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Plasma metabolomics and lipidomics have been commonly used for biomarker

discovery. Studies in white and Japanese populations suggested that gender and

age can affect circulating plasma metabolite profiles; however, the metabolomics

characteristics in Chinese population has not been surveyed. In our study, we

applied liquid chromatography-mass spectrometry-based approach to analyze Chinese

plasma metabolome and lipidome in a cohort of 534 healthy adults (aging from

15 to 79). Fatty-acid metabolism was found to be gender- and age-dependent in

Chinese, similar with metabolomics characteristics in Japanese and white populations.

Differently, lipids, such as TGs and DGs, were found to be gender-independent in

Chinese population. Moreover, nicotinate and nicotinamide metabolism was found to

be specifically age-related in Chinese. The application of plasma metabolome and

lipidome for renal cell carcinoma diagnosis (143 RCC patients and 34 benign kidney

tumor patients) showed good accuracy, with an area under the curve (AUC) of 0.971

for distinction from healthy control, and 0.839 for distinction from the benign. Bile

acid metabolism was found to be related to RCC probably combination with intestinal

microflora. Definition of the variation and characteristics of Chinese normal plasma

metabolome and lipidome might provide a basis for disease biomarker analysis.

Keywords: plasma, metabolomics, lipidomics, renal cell carcinoma, biomarker

INTRODUCTION

Plasma has been widely used for biomarker exploration in various diseases. It is a “data-rich”
source that contains several thousands of metabolites and would likely reflect the contributions
from various organs. Compared to urine metabolites, plasma metabolites are more stable due to
regulation via human homeostasis (1). Lipidomics is a component of plasma metabolomics, which
comprehensively analyse the lipid metabolites in the plasma. The definition of the characteristics of
the normal plasma metabolome and lipidome would provide a basis for disease analysis, as well as
for the understanding of a healthy plasma metabolism state.
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Several studies have evaluated plasma metabolomics/
lipidomics in healthy subjects based on different ethnic-groups.
In 2014, based on white population, Masaki Ishikawa et al.
performed lipidomic analyses for fasting plasma and serum
samples in 60 healthy adults. The levels of many sphingomyelin
species were significantly higher in females than those in males,
and the levels of triacylglycerols were significantly higher in
elderly females than in young females (2). For U.K population,
in 2015 the plasma metabolic phenotyping of 1200 subjects
showed that the plasma metabolites were associated with gender
and age. Androgen and its derivatives were higher in males,
and progesterone and its derivatives were higher in females
and were age-associated (3). In 2016, based on 60 healthy
Japanese individuals, 516 endogenous metabolites were detected
in the sera. Gender-associated differences were found in redox
homeostasis and in steroid and purine-nucleotide metabolism
pathways. Age-enriched levels of monoacylglycerols were
highlighted in Japanese males (4). From the above observations
of plasma metabolic characteristics in populations of the white,
the UK and Japan, both similarity and differences were observed
among different populations. Several studies have suggested
that diets and location could influence plasma metabolomics
(5, 6), therefore, plasma metabolomics and lipidomics of Chinese
population might have different characteristics from population
from other countries. An investigation of Chinese plasma
metabolites and lipids with respect to age and gender would be
an important reference and provide a basis for a biomarker study
in the Chinese population. To our knowledge, no such study was
available up to now.

Renal cell carcinoma (RCC) is the second most lethal urinary
cancer (7). Clinically, the accuracy diagnosis of certain small RCC
tumors and for distinction of RCC from benign renal lesions
is difficult (8). The development of more accurate and more
economical early screening methods might have an important
impact on RCC diagnosis. Several studies have applied plasma
metabolomics for RCC biomarker discovery. Phenylalanine
metabolism, tryptophan metabolism, and arachidonic acid
metabolism were found to be related to RCC (9). Deregulated
lipid metabolism in RCC has been implicated in disease
progression (10, 11). However, few plasma metabolomics and
lipidomics study has been used for the distinction of RCC from
benign tumors, which would be an important contribution to
RCC differential diagnosis.

In present work, we enrolled plasma samples from 534
Chinese volunteers aging from 15 to 79, with a sample
size balanced for gender and age. Metabolic and lipidomic
characteristics with respect to age and gender in Chinese
population were comprehensively investigated. And comparison
of Chinese metabolism characteristics with other country
population was provided. Further, using plasma metabolomics

Abbreviations: RCC, renal cell carcinoma; AUC, area under the curve;

PCA, principal component analysis; OPLS-DA, orthogonal partial least squares

discriminant analysis; CV, coefficient of variation; PC, glycerophosphocholines;

PE, glycerophosphoethanolamines; SM, sphingomyelin; DG, diacylglycerol; PA,

glycerophosphates; PI, glycerophosphoinositols; PS, glycerophosphoserines; NAD,

nicotinamide-adenine dinucleotide.

and lipidomics, RCC potential biomarkers were explored based
on age- and gender-matched healthy subjects and RCC patients
(143 RCC patients and 34 benign kidney tumor patients).
Our study provides an overview of plasma metabolomic
characteristics of the Chinese population and a new insight into
RCC diagnosis.

