset. Italic model names indicate baseline models; bold model names indicate
the models presented in this article. Errors indicate standard deviation over eight repeated training runs. In all metrics, higher scores
indicate better performance. Bold scores indicate best performance for that metric. Models are sorted by AUC.
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Model LL [bit/fix] IG [bit/fix] AUC NSS

Saccadic Flow 1.070 0.287 0.835 1.491
LeMeur16 (DG2) 0.581 −0.201 0.850 2.123
DeepGaze II 1.724 0.942 0.873 2.337
CLE (DG2, finetuned) 1.686 0.904 0.888 1.490
SceneWalk (DG2, finetuned) 1.923 1.141 0.890 2.530
DeepGaze III 2.248 1.466 0.906 2.957

Table 3. Prediction performance on the MIT300 (holdout) dataset of the MIT/Tuebingen Saliency Benchmark. For comparison, we
include the top-performing models as evaluated on MIT300 in Kümmerer and Bethge (2021). Where applicable, we indicate in
parentheses which static saliency model a scanpath model used (DG2=DeepGaze II) and whether original model parameters were
finetuned for MIT1003. In all metrics, higher scores indicate better performance. Bold scores indicate best performance for that
metric. Models are sorted by AUC.

state-of-the-art models. Model scores of other models
are as reported by Kümmerer and Bethge (2021). As
on MIT1003, DeepGaze III sets a new state-of-the-art
on MIT300 in all metrics. Compared to the best other
model (SceneWalk using DeepGaze II as saliency
model), DeepGaze III increases average log-likelihood
by 0.325 bit/fixation from 1.923 bit/fixation to 2.248
bit/fixation and AUC by 0.016 from 0.890 to 0.906.
The performance gain compared to previous models is
very similar on MIT1003 and on MIT300, indicating
that DeepGaze III is not overfit to MIT1003 in
training.

CAT2000
In Table 4, we report model performance on the

CAT2000 dataset. Model scores of other models
are as reported by Kümmerer and Bethge (2021).

DeepGaze III sets a new state of the art in all reported
metrics with a log-likelihood of 3.064 bit/fixation,
AUC of 0.932, and NSS of 5.106. The next best other
model in all metrics is the CLE model (LL = 2.581
bit/fix, AUC = 0.915, NSS = 3.453). Compared to
this model, DeepGaze III increases log-likelihood
by 0.483 bit/fixation, AUC by 0.017, and NSS by
1.653. While especially the performance gains in
log-likelihood and NSS are larger than on MIT1003,
this should not be overinterpreted. On MIT1003, we
could compare to some models fitted on the same
dataset, while this is not the case for CAT2000: The
SceneWalk model, which was the best model except
for DeepGaze III on MIT1003 and MIT300, drops by
several ranks on CAT2000 (LL = 1.806 bit/fix, AUC =
0.853, NSS = 2.708). On MIT1003 and MIT300, we
could use model parameters trained on MIT1003 for
SceneWalk, but for CAT2000, we had to resort to the
published model parameters, which have been fitted on

Model LL [bit/fix] IG [bit/fix] AUC NSS

Itti&Koch (with WTA network) 0.379 −0.003
Uniform 0.000 −1.439 0.500 0.000
STAR-FC 0.610 0.303
MASC (DG2) 0.676 0.835
IOR-ROI-LSTM −53.386 −54.825 0.687 0.222
SaltiNet 0.918 −0.521 0.823 1.329
SceneWalk20 (DG2) 1.412 −0.027 0.844 2.806
LeMeur16 (DG2) −0.700 −2.139 0.844 1.711
Center bias 1.439 0.000 0.849 2.156
SceneWalk (DG2) 1.806 0.367 0.853 2.708
DeepGaze III w/o Scanpath 1.803 0.364 0.880 2.420
Spatial Gold Standard 1.882 0.443 0.885 2.517
Saccadic Flow 1.721 0.282 0.907 2.199
CLE (DG2) 2.581 1.142 0.915 3.453
DeepGaze III w/o Spatial Priority 2.880 1.441 0.922 4.975
DeepGaze III 3.064 1.625 0.932 5.106

Table 4. Prediction performance on the CAT2000 dataset. Italic model names indicate baseline models; bold model names indicate
the models presented in this article. Performance scores of other models are as evaluated on CAT2000 in Kümmerer and Bethge
(2021). Where applicable, we indicate in parentheses which static saliency model a scanpath model used (DG2=DeepGaze II). In all
metrics, higher scores indicate better performance. Bold scores indicate best performance for that metric. Models are sorted by AUC.
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a different dataset. This most likely explains the drop
in performance of SceneWalk. The image-independent
version of DeepGaze III (“DeepGaze III w/o spatial
priority”) improves the log-likelihood compared to the
image-independent Saccadic Flow model by 1.159 from
1.721 bit/fixation to 2.880 bit/fixation.

Scanpath statistics

Human scanpaths exhibit a range of well-known key
statistical properties, such as the distribution of saccade
amplitudes, tendencies toward horizontal and vertical
saccades, and dependencies between consecutive
saccade directions (see, e.g., Tatler & Vincent, 2008,
2009; Smith & Henderson, 2009; Wilming et al., 2013;
Rothkegel et al., 2016). In order to check how well
DeepGaze III reproduces these statistical properties,
for each scanpath of our ground truth human scanpath
data, we sampled a new scanpath from DeepGaze III
on the same image, starting with the same initial
fixation and up to the same length. The same process
was repeated for the models CLE, IOR-ROI-LSTM,
LeMeur16, MASC, Saccadic Flow, SceneWalk, and
STAR-FC. Since some of the statistical properties
such as saccade direction could be partially explained
purely by the spatial distributions of salient objects in
the image, we also included our spatial baseline model
(DeepGaze III without scanpath network). We then
compared how well the sampled scanpaths matched
the ground truth data with respect to the distribution
of saccade amplitudes, saccade directions, angle
between saccades, and autocorrelation between saccade
amplitudes. The results are shown in Figure 3.

In Figures 3a,b, we show the distribution of saccade
amplitudes. The empirical data show a strong peak
at around 2 degree of visual angle (dva) and then
slowly decays until around 20 dva. DeepGaze III
matches this distribution nearly perfectly. The CLE
model has a quite similar distribution, but due to the
nature of the Levy flight, the peak is close to zero. The
SceneWalk model matches the heavy tail quite well but
fails to reproduce the sharp peak. Most other models
have either a tendency toward too short or too long
saccades.

