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Abstract
Whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

(whole-cell MALDI-TOF MS) has been widely adopted as a useful technology in the identifi-

cation and typing of microorganisms. This study employed the whole-cell MALDI-TOF MS

to identify and differentiate wild-type and mutants containing constructed single gene muta-

tions of Burkholderia pseudomallei, a pathogenic bacterium causing melioidosis disease in

both humans and animals. Candidate biomarkers for the B. pseudomalleimutants, includ-

ing rpoS, ppk, and bpsI isolates, were determined. Taxon-specific and clinical isolate-spe-

cific biomarkers of B. pseudomallei were consistently found and conserved across all

average mass spectra. Cluster analysis of MALDI spectra of all isolates exhibited separate

distribution. A total of twelve potential mass peaks discriminating between wild-type and

mutant isolates were identified using ClinProTools analysis. Two peaks (m/z 2721 and

2748 Da) were specific for the rpoS isolate, three (m/z 3150, 3378, and 7994 Da) for ppk,
and seven (m/z 3420, 3520, 3587, 3688, 4623, 4708, and 5450 Da) for bpsI. Our findings

demonstrated that the rapid, accurate, and reproducible mass profiling technology could

have new implications in laboratory-based rapid differentiation of extensive libraries of

genetically altered bacteria.

Introduction
The matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI--
TOF MS) approach is currently becoming a revolutionizing technology for use in the identifi-
cation and typing of several diverse microorganisms, e.g., gram-positive and negative bacteria,
yeast, and fungi [1–7]. This is a newly developed platform, which has been increasingly utilized
in various microbiological applications, including routine clinical diagnosis, microbial
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systematics, environmental microbiology, epidemiological studies, and biodefense detection
[8–11]. MALDI-TOFMS offers rapid, robust, and economic analysis in comparison to conven-
tional phenotypic and molecular techniques, making it an attractive and desirable tool for
rapid microbial examination [12, 13].

Whole-cell MALDI-TOFMS analysis requires simple steps in sample preparation without
additional analyte extraction steps. There are two possible methods: 1) utilizes single colonies
grown on culture media deposited directly on a MALDI target plate, then overlaid with a
matrix solution; and 2) exploits the mixture of whole cells suspended in a matrix solution
before being analyzed using a mass spectrometer [14]. Conceptually, mass spectral pattern pro-
files obtained from the whole-cell MALDI-TOF MS method encompass unique mass profiles
for particular microbial species [15], enabling the discrimination of each microbial type. With
the BioTyper-based identification process, the MALDI mass spectra are subsequently matched
against the reference spectra entries in a database, rendering scores for the reliable identifica-
tion of test isolates at genus, species, and subspecies levels [16, 17]. Currently, whole-cell MAL-
DI-TOF MS is being increasingly adopted and evolved for detection of antibiotic resistance,
recombinant proteins, and plasmid insertion in bacteria [18–23]. In Vibrio parahaemolyticus,
the ability to differentiate the wild-type and mutant strains with single gene deletions, accord-
ing to their unique mass spectra, has been reported using whole-cell MALDI-TOF MS [24].
Moreover, when combining it with sophisticated algorithms, this approach can generate poten-
tial biomarkers pertaining to each microbial type and strain [17]. This allows for a more
advanced level of identification and classification among microorganisms.