MATERIALS AND METHODS

Plasma Collection and Preparation
This study was approved by the Institutional Review Board
of the Institute of Basic Medical Sciences, Chinese Academy
of Medical Sciences (Approval number: 047-2019). All human
subjects, including 534 healthy human adults, 143 RCC patients
and 34 benign kidney tumor patients, provided informed
consent before participating in this study. The enrolled RCC
subjects must meet the following criteria: (1) definite nephroid
patients (renal cancer, benign nephrons such as renal cyst, renal
angiomyolipoma, etc.) underwent surgery. The control group
was the subjects that physical examination index is normal.
(2) the functions of the heart, liver, kidney, bone marrow, and
other important organs are normal or basically normal. (3)
For nephroid patients, ECOG (Eastern Cooperative Oncology
Group) score was ranged from 0 to 1. (4) the patient had
never received any other anti-renal cancer treatment before. The
benign renal tumors in our study include renal angiomyolipoma
and renal cysts. All renal cysts were clinically diagnosed
according to Bosniak standards. Pathological diagnosis of
benign renal cysts was included in the benign renal tumor
group. Cystic renal cancers were treated with preservation of
the nephron.

Fresh blood of RCC subjects and healthy controls was
collected prior to surgery or during physical examination in
the morning at 07:00 a.m.−09:00 a.m. after overnight fasting
and was subsequently drawn into 10ml Vacutainer Plasma
Separator Tubes with a clot activator for plasma. Next, all samples
were centrifuged according to the manufacturer’s instructions.
Plasma samples were prepared within 2 h after blood collection
and stored in a −80◦C refrigerator until metabolomics
and lipidomics analysis. Metabolomics and lipidomics sample
preparation was performed based on the method described
in previous references (12, 13) (Supplemental Materials). For
plasma sample limitation, only 466 samples were submitted to
lipidomics analysis.

LC-MS Analysis
Metabolomics and lipidomics analyses were conducted using a
Waters ACQUITY H-class LC system coupled with an LTQ-
Orbitrapmass spectrometer velos (Thermo Fisher Scientific,MA.
USA). Detailed information regarding the gradient and MS is
provided in Supplemental Materials.

Data Processing
Raw data files were processed by the Progenesis QI (Version
2.0, Nonlinear Dynamics) software. The detailed processing
parameters were provided in the Supplementary Method. Mass
list data file exported from QI was further processed by
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MetaboAnalyst 3.0 (http://www.metaboanalyst.ca), including
missing value estimation, log2 transformation and Pareto scaling.
Variables missed in 50% or greater of all samples were removed
from further statistical analysis and the other missing values
were filled using the KNN method. ComBat method was
used for batch effect correction. Pattern recognition analysis
(principal component analysis, PCA; orthogonal partial least
squares discriminant analysis, OPLS-DA) was carried out using
SIMCA 14.0 (Umetrics, Sweden) software. Hundred times
permutation validation was performed to evaluate the fitting of
OPLS-DA model. VIP (Variable importance for the projection)
value obtained from OPLS-DA was used for differential
metabolites selection. Non-parametric tests (Wilcoxon rank-
sum test) were used to evaluate the significance of variables.
False discovery rate (FDR) correction (Benjamini method) was
used to estimate the chance of false positives and correct for
multiple hypothesis testing. Differential metabolites were selected
according to the criteria: (1) VIP value above 1; (2) Adjusted
p value below 0.05. ROC curve was constructed based on
differential metabolites using logistic regression algorithm using
MetaboAnalyst 3.0 platform.

Metabolite Annotation and Pathway
Analysis
Metabolites and lipids with adjusted p < 0.05 and VIP (for
OPLS-DA) >1 were considered as significantly differential
features, which would be submitted for further identification.

The identification of the significant metabolites based on
the Progenesis QI was performed based on the published
identification strategy (14, 15) (Supplementary Materials).

Pathway enrichment analysis was performed using
MetaAnalyst 3.0 (16) and Mummichog algorithm prediction
(17). Mummichog is a program written in Python that leverages
the organization of metabolic networks to predict functional
pathways directly from feature tables and to generate a
list of tentative metabolite annotations through functional
activity analysis. The detailed parameters were provided in the
Supplementary Materials.

TABLE 1 | Demographics of the enrolled subjects.

Male Female Total

Healthy subjects

Aged 15–30 55 85 140

Aged 31–50 92 146 238

Aged >50 61 95 156

Total 208 326 534

RCC Patients

RCC all (aged 53.3 ± 13.3) 100 43 143

Benign tumor (aged 45.3 ± 11.2) 9 25 34

Healthy control (aged 48.2 ± 13.1) 112 92 204

FIGURE 1 | Detailed workflow of this study. (A) Workflow for normal plasma metabolomics and lipidomics characterization in a Chinese cohort. (B) Workflow for RCC

biomarker discovery. This figure was created using Microsoft office PPT 2007.
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FIGURE 2 | Inter-individual variation analysis of plasma metabolomics and lipidomics. (A) Inter-individual variations of plasma metabolomics and lipidomics in normal

subjects. The variation of lipidomics is lower than metabolomics. (B) The comparison of urine and plasma metabolites/proteins CVs in previous studies and this study.

(C) Correlation analysis of metabolite CV and abundance in normal subjects. (D) Correlation analysis of lipid CV and abundance in normal subjects. This figure was

created using Microsoft office Excel 2007. Ref 1: (18); Ref 2: (19); Ref 3: (20); Ref 4: (21).