In Figures 3c,d, we show the distribution of saccade
directions. The empirical data show a strong tendency
toward horizontal and also to some degree toward
vertical saccades. DeepGaze III reproduces the trend
toward horizontal saccades quite well, but the tendency
toward vertical saccades is a bit too small. Already,
the purely spatial version of DeepGaze III shows the
effects to a certain extent due to the alignment of
salient objects in images. The IOR-ROI-LSTM model
reproduces the qualitative distribution quite well since
empirical saccade direction biases are an explicit part
of the model. However, quantitatively, the effects are

too strong. The SceneWalk model shows the effects, but
the horizontal peaks are smaller and wider.

In Figures 3e,f, we show the distribution of angles
between saccades. The empirical data show a strong
tendency toward angles of 0◦ and 180◦, corresponding
to either making two saccades in the same or in
opposite directions. DeepGaze III reproduces both
peaks, especially the one at 180◦. The peak at 0◦ is not
strong enough. SceneWalk and CLE reproduce only the
effect of antiparallel saccades. IOR-ROI-LSTM and
STAR-FC reproduce the effects qualitatively, but much
too strong.

In Figures 3g,h, we show the autocorrelation between
saccade amplitudes in scanpaths. The empirical data
show that the amplitude of two consecutive saccades
is anti-correlated with a correlation coefficient of
approximately −0.2 and that this correlation slowly
decays for later saccades. This shows that long saccades
are often followed by short saccades and vice versa.
DeepGaze III and IOR-ROI-LSTM reproduce this
effect very precisely. CLE shows the effect nearly as well.
DeepGaze III without scanpath network does not show
the anticorrelation of consecutive saccade amplitudes,
suggesting that the placement of salient objects is not
enough to explain the effect.

In Figure 4a, we show the two-dimensional
distribution over saccade vectors. The empirical data
show a strong tendency toward horizontal saccades with
an amplitude of about 2 dva. DeepGaze III reproduces
this effect, but the two peaks for left and right saccades
are less peaked. The distribution for CLE is very peaked
due to the nature of the underlying Levy flight, where
saccade amplitudes follow a Cauchy distribution. The
distribution for STAR-FC is also very peaked since
the model usually produces a very short saccade after
each longer saccade. IOR-ROI-LSTM shows two
pronounced peaks for left and right saccades, but they
correspond to saccade amplitudes of approximately 6
dva compared to around 2 dva in the empirical data.
LeMeur16 captures the tendency toward horizontal
and vertical saccades quite well, but shows a tendency
toward too short saccades.

Finally, we checked how well DeepGaze III and other
models capture the dependency between consecutive
saccades with respect to saccade amplitude and saccade
angle (Figure 4b; Rothkegel et al., 2016). We rescaled
and rotated all saccades such that the previous saccade
is a rightward saccade of unit length (red arrow)
and visualized the distribution of resulting saccade
landing points (heatmap). The empirical data show that
saccades mostly go roughly in the same direction as the
previous saccade but have a much shorter amplitude.
These saccades could be either saccades to a close-by
area of the same object after a long saccade from
another object to this object, or they could be corrective
saccades (Becker & Fuchs, 1969; Bahill & Troost,
1979; Lisi et al., 2019). There is, however, also a very
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Figure 3. We inspect how well different models reproduce several statistical properties of human scanpaths. For better visibility, we
distribute models over two subplots with the top-performing scanpath models on the left. (a, b) Saccade amplitude. (c, d) Saccade
direction. (e, f) Angle between saccades. (g, h) Autocorrelation between saccade amplitudes in scanpaths. DeepGaze III w/o SPN =
DeepGaze III without scanpath network. Error bars indicate bootstrapped 95% confidence intervals for the mean. In subplots a to f,
they are so small that they would be invisible or barely visible.
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Figure 4. (a) Distribution of saccades in x and y direction for human scanpath data (empirical) and data sampled from scanpath
models. (b) Distribution of next fixation relative to last saccade (red arrow). DeepGaze III w/o SPN = DeepGaze III without scanpath
network.

pronounced effect of return saccades: A substantial
number of saccades go very precisely back to the
location where the previous saccade started (Wilming
et al., 2013). DeepGaze III reproduces this distribution
quite well, although both the return saccade effect and
the effect of shorter saccades in a similar direction are
more scattered than in the empirical data. SceneWalk
shows only a subtle effect of shorter saccades in a
similar direction but has an even too strong tendency to
return to the previous fixation position (which might be
mainly saliency driven, since the scanpath-independent
baseline model shows the same effect). For STAR-FC,
we see a very strong peak a the end of the last saccade.

This is again because STAR-FC tends to make an
extremely short saccade after each longer saccade.
LeMeur16 seems to capture the distribution nearly as
well as DeepGaze III, but the tendency to make return
saccades seems to be too strong and additionally there
is a tendency toward making saccades in the return
direction but of smaller amplitude than the last saccade.

Qualitative analysis

In Figure 5, we show model predictions for three
example scanpaths. For each scanpath, we first show the
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Figure 5. Model predictions for example scanpaths. For three scanpaths (a, b, c), we show model predictions. In each subpanel, the
first image shows the viewed image with the scanpath overlaid. Subsequent plots left to right show model predictions for the first
free fixation, the second free fixation, and so on. In each prediction, we show the scanpath history so far (red arrows), the current
gaze position (red circle), and the following saccade (cyan dashed arrow), which the model is supposed to predict. Contour lines
visualize the four quantiles with 25% probability mass each.

viewed image with the subject’s scanpath superimposed.
The subsequent plots show for each fixation of the
scanpath the model predictions and are superimposed
with the scanpath history so far (red arrows) and the
next saccade that the model has to predict (cyan arrow).