B. pseudomallei is a pathogenic bacterium causing melioidosis disease in both humans and
animals. It is endemic in Northeastern Thailand and Northern Australia, with the high mortal-
ity rates of approximately 40% and 20%, respectively [25, 26]. Moreover, B. pseudomallei has
been classified by the Centers of Disease Control and Prevention (CDC) as a category B bio-
weapon agent [27]. Identification and characterization of B. pseudomallei isolates have been
relied on various molecular methods, which were PCR-based or hybridization-based tech-
niques, such as multilocus sequence typing (MLST), ribotyping, restriction fragment length
polymorphism (RFLP), and microarray-based comparative genome hybridization (CGH) [28–
31]. Although, these methods provide sufficient bacterial identification, they are time-consum-
ing, labor intensive, and have high costs [32, 33]. MALDI-TOF has emerged as an alternative
identification tool to rapidly and accurately detect B. pseudomallei in blood cultures of septice-
mic patients, and thus would be beneficial for medical diagnosis and prevention of melioidosis
[34]. Additionally, MALDI-TOF MS has been applied for discovering of the potential taxon-
specific and source-specific biomarkers for B. pseudomallei in different samples [35, 36]. A
recent report from Cox et al. has further shown the utility of phage-amplification-based MAL-
DI-TOF MS as a rapid tool in determining ceftazidime resistance in B. pseudomallei [37]. How-
ever, to the best of our knowledge, there have been no known reports of the use of whole-cell
MALDI-TOF MS in the differentiation between B. pseudomallei wild-type and mutants derived
from single gene mutations. With the availability of extensive libraries of genetically modified
microorganisms in the laboratories, whole-cell MALDI-TOF MS could be utilized as a rapid
laboratory-based technique to classify bioengineered bacteria. In the present study, four iso-
lates, including one strain of wild-type PP844 and three constructed mutants (rpoS, ppk, and
bpsI), were analyzed. The rpoS, ppk, and bpsI isolates were constructed by gene knockdowns in
the respective location [38–40]. These isolates have been widely examined for their roles in oxi-
dative stress response, quorum sensing regulation, and the pathogenesis of B. pseudomallei
[38–42]. We assessed the applicability of the whole-cell MALDI-TOF MS for rapid identifica-
tion and differentiation between the B. pseudomallei wild-type and mutants containing
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constructed single gene mutations. We then investigated the specific biomarkers of each
mutant isolate.

Materials and Methods

Bacterial isolates and growth conditions
The four bacterial strains utilized for MALDI-TOF MS in this study were the wild-type clinical
isolate PP844, isolated from blood culture, and the three constructed rpoS, ppk, and bpsI
mutants carrying gene disruption in rpoS, ppk, and bpsI genes, respectively. Gene disruption,
using the pKNOCK-Tcr suicide vector, was carried out in PP844 for the construction of rpoS
and bpsImutants and in NF10/38 for the ppk isolate. These mutants have been characterized
with their gene disruptions by molecular biology methods as previously published [38–40].
Bacterial samples were kept in 80% glycerol and managed under BSL3 conditions. Each bacte-
rial strain was recovered from storage at -80°C by culturing on Luria-Bertani (LB) agar. For the
selection of mutants, tetracycline was supplemented into the medium with a final concentra-
tion of 60 μg/mL. A single colony was picked and grown in LB broth with aerobic shaking at
37°C for 16 hours. All of the overnight-cultured bacteria were then inoculated into 0.1% inocu-
lum and aerobically incubated at 37°C for 3 hours with agitation. Subsequently, the bacteria
were serially diluted and grown on Ashdown’s selective agar to ensure selection for growth of
B. pseudomallei and incubated at 37°C for 7 days to obtain the colonies.

MALDI-TOF sample preparation
The microbial samples for MALDI-TOF analysis were prepared using previously described
method [36]. In brief, the colonies which were grown on Ashdown’s agar plate were transferred
into 900 μL of water and then deactivated with 300 μL of ethanol. The pellet was collected by
centrifugation and mixed with a matrix solution containing 10 mg sinapinic acid in 1 mL of
50% acetonitrile with 2.5% trifluoroacetic acid. Two microliters of bacterial extract, with con-
centration approximately 0.3–0.5 μg/μL, were spotted on a MALDI steel target plate (MTP 384
ground steel plate, Bruker Daltonik, GmbH, Bremen, Germany) and were dried at room tem-
perature. The Escherichia coli DH5α was used as a positive control and the matrix solution
without bacterial cells was used as a negative control. Twenty-four spots (n = 24) from each
sample were deposited on a target plate for determination of experimental reproducibility, thus
each isolate was repeatedly examined twenty-four times. After drying, the target plate was sub-
jected to analysis in the MALDI-TOF instrument.

MS instrumentation
MALDI-TOF analysis was carried out in an Ultraflex III TOF/TOF mass spectrometer utilized
with a 337 nm N2 laser and was operated by flexControl software (Bruker Daltonik, GmbH,
Bremen, Germany). The machine was run in the linear positive mode and mass spectra in the
range of 2–20 kDa were collected. The following instrumental parameters were used: accelera-
tion voltages of 25.00 and 23.45 kV for ion source 1 and ion source 2, respectively, with a lens
voltage of 6.0 kV. External calibration was performed to determine mass peak accuracy using a
ProteoMassTM peptide & protein MALDI-MS calibration kit (Sigma Aldrich, St. Louis, MO,
United States) consisting of human ACTH fragment 18–39 (m/z 2465), bovine insulin oxidized
B chain (m/z 3465), bovine insulin (m/z 5731), equine cytochrome c (m/z 12362), and equine
apomyoglobin (m/z 16952). Each spectrum was compiled from 500 laser shots, with a 50 Hz
laser.