RESULTS

The detailed workflow of this study is shown in Figure 1.
Overall 534 healthy Chinese subjects were enrolled (Table 1).
The stability and reproducibility of this study was assessed using
quality-control samples (Supplemental Materials).

Inter-individual Variations of Chinese
Plasma Metabolome and Lipidome
Determination of the normal inter-individual variations range
of metabolites in healthy population would provide baseline
reference for future biomarker discovery. A total of 1773
features were quantified in normal plasma metabolome and
used for individual variation comparisons. The median of the
inter-individual coefficient of variation (CV) for all plasma
metabolomes was 0.645 (Figure 2A) (0.645 for females and 0.626
for males). For age variation, the CV was about 0.6 (Figure S1).
For lipidomics, overall, 2239 features were quantified. The
median CV for all plasma lipidomes was 0.568 (Figure 2A).
Similar to the results of metabolomics, the lipidome CV of

males is lower than that of females. In contrast to metabolomics,
the lipidomic CV increased with aging; however, it showed no
significance (Figure S1).

Further, the relationship between metabolite abundance and
inter individual variation (CV) was analyzed. The results showed
that features with high intensity always showed lower CVs.
CVs of more than 90% high-abundance features ranged from
10 to 50%. Features with low abundance showed higher CVs,
always over 50%. These results indicated the higher stability of
metabolites with high abundance (Figure 2B). The same trend
was observed for plasma lipids (Figure 2C).

Herein, we compared the inter-individual variations of plasma

metabolite/lipid/protein with previously reported urine results

(Figure 2D) (19–21). It is suggested that the variation of

plasma metabolomics and lipidomics were lower than that for
urine metabolites. And plasma proteins variation, reported the
medium as 0.67 (18), was similar to plasma metabolite variation.
Comparison of plasma and urine metabolites/protein variations
indicated that plasma metabolites/proteins are more stable than
urine metabolites/proteins.
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FIGURE 3 | Gender-dependent metabolomics/lipidomics characteristics. (A) Score plot of OPLS-DA model between females and males. Apparent separation of

metabolomics was showed between males and females. (B) Pathway enrichment of gender-dependent metabolites and lipids. (C) Heat map showing the relative

abundance of gender-dependent metabolites/lipids these performing important biological functions. (D) Highlighted pathways contain specific metabolites showing

differences between the male and female. (A) Was created using simca 14.0; (B) Was created using MetaboAnalyst 3.0; (C) Was created using R package; (D) Was

created using Microsoft office PPT 2007.

Chinese Plasma Metabolomics and
Lipidomics Are Gender-Dependent
To explore the metabolites contributing to gender
discrimination, unsupervised PCA showed differential
tendency of the plasma metabolic profile between males
and females (Figure S2A). OPLS-DA model was further used
for differential feature selection (Figure 3A and Figure S2B).
Overall 27 differential metabolites contributing to gender
discrimination were identified (Table S1). All these metabolites
except sphinganine showed a higher level in males, including
acylcarnitines, steroids and acyl-amino acids (Figure S2C).
Using the same strategy, a total of 160 gender-differential
lipids was identified (Figure S3 and Table S2). In females,
phospholipidswere found to be higher. While steroids, fatty
acids, acylcarnitines and DG showed higher level in males
(Figure S3D).

Gender-dependent metabolites and lipids were further

submitted to pathway enrichment. Sphingolipid metabolism,
glycerophospholipid metabolism, caffeine metabolism and

linoleic acid metabolism showed differences between males
and females (Figure 3B). Several important metabolites/lipids

involved in these pathways, such as sphinganine, PE, PC and
theobromine have been reported in previous studies (2–4)
and probably showed important roles in gender-differential
biological functions (Figure 3C and Table S3). Sphingolipid
metabolism showed more active in females than males. The
upstream metabolites, serine has been reported showing
higher level in females (3). Consequently, the down-stream
metabolites, sphinganine, SM and lactosylceramide showed

higher level in females. Metabolites in glycerophospholipids
metabolism showed inconsistent trend in male and female.
Phosphatidylethanolamine, phosphatidylcholine and the
downstream metabolites, glycerol 3-phosphate showed
higher level in females. While the intermediate metabolites,
LysoPC(18:1(9Z) has been reported to be higher in males,
which was probably regulated by other pathways (3). Caffeine
metabolites, teobromine was found to be higher in males,
probably the consequence of increased caffeine metabolism in
males (Figure 3D).