The figure shows that that model predictions
strongly depend on the previous scanpath history:
DeepGaze III has learned it is useful to take the
previous scanpath history into account to make
more precise predictions. DeepGaze III predicts that

usually the next fixation will be not too far from the
current fixation; however, it considers long saccades to
high-level objects or otherwise interesting content still
as possible. Furthermore, the predictions overall appear
quite correct as far as it can be judged from those
few samples: In most cases, the next fixation is within
the nonyellow area, which visualizes the pixels with
highest probability, which sum up to a total probability
mass of 75% and therefore should contain 75% of all
fixations.
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Figure 6. Case studies. (a) Images where DeepGaze III’s log-likelihood most improves over the static baseline model. Qualitatively,
scanpath information most improves predictions in capturing the distribution of short saccades, particularly when text is present.
(b) Images where the static baseline model has a performance similar to DeepGaze III. Scanpath information seems to be less
predictive when scenes are either landscapes or contain multiple small salient objects, where observers make long saccades between
these objects. Note that both models miss significant scanpath structure in some images, indicating there is still room for improving
DeepGaze III. Numbers to the left indicate the log-likelihood difference between DeepGaze III and the static baseline model. The
three columns next to each image show the ground truth scanpaths, scanpaths that have been sampled from the static baseline
model, and scanpaths that have been sampled from DeepGaze III.

Finally, we present “case studies” of images for
which scanpath history matters most or least compared
to static saliency. Specifically, we hand-selected
qualitatively interesting images from the top and
bottom 20 images where DeepGaze profits most or
least from having access to the scanpath history, by
comparing the prediction performance of our static
baseline model and the full DeepGaze III model on
individual images. In Figure 6a, we show some of the
images where DeepGaze III’s log-likelihood improves
most over the static baseline model. Several of these
contain many short saccades (e.g., due to subjects
reading text). The static baseline model cannot capture
this effect, resulting in substantially worse performance
than DeepGaze III. In Figure 6b, we show some of
the images where DeepGaze III’s log-likelihood is
worst compared to the static baseline model. Scanpath

information seems to be less predictive when scenes
either contain multiple small salient objects, where
observers make long saccades between these objects,
or when they contain just one salient object, resulting
in mostly extremely short saccades. However, the
scanpaths sampled from the models indicate that
for these images, both models still miss parts of
the scanpath structure. The missing patterns seem
mainly to be due to missing salient objects such as
the most relevant text in an image, but partially also
due to missing patterns in the sequence of fixations.
DeepGaze III also seems to be underconfident,
assigning too much likelihood to the background.
Although visual comparisons of scanpaths on single
images should not be overinterpreted (Kümmerer &
Bethge, 2021), these examples show that there is still
room for improving DeepGaze III.
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Figure 7. Effect of image content and scanpath dependency order on prediction performance on the MIT1003 dataset. (a) We trained
versions of DeepGaze III that either have access to image content via the DenseNet backbone or do not have access to image content
and that have access to zero, one, two, three, or four previous fixations. We show prediction performance in average log-likelihood.
(b) By increasing the dimensionality of the internal spatial priority map from one to higher, DeepGaze III can capture nontrivial
interactions between scene content and scanpath history. We show prediction performance for models with different
dimensionalities of the spatial priority map for both the purely spatial baseline (light green) and the full scanpath model (dark green).
(c) Zoomed-in view of the performances of the spatial baseline models. (d) Zoomed-in view of the performances of the full scanpath
models. All error bars are bootstrapped 95% confidence intervals for the mean log-likelihood per image using the normalization
method of Cousineau (2005) for paired comparisons with the correction of Morey (2008).

Effect of image content and scanpath
dependency order

DeepGaze III combines information about the image
content with information about up to four previous
fixations. In order to assess how relevant these different
kinds of information are, we trained versions of the
model without access to part of the information. We
removed the information about image content by
replacing the output of DenseNet with a single constant
feature map. We removed the information about
previous fixations by feeding fewer feature maps to the
scanpath network (only information about the last three
or two fixations or only about the last fixation) or by
removing the scanpath network altogether (essentially
converting the model into DeepGaze II). In the extreme
case (no image information, no scanpath information),
the model reduces simply to the center bias. In
Figure 7a, we show how much these ablations affected
prediction performance. Having access to image
content in a static model improves performance from

0.91 bit/fix by 1.04 bit/fix to 1.94 bit/fix. Furthermore,
adding information about the scanpath history with
up to four previous fixations increases performance
by 0.50 bit/fix to 2.44 bit/fix. On the other hand,
adding scanpath information to the center bias model
increases performance by 0.79 bit/fix to 1.69 bit/fix.
When having access to image content, most additional
information about scanpath history is added by the
current fixation (0.35 bit/fix). The second to last fixation
adds with 0.12 bit/fix already much less information,
and the contribution of the earlier fixations is hardly
measurable (0.02 bit/fix and 0.01 bit/fix)

When not having access to image content, each
additional previous fixation adds more information
and even the third to last and fourth to last fixations
still add some information (0.05 bit/fix and 0.03
bit/fix). However, this is to be expected: In the
absence of image information, previous fixations
can be used to approximate the missing spatial
priority map and therefore improve the prediction
performance.
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Figure 8. Effect of image content and scanpath dependency
order on prediction performance on the CAT2000 dataset. We
trained versions of DeepGaze III that either have access to
image content via the DenseNet backbone or do not have
access to image content and that have access to zero, one, two,
three, or four previous fixations. We show prediction
performance in average log-likelihood. All error bars are
bootstrapped 95% confidence intervals for the mean
log-likelihood per image using the normalization method of
Cousineau (2005) for paired comparisons with the correction of
Morey (2008).

The fact that prediction performance of the image
content-aware model does not increase after two
previous fixations suggests that saccades returning to a
previous fixation location that was not fixated directly
before are not driven by fixation history but only by
spatial priority.

Taken together, these results indicate that under
the experimental conditions of the MIT1003 dataset,
scene content has a stronger effect on fixation selection
than previous scanpath history (though both are
important). Furthermore, the current fixation position
seems to have a much stronger effect than the previous
fixation position, and earlier fixation positions have
next to no influence. The strong effect of the current
fixation position might be expected since some of the
most prominent scanpath properties, such as saccade
amplitude and direction distributions, depend only on
the current fixation position. The next to inexistent
effect of fixations earlier than last two fixations is more
interesting: It shows that effects like (spatial) inhibition
of return or excitation of return are already completely
decayed after two fixations. This is in contrast to how
inhibition of return is handled in many scanpath
models (e.g., Itti et al., 1998; Adeli et al., 2017; Wloka
et al., 2018; Xia et al., 2019).