Mutant Identification byWhole-Cell MALDI TOFMS

PLOSONE | DOI:10.1371/journal.pone.0144128 December 14, 2015 3 / 15



Data acquisition and analysis
The twenty-four raw MALDI spectra of each isolate acquired from the mass spectrometer were
subjected to spectral processing, including peak detection, smoothing, baseline subtraction,
and recalibration using flexAnalysis 3.0 software (Bruker Daltonik, GmbH, Bremen, Ger-
many). These spectra were used for pattern matching analysis to identify bacterial species
using BioTyper 2.0 software (Bruker Daltonik, GmbH, Bremen, Germany) and for determining
candidate biomarkers of each mutant using ClinProTools 2.2 software (Bruker Daltonik,
GmbH, Bremen, Germany). A reference spectrum of the wild-type PP844 incorporated into
BioTyper database was generated. Single MALDI mass spectra of all test isolates were subjected
to the pattern matching analysis using BioTyper 2.0, with all peaks compared to the reference
spectra in the database. The first ranked microorganism query (top hit) with a score in the log
scale ranging from 0–3 was obtained and bacteria identified at the genus (a score between 1.7–
1.89) and species levels (a score� 1.9).

Determination of candidate biomarkers for each mutant was analyzed by ClinProTools 2.2.
The software conducts data processing such as baseline subtraction, recalibration, and normaliza-
tion to diminish measurement variations in the analysis, and data interpretation with statistical
calculation included, allowing the generation of potential biomarkers fromMALDI profiles [43].
Moreover, three major statistical tests, consisting of Anderson-Darling (AD), t-test/ANOVA
(TTA), andWilcoxon/Krustal-Wallis (W/KW) tests, have been incorporated into ClinProTools
to appropriately analyze the data with normal or non-normal distribution. Data with a normal
distribution are subjected to TTA test, while those of a non-normal distribution subjected toW/
KW test and AD test determines whether test data are based on normal distribution assumption
(considering p-value of> 0.05 for normal distribution and of� 0.05 for non-normal distribu-
tion). The setting parameters for spectra preparation in ClinProTools were: a resolution of
800 ppm, a mass range of 2000–20000 Da, a top hat baseline subtraction with 10%minimal base-
line width, enabling null spectra exclusion, and recalibration with 500 ppmmaximal peak shift
and 30%match calibrant peaks. All MALDI spectra were normalized against total ion current
(TIC). To identify candidate biomarkers of individual mutants, the average mass spectrum of
each mutant was compared to that of wild-type PP844 (pair test). Thus, degree of freedom value
of each analysis (2 sample classes) was 1. The average mass peak list of each pair test was acquired,
after statistical analysis, based on the total average spectrum with a signal to noise threshold of
5.00, and mass peak intensities were used in the peak calculation process. The selected mass
peaks, which exhibited p-values from AD test of� 0.05 (see Table 1), were subsequently analyzed
usingW/KW test. Specific biomarkers for a given mutant were manually selected according to p-
values of W/KW statistics (p< 0.001) and exhibited> 2-fold differences in average peak intensity
compared to wild-type. The “leave one out”mode was used for cross validation analysis using
Quick Classifier (QC) model. The principal component analysis (PCA) created based on the
Euclidian distance method and the unsupervised hierarchical clustering (dendrogram) con-
structed from PCA-derived data were used to examine the clustering of all isolates.