Chinese Plasma Metabolomics and
Lipidomics Are Age-Dependent
Age is another non-negligible factor for metabolomics
research. Herein, we respectively examined metabolomics
and lipidomics patterns with age for males and females,
respectively. Unsupervised PCA score plot showed slight
separation trend of three age groups for male and female
(Figure S4). Supervised PLS-DA score plot presents the apparent
discrimination of three age groups for both females and males
(Figure 4A and Figures S5A,B). In young females, metabolites
of 3-indolebutyric acid, 16-hydroxy-10-oxohexadecanoic acid,
and indole-3-acetamide showed the highest level in the young
group (Figure 4B and Table S4), which suggested that fatty-
acid biosynthesis, linoleic-acid metabolism, and tryptophan
metabolism were more active. In contrast, in young males, the
processes associated with serotonin metabolites, transport of
vitamins and nucleosides, and bile-acid secretion were activated
(Figure 4C and Table S5). Additionally, in the middle and
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FIGURE 4 | Age-dependent metabolomics/lipidomics characteristics. (A) Score plot of PLS-DA model for three age groups based on plasma metabolomics in

females and males. Metabolic profiling varied with age in both males and females. Differential metabolites and pathways with respect to aging in male (B) and female

(C). Heat maps showing the relative abundance of age-dependent metabolites/lipids in male (D) and female (E) these performing important biological functions. (F)

Highlighted pathways contain specific metabolites showing differences with age in male and female. (A) Was created using simca 14.0; (B,C) Were created using

MetaboAnalyst 3.0; (D,E) Were created using R package; (F) Was created using Microsoft office PPT 2007.

the old age, male and female showed different metabolism
and lipidomic characteristics (Tables S6, S7 and Figure 4,
Figures S5C,D).

Combination analysis of age-dependent metabolites and
lipids showed enriched pathways these varied with age in
female and male. Several metabolites and lipids have been
reported in previous researches (2–4) and play important
roles in age-differential biological functions (Figures 4D,E and
Table S3). In female, linoleic acid metabolism and tryptophan
metabolism were found to be changing with age. Linoleic acid
metabolites, 12,13-DHOME showed higher level in the young
female. While the upstream metabolites, phosphatidylcholine
showed lower level. Increased phosphatidylcholine metabolism
probably lead to 12,13-DHOME accumulation in young females.
As a whole, tryptophan metabolites showed higher activity
in the young females. Higher level of (Indol-3-yl) acetamide
probably results from the higher tryptophan metabolism and
lower (Indol-3-yl) acetamide metabolism in young females
(Figure 4F). In males, nicotinate and nicotinamide metabolism
and glycerophospholipids metabolism showed age dependent,
showing higher level in the old male population. Age dependent
metabolites obtained in present study and previous references
showed a consistent change trend (Figure 4F).

Plasma Metabolomics and Lipidomics
Distinct RCC From Healthy and Benign
Controls
To discover potential biomarkers for distinction of RCC and
healthy controls, all subjects were divided into a discovery group
(98 RCC vs. 135 control) and a validation group (45 RCC and
69 control). PCA was first performed to explore metabolic and
lipidomic profiling variations between RCC and control in the
discovery dataset. The score plot showed discrimination trend
(Figures S6A,B). Apparent separation was further visualized via
a score plot of OPLS-DA (Figure 5A and Figure S6C). Overall,
19 differential metabolites and 11 lipids were identified that
contributed to discrimination among the groups (Table 2).

Predictive models based on differential metabolites, lipids,
or metabolites-lipids combination were constructed. It showed
a better discrimination accuracy using metabolites-lipids
combination than only metabolites or lipids. A metabolites-
lipids panel consisting of diaminopimelic acid, 12,13-DHOME,
5-L-glutamyl-L-alanine, PC (38:4), 4,8-dimethylnonanoyl
carnitine and cholesteryl 11-hydroperoxy-eicosatetraenoate
achieved an ROC area of 0.996 for the testing dataset and 0.971
for the external validation dataset (Figure 5B), which is higher
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FIGURE 5 | Analysis of metabolite and lipid differences between RCC, control and benign tumors. (A) OPLS-DA-score plot of serum metabolomics between RCC

and healthy control. The apparent separation indicated significant differences of metabolites between RCC and control groups. (B) ROC plot for RCC discrimination

from control in validation group based on model established via differential metabolites and lipids through a panel consisting of diaminopimelic acid, 12,13-DHOME,

5-L-glutamyl-L-alanine, PC(38:4), 4,8-dimethylnonanoyl carnitine and cholesteryl 11-hydroperoxy-eicosatetraenoate. (C) OPLS-DA-score plot of serum metabolomics

between RCC and benign tumors. Significant differences of metabolites and lipids between RCC and benign groups were existed. (D) ROC plot for RCC

discrimination from benign tumors with 10-fold cross-validation based on the model established via differential metabolites and lipids, L-glutamine, PS(36:0), PG(40:9),

N-docosahexaenoyl GABA and deoxycholic acid glycine conjugate. (E) Relative intensity of the common four metabolites/lipids in RCC and non-RCC groups.

(Continued)
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FIGURE 5 | Take the four metabolites/lipids with a concentration above the 90% quantile of normal range in healthy population as positively

upregulated/downregulated, they all showed higher prevalence in renal cancer patients than healthy controls and benign patients. Red: increased; blue, decreased.

(F) Interaction of differential metabolites of RCC and the possible regulation mechanism in RCC. Dotted arrow, indirect action; solid arrow, direct action. (A,C) Were

created using simca 14.0; (B,D) Were created using MetaboAnalyst 3.0; (E) Was created using R package; (F) Was created using Microsoft office PPT 2007.

that AUC values obtained only using metabolites (0.991 for
testing set; 0.987 for validation set) or lipids (0.958 for testing set;
0.841 for validation set) (Table 3).