We also evaluated model performance as a function
of dependency order on the CAT2000 dataset
(Figure 8). As in MIT1003, we again see that the last
two fixations are most relevant in terms of scanpath
dynamics. However, unlike on MIT1003, the effect
of image content is much smaller (0.36 bit/fix from
the static image-independent model to the static

image-dependent model) than the effect of scanpath
history (1.44 bit/fix from the static image-independent
model to the image-independent model of order 4).

There are a number of likely reasons for these
differences: Compared to the natural scenes in
MIT1003, some categories of CAT2000 either have
many salient areas (satellite images) or might be
visually not very informative (fractal, noisy, pattern,
low resolution). In these cases we expect image content
to constrain fixation placement less strongly than
on MIT1003. This expectation is confirmed when
comparing model performances per category (see
Appendix, Table 7): The performance difference
between the center bias and the model without access
to scanpath history (i.e., only with access to image
content) for these categories is less than 0.2 bit/fix,
while categories closer to the MIT1003 dataset (e.g.,
Outdoor, Social, Action) show values up to 0.6 bit/fix.
However, even this is still substantially smaller than in
the MIT1003 dataset.

Differences in the experimental setup are the most
likely explanation for the remaining differences: the
stimuli in CAT2000 are substantially larger (diagonal
of about 55 dva) than the stimuli in MIT1003 (diagonal
about 35 dva). Therefore, constraints such as saccade
length distribution restrict possible saccade landing
locations much more than in MIT1003, resulting in a
higher contribution of scanpath history. Additionally,
presentation time in CAT2000 is longer than in
MIT1003, and subjects might have enough time to also
explore image areas with less interesting content. The
larger stimulus size is also the likely source for the much
stronger center bias in the CAT2000 dataset (1.44 bit/fix
compared to 0.91 bit/fix for MIT1003). The relatively
small gap between the model performances for order
1 in Figure 8 is most likely a result of training noise.
Unlike for MIT1003, we could not afford to train each
model multiple times on the much larger CAT2000
dataset.

Interactions between scene content and
scanpath history

Most scanpath models assume the existence of
some kind of saliency map that encodes the relevance
of each image region into a single scalar value. This
saliency information is then combined with information
about the previous scanpath history (e.g., via inhibition
of return) to select future fixation locations. The
model architecture of DeepGaze III also makes this
assumption, because all image information is encoded
into a single spatial priority map before combining
the spatial priority map with the scanpath history (see
Figure 2). However, this is a strong assumption, because
the model cannot capture nontrivial interactions
between scene content and scanpath history. For
example, consider the hypothetical possibility that
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simpler image features (luminance and color contrast)
are more important for determining the next eye
movement after a long saccade is completed, but
complex image features (objects) are more important
after short saccades. Capturing this dependency is
impossible in the single spatial priority map version
of DeepGaze III, because the image features are
inaccessible to the scanpath network behind the
single-channel bottleneck and cannot be reweighted.

We can test whether the MIT1003 dataset provides
evidence for such complex interactions by relaxing this
bottleneck assumption in DeepGaze III. If we give
the internal spatial priority map multiple channels, the
model can compute multiple spatial priority maps and
then use the scanpath history to combine them. This
would allow the model to capture nontrivial interactions
such as the one described above. We therefore trained
multiple versions of DeepGaze III where the internal
spatial priority map is of different dimensionality, from
the standard single-channel spatial priority map up to
eight channels. Except for this difference, the model
architecture and training paradigm were identical.

In Figures 7b–d, we show results for this experiment.
Figure 7b shows that the overall model performance is
close to 2.45 bit/fix independent of the dimensionality
of the spatial priority map, compared to 1.95 bit/fix
for the scanpath-independent version of the model.
In Figure 7c, we zoom into the performances of
the scanpath-independent models and see that the
log-likelihood remains essentially flat from spatial
priority of dimensionality 2 and higher, and all change
is very small in scale, less than 0.01 bit/fix. This is an
important control condition: If performances would
clearly increase with spatial priority dimensionality for
the scanpath-independent models, this would suggest

that the spatial priority network is not powerful enough,
because with higher spatial priority dimensionality,
image information leaks into the fixation selection
network where it can be used to improve the final
spatial priority map. In Figure 7d, we zoom into the
performances of the scanpath-dependent models.
Here, the results appear quite different: There is a
clear increase in performance with increasing spatial
priority dimensionality. This indicates there are indeed
some nontrivial interactions between scene content and
scanpath history. However, as can be seen in Figure 7b,
these interactions have only marginal effects on fixation
selection compared to the simple, spatial priority-based
effect that we already see with a one-dimensional spatial
priority map.

Identifying different contributions to the center
bias

There is a well-known tendency to fixate closer to the
center of an image, the center bias. The center bias can
be partially explained by the fact that photographers
often tend to put objects in the center of the image
(photographer bias). Besides that, depending on
the dataset, part of the center bias can stem from
a combination of the initial central fixation and a
limited presentation time: Since we tend to make short
saccades, early fixations will be close to the image
center. However, it is known that these factors do not
explain the observed center bias to its full extent (Tatler,
2007). The architecture of DeepGaze III allows us
to disentangle the observed center bias into different
contributions. DeepGaze III combines the output
of the readout networks with the provided overall

Figure 9. Decomposing the center bias: DeepGaze III has access to the overall center bias of MIT1003. Part of the center bias can be
explained by photographer bias as well as by the combination of initial central fixation and limited presentation time; therefore, the
model can learn to downweight the overall center bias. (a) For models with access to scanpath history, image content, or both, we
show which percentage of the center bias is explained away. Error bars indicate the distribution over eight training runs. (b) From the
percentage of center bias explained away by the different models, we can decompose the overall center bias of the dataset into
contributions from the initial central fixation, from the image content and a remaining bias to fixate closer to the center of the image
independent of image content and scanpath history. Some part of the center bias can be explained by both image content and
scanpath history, which is why the separation line between them is not horizontal.
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center bias but can learn to downweight the center bias
contribution. Therefore, it can account for the fact
that it might be able to explain part of the center bias
from the image content or the previous fixations. By
comparing the learned center bias weights for different
instances of DeepGaze III that have access to scanpath
history, image content, or both, we can quantify how
much photographer bias and initial central fixation
contribute to the center bias in our dataset. The results
are visualized in Figure 9a. We find that the dependency
on previous fixations explains 22.6% ± 2.1% of the
overall center bias. The image content on its own
explains 30.8% ± 1.1%. Scanpath history and image
content together explain 43.8% ± 2.5% of the full
center bias. This number is smaller than the sum of
the individual percentages for image content and
scanpath history, respectively: Apparently, the parts
of the center bias explained by the two individual
models are not completely disjoint. A part of 9.6%
(22.6% + 30.8% − 43.8%) of the center bias can be
explained both by image content or scanpath history;
our data are inconclusive on this point. This is likely at
least partially due to the fact that the scanpath history
also contains information about the salient image
regions and therefore about the image-driven center
bias. In this case, image content would be the actual
source of that part of the center bias. Finally, about
60% of the overall center bias cannot be explained
by image content or the initial central fixation but
seems to reflect purely a preference to fixate closer to
the center of the image (or screen). This analysis of
different contributions to the center bias is visualized in
Figure 9b.

Predictability over time

DeepGaze III assumes that the placement of the
next fixation only depends on a limited number of
previous fixations and that this dependency does not
change over the course of a scanpath. Obviously, this is
a simplification that will not hold perfectly.

In Figure 10, we show prediction performance
in log-likelihood as a dependency of how early or
late the predicted fixation occurs in a scanpath. For
the full DeepGaze III model, log-likelihood decays
substantially until the third fixation, after which the
decays continues much slower. This means that earlier
fixations can be better predicted than later fixations.
Multiple reasons could explain this effect: First, it
might be that earlier in the viewing progress, we first
scan only the most salient objects. Second, it could be
that over the course of the scanpath, the dynamics of
the scanpath change (e.g., that we start to make longer
saccades). Finally, it is well known that the observed
center bias decays over time (e.g., Koehler et al., 2014).

Figure 10. Prediction performance of MIT1003 depending on
fixation index, starting with the first free fixation. We show
prediction performance as log-likelihood in bit/fixation as a
function of the index of fixations in the scanpath, for the full
DeepGaze III model as well as ablated models without access to
scanpath history, image content, or both (i.e., the center bias).
The results suggest that subjects scan central-most salient
areas in the first fixation, then the most salient areas all over
the image in the second fixation, and then scan increasingly less
salient areas while at the same time becoming slightly more
predictable in terms of scanpath dynamics. The part of the
central fixation bias that is not dependent on image content
seems to stay constant over the course of the scanpath (see
main text). Error bars are bootstrapped 95% confidence
intervals for the mean log-likelihood per image using the
normalization method of Cousineau (2005) for paired
comparisons with the correction of Morey (2008).

However, it is not clear whether this also applies to
“remaining center bias” (see previous section), that
is, the part of the center bias that is not explained by
image content or scanpath dynamics and the initial
central fixation.

To distinguish between these possibilities, we also
look at the performance of the ablated models, in which
we remove access to scanpath history, image content,
or both (Figure 10, nonsolid lines). We find that both
the center bias model and the scanpath-independent
model show a similar decay in log-likelihood as the full
model. However, the model without access to image
content shows relatively constant performance over
time. This suggests that neither the dynamics of the
scanpath nor the “remaining” or dynamic dependent
part of the center bias change substantially over time.
Therefore, the decay in prediction performance in
the other three models has to be explained by image
content: In the first fixation, subjects seem to scan
high-salience image areas that are also close to the
image center (hence the high performance of the center
bias model and both image-dependent models). In
the second fixation, subjects still seem to scan very
high-salience images, but they can be anywhere in
the image (the image-dependent models still have
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high performance, but the center bias model already
decayed mostly to the performance for the remaining
fixations). From the third fixation on, the full model still
decreases slowly in performance, but slower than the
scanpath history-dependent model. This suggests that
now subjects start to look at increasingly less salient
image areas, but at the same time, the dynamics of the
scanpath become more predictable. The last hypothesis
is also supported by the fact that the image-independent
model gains slightly in performance starting with the
third fixation: Subjects seem to deviate from the usual
scanpath dynamics in the first two fixations in order to
reach high-salience image areas.

Taken together, we find that observers seem to
explore the image in two phases. There is an initial
phase of two to three fixations where high-saliency
objects are scanned, starting with those close to the
image center and then all over the image. In this phase,
image content is substantially more important than
scanpath history. After the initial phase, subjects look
at increasingly lower-saliency image regions and the
saccades are now more driven by the scanpath history.
One might expect that after the first few fixations,
scanpath history becomes more relevant than image
content, simply because there is more scanpath history
to use. However, interestingly, the more prominent
effect is the decrease of the influence of image content,
while the effect of scanpath history stays close to
constant.

These results confirm and extend an earlier analysis
by Schütt et al. (2019), which focused only on the spatial
fixation distribution without taking scanpath history
into account.

Discussion

We presented DeepGaze III, a new deep learning–
based model for predicting human scanpaths when
free-viewing natural images. DeepGaze III combines
information about image content produced by deep
neural networks trained on object recognition with
information about previous fixations a subject made to
predict where the subject might fixate next. Trained on
human scanpath data, DeepGaze III sets a new state
of the art, explaining 2.442 bit/fixation compared to
a uniform baseline model on the MIT1003 dataset,
2.248 bit/fixation on the MIT300 dataset, and 3.064
bit/fixation on the CAT2000 dataset. Besides achieving
high prediction performance, DeepGaze III also
captures many key statistical properties of human
scanpaths such as a tendency toward horizontal and
vertical saccades or a tendency to make return saccades.

While DeepGaze III is a deep learning model that is
optimized for prediction performance, it uses a modular
architecture consisting of a spatial priority network, a

scanpath network, a fixation selection network, and a
center bias. This allowed us to conduct several ablation
studies and quantify the relevance of different parts
of the input data. For example, in our main dataset,
scene content has a stronger effect on fixation selection
prediction than previous scanpath history (though
both are important). In addition, the effect of scanpath
history in free-viewing tasks comes mostly from the
current fixation position and only to a much smaller
part from the last fixation position.

We suggest that these kinds of conclusions would
be difficult to draw from classic mechanistic models.
Because these models are comparatively highly
capacity limited and often inflexible, it is difficult
to draw conclusions about the overall importance
of, for example, scene content and scanpath history
from model performances or ablations alone. Is poor
predictive performance because those sources of
information or behavior are unimportant, or because
the particular mechanism instantiated in the model is
the wrong way to capture that information? On the
other hand, neural networks are universal function
approximators. This means that they can extract all
complex and hidden patterns from the data (if the
model is complex enough) and therefore estimate how
well scanpaths can be predicted, for example, from
scene content, scanpath history, or both, in a given
dataset.