Using the same analysis strategy, significant separation
was observed between RCC and benign metabolite and lipid
profiling (Figure 5C). Overall 8 differential plasma metabolites
and 15 lipids were identified (Table 4). Metabolites of L-
glutamine and deoxycholic acid glycine conjugate and lipids
of vitamin D3 metabolites, fatty acyl carnitines, PS, PE
and DG were upregulated in the RCC group. Differential
diagnosis accuracy for RCC was evaluated using ROC analysis.
Similarly, metabolite-lipid combination could achieve better
discrimination accuracy for RCC and benign (Table 3). A
metabolite-lipid panel consisting of L-glutamine, PS(36:0),
PG(40:9), N-docosahexaenoyl GABA and deoxycholic acid
glycine conjugate showed the best predictive ability with an
ROC area of 0.898 for the testing dataset and 0.839 for 10-fold
cross-validation (Figure 5D and Table 3).

Common differential metabolites or lipids between RCC
vs. control and RCC vs. benign would indicate the specific
potential biomarkers for RCC distinction from nonRCC. Herein,
3 metabolites and 1 lipid, deoxycholic acid glycine conjugate,
N-docosahexaenoyl GABA, 3β-hydroxy-5-cholenoic acid and 2-
hydroxylauroylcarnitine, were found to be common changed.
The former three metabolites showed upregulated level, and
2-hydroxylauroylcarnitine showed downregulated level in RCC
group. Take the four metabolites/lipids with a concentration
above the 90% quantile of normal range in healthy population
as positively upregulated/downregulated, they all showed higher
prevalence in renal cancer patients than healthy controls and
benign patients (Figure 5E). The accuracy for RCC distinction
from nonRCC using the four metabolites was assessed using
ROC plots. The AUC values were above 0.7 for all those four
metabolites (Table 5). Combination of bile acids metabolites, 3β-
hydroxy-5-cholenoic acid and deoxycholic acid glycine conjugate
could achieve a better discrimination accuracy with the AUC
of 0.79.

DISCUSSION

In the present study, we performed a comprehensive
metabolomics and lipidomic analysis of blood from healthy
adults. We demonstrated that age and gender have substantial
effects on global plasma metabolite profiles in a Chinese cohort,
which showed differences with cohorts from other countries.
We also identified pathways associated with gender and age
in the Chinese population. Several highlighted pathways
present gender-associated differences: sphingolipid metabolism,
glycerophospholipid metabolism, caffeine metabolism, and
linoleic acid metabolism.

While tryptophan metabolism, nicotinate, and nicotinamide
metabolism and glycerophospholipids metabolism present age-
associated differences. Further application for RCC biomarker
discovery was performed, showing potential value of plasma
metabolomics for RCC diagnosis and mechanism exploration.

Inter-individual Variation of Plasma
Metabolomics and Lipidomics
Inter-individual variations of the metabolite/lipid/protein levels
are critical factors for designing studies on the exploration of
biomarker candidates, as large inter-individual variations in
healthy statesmightmask the changes inmetabolite/lipid/protein
levels in response to diseases (22). Genetics, sex, age,
gastrointestinal flora and lifestyle differences are likely to
be important factors (23). Herein, we compared Inter-individual
variations of plasma omics and urine omics. As a whole,
plasma metabolites/proteins showed lower variation than urine
metabolites/proteins. Homeostasis regulation in blood may
account for the results (19). Urine metabolites are easily affected
by environmental factors, such as water and diets intake (24).
The inter-individual variations of plasma metabolites, lipids, and
proteins are pretty close, around 0.6, indicating the stability of
plasma omics for biomarker research.

Gender-Dependent Plasma Metabolic
Characteristics for Chinese Population
Gender-associated differences of urine metabolites have been
characterized in Chinese populations (19). Similarly, several
common gender-dependent metabolic features were observed
in the urine and plasma. Acylcarnitines, including 6-keto-
decanoylcarnitine, non-anoylcarnitine, L-octanoylcarnitine, and
steroids, including androstenol, tetrahydrodeoxycortisol, and
sterol, were higher in males than in females both in the
urine and plasma, indicated a more active steroid-hormone
biosynthesis and fatty-acid oxidation in males (25–27). In
addition, our results indicated that gender influences the
levels of sphingolipids and glycerophospholipids in plasma and,
therefore, are confounding factors in exploring lipid biomarkers.
Many of sphingolipids and glycerophospholipids are female-
enriched in Chinese in this study, which is consistent with
Caucasian populations (22). It has been reported that plasma
sphingolipids and glycerophospholipids levels are affected by
different lifestyles (28). And fruit and vegetable intake could
influence sphingolipid and glycerophospholipids levels with
significant genetic contributions (29). Therefore, food preference
and genetic factors might contribute to gender-dependent
differences of sphingolipid and glycerophospholipids. The exact
mechanisms of the regulation of lipid metabolism have not been
elucidated. A previous study suggested that estrogen may be
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TABLE 2 | Differential metabolites and lipids between RCC and health control

groups.