Therefore, we argue that deep learning allows
models like DeepGaze III to stand in as a proxy for
the empirical densities or gold-standard models that
are used in spatial fixation prediction to estimate the
achievable performance (Kümmerer et al., 2015b).
Since scanpaths are high-dimensional, the empirical
scanpath distribution for a given image cannot be
estimated using, for example, a KDE without immense
amounts of data. Here, DeepGaze III provides a
lower (but reasonably high) bound on the amount
of explainable information in human free-viewing
scanpaths. This allows one to put the prediction
performance of mechanistic models in perspective and
quantify how relevant the proposed mechanisms are for
predicting the fixation selection process as a whole. The
mechanisms proposed by models such as SceneWalk,
which are founded in results from neuroscience and
psychophysics, are able to account for about 28% of
the information gain between spatial baseline model
and full model. Given that DeepGaze III is only a
lower bound on the explainable information gain, this
suggests that there are substantial additional effects at
play that are so far not fully understood (see also the
failures to capture scanpath structure in Figure 6b).

Our analysis of the possible interactions between
scene content and scanpath history provides another
example of the contributions that deep learning can
provide for vision science. Many existing scanpath
models strongly constrain the possible interactions
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between scene content and scanpath history by first
computing a saliency map from the image, which is then
used to select the next fixation position (e.g., SceneWalk,
MASC, and CLE), whereas some models do not
implement a saliency map at all (e.g., IOR-ROI-LSTM).
However, these models differ in many additional
aspects, making it difficult to draw general conclusions
about the value of a saliency map. We were able to
show that, at least for the analyzed dataset, most of the
predictive power of interactions between scene content
and scanpath history can be captured by a single scalar
saliency (or, as we call it, spatial priority) measure. This
provides support for the hypothesis of a unified scalar
saliency map for guiding gaze position, at least under
free-viewing conditions. This is not to say that a single
saliency map or priority map, which integrates all ways
in which scene content affects fixation selection, must
be represented in the brain. Under more naturalistic
or task-driven viewing conditions, we very well expect
there to be complex interactions between scanpath
history and scene content (for example, in sequential
searching for single or multiple targets; Hoppe &
Rothkopf, 2019; Wolfe, 2021). Even for free-viewing
conditions, we see some subtle but measurable effects
that cannot be explained by a single spatial priority map
(Figure 7d). We leave exploring them in more detail for
future work. For the presented analysis, it is important
that we can assume that our different models pick
up on all relevant structure in the data except for the
constraints that we intentionally build into the models,
such as a single-channel spatial priority map. This is
exactly what deep learning methods can provide.

Another implication from our single- versus
multichannel spatial priority analysis concerns the
difference between retinotopic and spatiotopic saliency.
Some models (e.g., STAR-FC; Wloka et al., 2018)
implement saliency maps as retinotopic, in the
sense that different image features determine what
is salient depending on the distance to the fovea. In
the DeepGaze III architecture, modeling this type of
dependency would require multiple spatial priority map
channels. Each spatial priority channel would compute
a spatial priority value for a certain distance to the
fovea. The fixation selection network has access to the
distance to the last fixation and could use it to select the
corresponding spatial priority channel for each pixel,
creating a retinotopic spatial priority prediction over
the whole image. The fact that multiple spatial priority
channels do not perform substantially better than a
single-channel spatial priority map therefore implies
that the distance to the fovea plays only a minor role
for guiding free-viewing gaze on average. Rather, the
spatial priority of image locations in this dataset can be
expressed as a scalar value that does not depend directly
on the current location of the viewer’s fovea—that is,
DeepGaze III’s spatial priority map is spatiotopic.
Note that this conclusion may not hold for the first one

or two fixations of a scanpath, before the viewer has
a scene gist (Schütt et al., 2019), and also should not
be taken to imply that a spatial priority map must be
spatiotopically implemented in the brain.

In this article, we usually avoid the term “saliency”
due to it is ambiguity. Especially in the computer
vision literature, it commonly refers to all image-driven
effects on gaze placement—whether described by
simple or more complex features. This notion should
be distinguished from the classic notion of saliency
from psychology, which implies that features attracting
attention consist of contrast and pop-out in simple
image feature spaces such as luminance, color, or
orientation. We have explored differences in fixation
prediction between simple and more complex features
previously (Kümmerer et al., 2017). In accordance
with Zelinsky and Bisley (2015) and also other work
by us (Kümmerer & Bethge, 2021), for our model,
we here use the term “spatial priority” to denote all
image-driven (and potentially task-modulated) effects
on gaze placement.

Many scanpath models employ an explicit internal
state representation that evolves over a scanpath and
influences future fixation placement (e.g., Schütt et al.,
2017; Sun et al., 2019; Yang et al., 2020). We specifically
chose not give our model such an internal state
representation. An internal state is a crucial component
for a model that aims to implement a biologically
plausible fixation selection mechanism. However, this is
not what we try to achieve here. In this article, we are
interested in predicting human scanpath behavior as
well as possible and in understanding the relevance of
different factors and interactions on fixation placement.
An internal state would make many of the ablation
studies that we conducted in this study impossible, for
example, measuring how relevant earlier fixations are
for gaze placement (Figure 7a).

Outlook

Besides the analyses that we have presented here, we
envision that DeepGaze III might enable interesting
future research. For example, there might be effects
present in the fixation selection process that are quite
hard to find by analyzing scanpath data by hand. Deep
learning might be able to pick up on such effects. While
the model itself is not completely interpretable, it can be
used to screen large datasets for interesting predictions
where, for example, the predictions of DeepGaze III
differ most from state-of-the-art mechanistic models
such as SceneWalk. This can then inform new
hypotheses about which effects might affect fixation
selection. This approach for utilizing DeepGaze III is
already the subject of ongoing work.

DeepGaze III so far uses information about only the
previous four fixation locations of the scanpath history.
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Our analyses suggest that, at least for our datasets,
this is enough to capture the most prominent effects
of previous fixation locations. Nevertheless, at least
for some tasks, most likely there are also effects from
earlier fixation locations, and it would be worthwhile to
extend DeepGaze III in a way that allows one to use
these fixation locations. Recurrency might be a way to
achieve this.

Besides fixation locations, fixation durations are
also known to affect the selection of future fixation
locations (Laubrock et al., 2013; Tatler et al., 2017;
Nuthmann, 2017). So far, only few models such as
SceneWalk and IOR-ROI-LSTM incorporate them,
and we are planning on extending DeepGaze III to also
make use of fixation duration information. This would
allow us to quantify the relevance of fixation durations
for fixation selection.

Although DeepGaze III performs better than
all other models evaluated here, the model still has
limitations. Figure 3 shows that DeepGaze III does
not reproduce all statistical properties of scanpaths
perfectly, and Figure 6b shows several failures to
capture scanpath patterns in individual images. These
limitations are most likely an effect of the readout
architecture, which could not be made more powerful
without creating overfitting issues on the present
datasets. Larger datasets will make training even more
powerful models feasible, allowing us an even more
detailed picture of the different effects we analyzed here.

Finally, all analyses conducted here made use of
free-viewing human scanpaths. Task and meaning are
known to heavily influence viewing behavior (Yarbus,
1967; Land & Hayhoe, 2001; Rothkopf et al., 2007;
Henderson, 2003; Öhlschläger & Võ, 2017), and we
consider applying DeepGaze III in non-free-viewing
situations one of the most interesting future research
directions. In tasks like visual search, we expect
there might be, for example, much more complicated
interactions between scene content and scanpath
history than the simple effects that we report here for
free viewing. In the past, extending these models to
other tasks was difficult due to the paucity of suitable
large-scale datasets; we are hopeful for the future given
recent datasets such as COCO-Search-18 (Chen et al.,
2021; Yang et al., 2020). We are already planning to
utilize these new datasets to extend DeepGaze and
model the influence of task on human scanpaths.

We make the code and trained model parameters
for DeepGaze III publicly available at https:
//github.com/matthias-k/DeepGaze.

Conclusion

We present a new state-of-the-art model for human
free-viewing scanpath prediction, DeepGaze III, which
uses a structured deep learning architecture to achieve
both high prediction performance and some degree of

model interpretability. Using ablation studies, we show
that on our main dataset fixation selection depends
more on scene content than previous scanpath history.
Beyond average prediction performance, DeepGaze III
also reproduces noteworthy statistical properties of
human scanpaths. It is sometimes claimed that deep
learning–based models are limited in their capacity to
create scientific insight (Marcus, 2018; Henderson et al.,
2019). We argue that the results presented in this article
provide an additional example (see also, e.g., Kietzmann
et al., 2019; Cadena et al., 2019) of how deep learning
can in fact be be used to yield scientific contributions
that are not only relevant but that would also be difficult
to accomplish without the recent advances in deep
learning.

Keywords: eye movements, saccades, saliency,
probabilistic modeling, deep learning
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Appendix

Scanpath similarity scores on MIT1003

Here we report model scores using the scanpath
similarity metrics ScanMatch (Cristino et al., 2010)
and MultiMatch (Jarodzka et al., 2010), which
are commonly used in many works on scanpath
modeling. Because they can result in unreliable

MultiMatch

Model Total Shape Direction Length Position ScanMatch

Uniform 0.765 0.847 0.650 0.802 0.762 0.350
STAR-FC 0.788 0.883 0.664 0.845 0.761 0.370
Itti&Koch (with WTA network) 0.794 0.865 0.679 0.828 0.805 0.411
SaltiNet 0.801 0.889 0.659 0.875 0.781 0.382
Center bias 0.825 0.902 0.671 0.892 0.834 0.454
Saccadic Flow 0.834 0.923 0.666 0.922 0.824 0.436
DeepGaze III w/o Spatial Priority 0.837 ± 0.000 0.925 ± 0.000 0.669 ± 0.001 0.921 ± 0.000 0.834 ± 0.001 0.451 ± 0.001
CLE 0.841 0.930 0.663 0.918 0.855 0.499
DeepGaze III w/o Scanpath 0.844 ± 0.001 0.913 ± 0.000 0.700 ± 0.001 0.902 ± 0.001 0.861 ± 0.001 0.520 ± 0.001
Spatial Gold Standard 0.845 0.911 0.704 0.899 0.865 0.527
SceneWalk 0.847 0.917 0.699 0.909 0.863 0.522
SceneWalk20 0.848 0.921 0.693 0.915 0.861 0.516
IOR-ROI-LSTM 0.856 0.918 0.743 0.908 0.855 0.501
DeepGaze III 0.858 ± 0.000 0.930 ± 0.000 0.710 ± 0.001 0.925 ± 0.000 0.868 ± 0.001 0.528 ± 0.001
LeMeur16 0.870 0.938 0.730 0.930 0.884 0.564
MASC 0.873 0.935 0.743 0.933 0.881 0.545
Interobserver Consistency 0.874 0.937 0.752 0.930 0.879 0.433

Table 5. Scanpath similarity scores on the MIT1003 dataset. We evaluate MultiMatch and ScanMatch scores on single sample
performance: For each ground truth human scanpath, we compute similarity to a sampled scanpath starting with the same initial
fixation and having the same number of fixations. Italic model names indicate baseline models; bold model names indicate the
models presented in this article. Errors indicate standard deviation over eight repeated training runs. In all metrics, higher scores
indicate better performance. Bold scores indicate best performance for that metric. Models are sorted by total MultiMatch score.
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MultiMatch