Compound ID Description Score VIP P-value Fold change

(RCC/Control)

Metabolites

HMDB31057 (R)-2-

Hydroxyhexadecanoic

acid

40.8 1.85 9.10E-02 0.41

HMDB04705 12,13-DHOME 48.4 2.05 2.23E-02 0.31

HMDB29998 12-Hydroxy-8,10-

octadecadienoic

acid

38.5 1.43 5.36E-02 0.51

HMDB60043 13-HDoHE 40.1 1.34 7.92E-17 1.97

HMDB41287 16-Hydroxy-10-

oxohexadecanoic

acid

49.1 3.16 1.47E-10 0.11

HMDB31103 2-Hydroxylinolenic

acid

38.5 3.25 3.57E-05 0.13

HMDB00308 3b-Hydroxy-5-

cholenoic

acid

43.7 1.52 3.96E-03 2.58

HMDB61636 3-hydroxydecanoyl

carnitine

42.3 1.33 1.28E-17 0.56

HMDB61634 3-hydroxyoctanoyl

carnitine

46.8 1.23 9.56E-31 0.60

HMDB06248 5-L-Glutamyl-L-

alanine

53.8 2.08 3.94E-18 0.37

HMDB04710 9,10,13-TriHOME 45.6 4.05 1.16E-11 0.05

HMDB00631 Deoxycholic acid

glycine conjugate

54.8 2.19 2.33E-09 3.37

HMDB00157 Hypoxanthine 40.8 1.60 2.44E-44 0.43

HMDB34125 Licoisoflavone A 35.9 4.93 6.21E-27 33.05

HMDB62332 N-Docosahexaenoyl

GABA

41.4 2.24 9.83E-05 3.78

HMDB39500 N-Malonyltryptophan 39.2 2.21 2.30E-23 3.57

HMDB62631 O-decanoyl-L-

carnitine

52.6 1.14 1.76E-18 0.65

HMDB32596 Sodium glycocholate 42.8 1.36 4.63E-09 1.72

HMDB13321 Undecanoylcarnitine 52 1.56 1.94E-13 0.31

Lipids

LMFA07070032 2-

Hydroxylauroylcarnitine

43.8 1.12 7.78E-04 0.70

LMFA07070046 4,8-dimethylnonanoyl

carnitine

44.2 2.54 6.78E-12 0.33

49703674 Cholesteryl

11-hydroperoxy-

eicosatetraenoate

38.6 3.41 1.32E-15 0.27

123060174 delta2-THA 48.8 1.48 1.20E-08 0.37

135638187 DG(32:0) 48.4 1.26 2.11E-04 1.51

7849711 Isobehenic acid 48.9 2.56 2.42E-10 0.34

7850526 N-arachidonoyl

glycine

43.3 1.17 5.45E-06 0.53

123067362 PC(38:4) 42.1 2.35 3.28E-11 2.22

74380445 PS(18:0) 45.8 1.50 1.51E-09 1.63

123063109 PS(38:4) 41.1 1.03 4.29E-03 1.45

4266327 Vitamin K2 39 1.57 3.43E-04 0.62

involved in the regulation of lipid metabolism, such as SM and
DHA-containing phospholipids (PLs) (30, 31).

Age-Dependent Plasma Metabolic
Characteristics for Chinese Population
Previous studies had reported that age influences the levels
of several metabolites in blood and therefore are confounding
factors in exploring disease biomarkers (32). Herein, we
explored the biological relevance of age-dependent metabolites
based on 534 healthy subjects aged 15–70 years, which
may be representative of the general aging population. Our
results suggested that linoleic acid metabolism and tryptophan
metabolismwasmore active in young females, which is consistent
with our previous urine metabolomics study (19). Increased
fatty-acid metabolism may indicate enhanced function of
mitochondria in the young (33). The nicotinate and nicotinamide
metabolites, N1-methyl-2-pyridone-5-carboxamide (2PY) and
N1-methyl-4-pyridone-3-carboxamide showed higher level in
old males and females. The same change trend was observed
for 2PY in a previous study (34). The upstream metabolites,
aspartic acid has been reported showing higher level in the
elder population (3), which is consistent with our results. Age-
dependent nicotinate and nicotinamide metabolism alterations
were probably a consequence of both decreased renal excretion
and increased production in the liver or other organs with aging.
Additionally, glycerophospholipids, including PE and PC showed
higher level in the old males, probably associated with food
preferences and metabolism ability weakness in the old (29).

Comparison of Chinese Metabolic
Characteristics With Different Countries
Our study provided an overview of the metabolomics
characteristics in a Chinese population. The comparison
of gender- and age-dependent metabolites in the Chinese
population with that in other populations would provide insight
into the metabolic characteristics of Chinese.

Fatty-acid metabolism was found to be gender- and age-
dependent in Chinese, Japanese and white populations, probably
resulting from the common gender- and age-differential energy
metabolism characteristics, regardless of the backgrounds [6, 8].
Additionally, some unique metabolic characteristics were found
in different populations. Large molecular lipids, such as TGs and
DGs, were found to be gender-associated in whites [6, 7], but they
were not significant in Chinese or Japanese. It was reported that
TGs synthesis and lipid metabolism showed racial differences,
with Caucasians having higher TG synthesis as compared with
African-Americans (35). Additionally, preferences for high-
lipid diets, such as hamburgers, among white people could
partly contribute to these changes. In the present Chinese
study, nicotinate and nicotinamide metabolism was found to
be specifically age-related. Nicotinate metabolism shows racial
differences in African Americans compared to Whites, primarily
due to differences in CYP2A6 enzyme activity (36). The genetic
differences could contribute tometabolism differences of Chinese
and other populations. The above data showed that differences in
genetic background and diets could both probably contribute to
the metabolism differences of Chinese population compared to
other populations.
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TABLE 3 | Performance of metabolites/lipids panel for group discrimination.

ROC analysis Plasma metabolomics Plasma lipidomics Combined plasma metabolomics and lipidomics

Groups Discovery group Validation group

(cross-validation)

Discovery group Validation group Discovery group Validation group

(cross-validation)

Validation group

RCC vs. Control 0.991 0.987 0.958 0.841 0.996 0.971

RCC vs. Benign tumor 0.811 0.776 0.839 0.785 0.898 0.839

TABLE 4 | Differential metabolites and lipids between RCC and benign groups.

Compound ID Description Score VIP P-value Fold change

(RCC/benign)

Metabolites

HMDB00308 3b-Hydroxy-5-cholenoic

acid

46.8 4.69 4.43E-02 2.36

HMDB02596 Deoxycholic acid

3-glucuronide

53.4 3.17 8.17E-03 3.33

HMDB00631 Deoxycholic acid glycine

conjugate

55.1 4.92 1.35E-02 2.42

HMDB02579 Glycochenodeoxycholic

acid 3-glucuronide

51.1 3.51 1.06E-02 7.48

HMDB00641 L-Glutamine 44.8 2.38 1.31E-02 2.08

HMDB62332 N-Docosahexaenoyl

GABA

42.8 4.70 1.72E-02 2.29

HMDB32596 Sodium glycocholate 43.7 3.58 1.90E-02 2.71

HMDB60117 Tetracosahexaenoic acid 39.7 3.78 3.80E-02 2.66

Lipids

24702281 17-Methyltestosterone 37.1 1.47 3.95E-02 0.60

LMFA07070032 2-Hydroxylauroylcarnitine 45.1 1.61 1.70E-02 1.61

LMFA07070033 2-

Hydroxymyristoylcarnitine

42.8 1.83 4.13E-02 1.70

135638093 DG(29:2) 41.8 1.05 4.15E-02 1.58

14710962 DG(38:4) 41.5 1.31 4.15E-02 1.40

74380326 N-arachidonoyl tyrosine 42.9 1.41 4.90E-02 1.92

160779918 PC(40:4) 45.8 1.13 4.90E-02 1.24

123061482 PC(O-20:0/22:4) 50 1.15 4.15E-02 1.21

123062511 PE(O-16:0/13:0) 37.6 1.10 4.90E-02 1.39

123067375 PE(P-18:0/20:4) 46.8 1.10 4.15E-02 0.81

123064120 PG(36:3) 53 1.05 4.41E-02 0.68

123064655 PG(40:9) 37 1.58 1.63E-02 1.73

123063586 PS(36:0) 50.6 1.24 4.98E-02 1.45

123063234 PS(38:0) 48 1.21 4.90E-02 0.40

123063371 PS(38:1) 41.5 1.15 4.90E-02 1.38

Plasma Metabolic Characteristics of RCC
Since gender and age are important confounders for plasma
metabolomics and lipidomics, RCC biomarker analysis was
explored based on age- and gender-matched control and RCC
subjects. Combination of metabolites and lipids could achieve
better distinction of RCC from the healthy control and the
benign, with AUC of 0.971 and 0.839, respectively.

TABLE 5 | Prediction accuracy of metabolites for distinction RCC from non-RCC.

Metabolites AUC Sensitivity Specificity

N-Docosahexaenoyl GABA 0.84 0.8 0.9

3b-Hydroxy-5-cholenoic acida 0.76 0.8 0.7

Deoxycholic acid glycine conjugateb 0.75 0.8 0.6

2-hydroxylauroylcarnitine 0.70 0.8 0.5

Combination of metabolites “a” and “b” 0.79 0.7 0.8

It was reported that antioxidant defense mechanism was
occurred in RCC (37, 38). In present study, we found several
disordered pathways in RCC, including fatty acid oxidation,
glutamine metabolism, and glycerophospholipids metabolism.
These metabolite variations were probably resulting from
antioxidant defense mechanism.

Fatty acyl carnitines showed disordered level in RCC group,
indicating fatty acid oxidation dysfunction (38). Acylcarnitines
are essential for the entry of fatty acid into the mitochondria
for oxidation. Carnitine palmitoyltransferase 1A (CPT1A), a key
enzyme in fatty acid oxidation, may contribute to changes of
acylcarnitines. CPT1A is a direct HIF (hypoxia-inducible factor)
target gene. CPT1A is repressed by HIF1 and HIF2 in RCC,
reducing fatty acid transport into the mitochondria, and forcing
fatty acids to lipid droplets for storage (39). Our findings are
consistent with previous reports, that fatty acid oxidation might
be an important factor in determining cancer status.

Glutamine showed increased level in RCC group, which
was consistent with previous research (38, 40). In ccRCC,
glutamine is subjected to reductive carboxylation leading to
production of the onco-metabolite 2-HG (41), as well as being
a precursor for the major antioxidant system comprised of GSH
and GSSG (7). Blocking glutamate production from glutamine
by GLS inhibition will down-regulate this important antioxidant
pathway, resulting in higher ROS levels, which will be selectively
toxic to cancer cells due to their increased local ROS levels
(42). Above data showed the importance of glutamine metabolic
pathway to ccRCC.