Model Total Shape Direction Length Position ScanMatch

STAR-FC 0.836 0.902 0.773 0.871 0.798 0.396
Itti&Koch (with WTA network) 0.841 0.890 0.769 0.866 0.839 0.418
Uniform 0.852 0.902 0.792 0.881 0.831 0.418
SaltiNet 0.875 0.924 0.813 0.914 0.848 0.457
Center bias 0.890 0.933 0.826 0.926 0.873 0.510
Saccadic Flow 0.897 0.944 0.830 0.939 0.873 0.515
IOR-ROI-LSTM 0.902 0.936 0.860 0.924 0.889 0.541
DeepGaze III w/o Spatial Priority 0.902 ± 0.000 0.947 ± 0.000 0.841 ± 0.001 0.941 ± 0.000 0.880 ± 0.000 0.527 ± 0.001
CLE 0.906 0.950 0.833 0.940 0.899 0.571
SceneWalk20 0.907 0.945 0.847 0.939 0.896 0.569
DeepGaze III w/o Scanpath 0.907 ± 0.000 0.943 ± 0.000 0.850 ± 0.001 0.935 ± 0.000 0.901 ± 0.000 0.574 ± 0.000
SceneWalk 0.908 0.944 0.849 0.937 0.900 0.573
MASC 0.908 0.946 0.846 0.940 0.901 0.562
Spatial Gold Standard 0.911 0.944 0.853 0.936 0.910 0.588
DeepGaze III 0.917 ± 0.000 0.952 ± 0.000 0.863 ± 0.001 0.946 ± 0.000 0.908 ± 0.001 0.590 ± 0.001
LeMeur16 0.921 0.954 0.869 0.948 0.912 0.602
Interobserver Consistency 0.932 0.958 0.888 0.953 0.927 0.600

Table 6. Scanpath similarity scores on the MIT1003 dataset. We evaluate MultiMatch and ScanMatch scores on best-match
performance: For each ground truth human scanpath, we compute similarity to all sampled scanpaths on the same image (usually 15
scanpaths for 15 subjects; see section “Scanpath Statistics” for details) and report the score for the sampled scanpath that reaches
highest similarity score. In the case of the MultiMatch score, we use the total score for selecting the best-matching scanpath. Italic
model names indicate baseline models; bold model names indicate the models presented in this article. Errors indicate standard
deviation over eight repeated training runs. In all metrics, higher scores indicate better performance. Bold scores indicate best
performance for that metric. Models are sorted by total MultiMatch score.

scores (models can systematically score higher than
the ground truth data; see Kümmerer & Bethge,
2021), we do not include them in the main article
and we point out that they should be used only with
caution. As will become apparent in the following,
the problem of the unreliable scores is indeed visible
in our case. For ScanMatch, we use the MATLAB
implementation by Cristino et al. (2010), available
at https://seis.bristol.ac.uk/∼psidg/ScanMatch/. For
MultiMatch, we use the python reimplementation of
the original MATLAB toolbox by Wagner et al. (2019),
available at https://github.com/adswa/multimatch_gaze.
For both ScanMatch and MultiMatch, we use
the default parameters included in the respective
implementations. Since neither we nor most other
included models model fixation durations, we disable
the duration component of MultiMatch by using
identical durations for all fixations.

We compute scanpath similarity metrics in two
different settings: In Table 5, for each human scanpath,
one model scanpath is generated starting with the
same initial fixation and length, and similarity between
these two scanpaths is reported. As “interobserver
consistency,” we report the mean similarity between
two human scanpaths on the same image. There are
two models that perform better than DeepGaze III:

LeMeur16, which scores best in ScanMatch, and
MASC, which scores best in MultiMatch. However,
in the ScanMatch metrics, many models substantially
outperform the interobserver consistency (e.g.,
LeMeur16 with 0.564 compared to interobserver
consistency of 0.433), demonstrating that the problem
outlined above is not just a theoretical possibility. In
MultiMatch, the problem is less severe but still visible.

In Table 6, for each human scanpath, the most
similar scanpath from all generated scanpaths on the
same image is used for the score. This strategy is used
in many studies. It can partially mitigate the problem
that models can score systematically higher than the
ground truth data, but it penalizes models less for
producing very unrealistic scanpaths: As long as at least
one reasonable scanpath per image is generated, the
unrealistic scanpaths will not decrease the score. Here,
as “interobserver consistency,” we report the mean
similarity of a human scanpath to the most similar
scanpath by another observer on the same image.
In this setting, no model scores substantially higher
than interobserver consistency (LeMeur16 reaches
a ScanMatch score of 0.602 compared to 0.600 for
interobserver consistency, but this is likely within the
noise range). DeepGaze III is outperformed by the
LeMeur16 model, which scores highest in all metrics.
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Category Center bias W/o scanpath history W/o image content Full model Effect of image content Effect of dynamics

Jumbled 1.08 1.38 2.33 2.53 0.30 1.25
Satelite 1.18 1.31 2.56 2.64 0.14 1.38
Indoor 1.20 1.54 2.64 2.82 0.34 1.44
Cartoon 1.03 1.49 2.59 2.83 0.47 1.57
Inverted 1.32 1.61 2.70 2.85 0.28 1.38
OutdoorManMade 1.28 1.62 2.72 2.89 0.34 1.44
OutdoorNatural 1.44 1.69 2.78 2.92 0.26 1.35
Art 1.36 1.72 2.78 2.97 0.37 1.43
LineDrawing 1.41 1.64 2.87 2.98 0.23 1.45
Noisy 1.58 1.78 2.89 3.00 0.20 1.31
Fractal 1.60 1.79 2.92 3.04 0.20 1.33
Social 1.11 1.75 2.76 3.11 0.64 1.65
Pattern 1.75 1.88 3.10 3.17 0.13 1.35
Random 1.47 2.01 2.99 3.22 0.54 1.52
Object 1.56 2.02 3.05 3.26 0.46 1.49
Action 1.41 2.01 2.96 3.27 0.59 1.55
BlackWhite 1.64 2.08 3.10 3.30 0.44 1.45
Affective 1.44 2.06 3.01 3.32 0.62 1.57
LowResolution 1.93 2.06 3.29 3.34 0.12 1.36
Sketch 2.00 2.60 3.55 3.79 0.61 1.56

Table 7. Prediction performance on the CAT2000 dataset by category as average log-likelihood in bit/fixation relative to a uniform
model. We list model performance of the center bias model and ablated versions of DeepGaze III as well as the full DeepGaze III
model. As “effect of image content,” we show the performance difference between the model without scanpath history and the
center bias model. As “effect of dynamics,” we show the difference in performance between the model without image content and
the center bias model. Categories are sorted by performance of the full DeepGaze III model.

Performances per category on CAT2000

In Table 7, we show the performance of DeepGaze III
as well as different ablated versions of the full model on
each of the 20 categories in CAT2000. We quantify the
effect of image content as the performance difference

between the center bias model and the model without
access to scanpath history. Furthermore, we quantify
the effect of dynamcis as the performance difference
between the center bias model and the model without
access to image content.