Glycerophospholipids changes in RCC group was probably
associated with disordered oxidative phosphorylation (43,
44) and substrates, choline level changes (40). Fatty acid
compositions in PC have been reported to be significantly
differential between the normal and RCC tissues, which was
resulting from expression variations of lipidomic genes that
encode proteins involved in fatty acid elongation, including
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SCD, ELOVL5 and FADS1 (45). Additionally, the content of
PE was found to be differential between RCC and controls.
PE synthesis was downregulated in ccRCC (45). Disorder of
PE synthesis may lead to tumor development by accelerating
cell proliferation (46). The underlying mechanism by which
PE abundance regulates the proliferation of renal cancer cells
remains to be further elucidated.

Bile acid metabolites, 3b-Hydroxy-5-cholenoic acid and
deoxycholic acid glycine conjugate and neurotransmitter
metabolites, N-docosahexaenoyl GABA showed significantly
increased in RCC, compared with control and benign groups.
These metabolites have potential value for RCC distinction from
non-RCC. It was reported that bile acids were important for
renal pathophysiology by activating nuclear receptor farnesoid X
receptor (FXR) and themembrane-boundG protein-coupled bile
acid receptor 1 (GPBAR1, also known as TGR5) (47). And these
receptors were found to be associated with RCC pathogenesis.
It was reported that TGR5 could inhibit inflammation by
inhibiting the NF-κB signaling pathway, eventually attenuating
diabetic nephropathy (DN) (48). And in RCC, it could protect
against renal inflammation and renal cancer cell proliferation
and migration (49). FXR is a pivotal factor in cholesterol/bile
acid homeostasis, and FXR could stimulate proliferation of renal
adenocarcinoma cells (50). Moreover, TCGA gene data showed
disordered expression level of TGR5 and FXR in RCC tissue,
further providing evidence on important roles of these receptors
during RCC (37). In this study, we found increased level of bile
acid metabolites in RCC group, further proved that bile acid
metabolism was disordered in RCC. Another mechanism of bile
acid conjugate changes in RCC is possibly associated with micro
flora and inositol phosphate pathway (Figure 5F). Deoxycholic
acid glycine conjugate is produced by the intestinal micro flora. It
has been reported that deoxycholic acid glycine conjugate could
inhibit acetylcholine-induced inositol phosphate formation (51).
Inositol phosphate formation is catalyzed by cyclic inositol
phosphohydrolase, whose activity is reduced in human renal
tumor (52). Probably, cyclic inositol phosphohydrolase is the
target of acetylcholine. And the increased secretion level of
deoxycholic acid glycine conjugate in RCC patients inhibited
cyclic inositol phosphohydrolase activity.

Previous study found neuro-effect was involved in RCC
occurrence (53). In this study we found that N-docosahexaenoyl
GABA showed significantly differential level between RCC
and control groups. It is a gamma amino acid (GABA)
derivative. GABA is an inhibitory neurotransmitter found
in the nervous systems. It acts by binding to specific
transmembrane receptors in the plasma membrane of both
pre- and postsynaptic neurons. It was reported that GABA A
receptor subunitθ (GABRQ) could serve as a novel prognostic
marker of ccRCC. Low GABRQ expression was associated
with a poor prognosis among patients with ccRCC (54). And,
TCGA group discovered significant differences of GABRQ
expression between RCC tissues and controls (37). Above
findings indicated potential roles of GABA in RCC. GABA
metabolites, N-docosahexaenoyl GABA has been shown to have
anti-inflammatory, anti-nociceptive, vasoprotective, angiogenic
and neuroprotective effects (55). In this study, the increased

plasma concentration of N-docosahexaenoyl GABA might
be due to the metabolism disorder of GABA. And the
relationship of GABA metabolites and GABA receptors need
further investigation.

CONCLUSION

In conclusion, this study conducted a comprehensive
characterization of the plasma metabolome and lipidome
in a large cohort of the healthy Chinese population. The results
demonstrated gender and age are two important influencing
factors of the plasma metabolome and lipidome. Sphingolipids
and glycerophospholipids were found to be female-enriched.
Linoleic acid metabolism, tryptophan metabolism and nicotinate
and nicotinamide metabolism were age dependent in Chinese.
These results suggested age and gender matches or corrections
were necessary during differential analysis. Using age and
gender-matched healthy subjects, a pilot biomarker study on
RCC was performed. It showed satisfactory prediction accuracy
for RCC using plasma metabolite panels. Antioxidant defense
mechanisms might contribute to lipids or oxidative metabolites
variations in RCC. Additionally, bile acid metabolites and
neurotransmitter, GABAmetabolites were found to be associated
with RCC occurrence.

Except gender and age, diets and circadian rhythm could
also influence plasma metabolomic. For future analysis, we
would analyse these factor using diet standardization design.
Additionally, present RCC group included multiple subtypes,
including clear cell renal cell carcinoma (81%), chromophobe
renal carcinoma and other rare types (19%), which could cause
interference to metabolomics results. Future analysis on a larger
sample size for one specific RCC subtype would be performed to
eliminate the inferences.
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