Results

Species identification of Burkholderia pseudomallei
Using BioTyper analysis, the positive control E. coli DH5α was correctly identified with the
identification score of 2.411. A set of twenty-four single spectra of the wild-type PP844 strain
was constructed as the reference spectrum and incorporated into BioTyper database. Single
MALDI spectra of all isolates acquired from flexAnalysis were subsequently subjected to bacte-
rial identification analysis to achieve an identification score for each isolate. Scores acquired
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from BioTyper analysis ranging from logarithmic scale 0.00–3.00 indicate levels of microorgan-
ism identification as follows: (1) a score� 1.9 refers to a reliable identification at species level,
(2) a score between 1.7–1.89 indicates a confident identification at genus level, and (3) a
score< 1.7 denotes unreliable identification [12, 35]. Our wild-type and mutants possessing
scores ranging from 2.43–2.81 were identified as B. pseudomallei at the species level, the scores
obtained for wild-type, rpos, ppk, and bpsI isolates were 2.81, 2.54, 2.64, and 2.43, respectively.
Karger et al. [35] have previously established five taxon-specific biomarkers, including m/z
4410, 5794, 6551, 7553, and 9713 Da, that are commonly found in mass profiles of B. pseudo-
mallei using the whole-cell MALDI-TOF MS approach. These taxon-specific biomarkers were
also shown to be conserved among environmental and clinical B. pseudomallei strains [36]. To
examine whether the five prominent biomarkers were presented in our MALDI spectra, we
determined these biomarkers in an average spectrum generated from twenty-four raw replicate
spectra of each respective strain. It was observed that all of the average spectra in both the wild-
type and mutant isolates exhibited high similarities in peak patterns, with differing peak inten-
sities (Fig 1). All isolates used in this study were confirmed as B. pseudomallei by the identifica-
tion scores obtained from BioTyper analysis and the existence of the five B. pseudomallei-
specific biomarkers presented in our MALDI average spectra (appearing as vertical dashed
lines in Fig 1). However, the observed bacterial morphology of all isolates cultured on Ash-
down’s selective agar illustrated distinct colony phenotypes (Fig 2), their components of ion-
ized cell surface represented more reliable taxonomic identification as B. pseudomallei species
based on whole-cell MALDI-TOF MS analysis.

Identification of clinical isolate-specific biomarkers
The two B. pseudomallei, PP844 and NF10/38, were clinical isolates used as parental strains for
mutant construction. PP844 was isolated from the blood culture of a patient, admitted to

Table 1. Candidate biomarkers ofB. pseudomalleimutant isolates.

m/z
valuea

p-value from ADb

test
p-value from W/KW
test

Average peak intensity
(arb.u.)

Standard deviation (S.D.) Coefficient of variation
(CV)c

PP844 rpoS ppk bpsI PP844 rpoS ppk bpsI PP844 rpoS ppk bpsI

2721 < 0.000001 < 0.000001 1.61 9.20 - - 0.24 0.78 - - 0.15 0.08 - -

2748 < 0.000001 < 0.000001 1.09 5.32 - - 0.17 0.40 - - 0.16 0.08 - -

3150 < 0.000001 < 0.000001 6.38 - 14.68 - 0.83 - 1.62 - 0.13 - 0.11 -

3378 < 0.000001 < 0.000001 8.38 - 20.00 - 0.72 - 1.86 - 0.09 - 0.09 -

7994 < 0.000001 < 0.000001 5.49 - 15.83 - 1.56 - 3.84 - 0.28 - 0.24 -

3420 < 0.000001 < 0.000001 3.19 - - 14.25 0.34 - - 2.10 0.11 - - 0.15

3520 < 0.000001 < 0.000001 2.88 - - 7.93 0.39 - - 1.11 0.14 - - 0.14

3587 < 0.000001 < 0.000001 3.15 - - 10.50 0.33 - - 1.04 0.10 - - 0.10

3688 < 0.000001 < 0.000001 2.24 - - 35.33 0.26 - - 3.85 0.12 - - 0.11

4623 < 0.000001 < 0.000001 1.80 - - 4.37 0.16 - - 0.30 0.09 - - 0.07

4708 < 0.000001 < 0.000001 3.01 - - 7.63 0.23 - - 0.57 0.08 - - 0.08

5450 < 0.000001 < 0.000001 1.00 - - 4.23 0.19 - - 0.30 0.19 - - 0.07

a All of the twelve selected biomarker ions exhibited significance at p < 0.001 on the basis of Wilcoxon/Krustal-Wallis (W/KW) statistics and had peak

intensity differences > 2-fold. Twenty-four spots (n = 24) of each strain were analyzed for the experimental reproducibility. Degree of freedom for each pair

test analysis (2 sample classes) was 1.
b Anderson-Darling statistical test
c For each m/z, coefficient of variation of a respective isolate was calculated from standard deviation (S.D.) divided by average peak intensity.

doi:10.1371/journal.pone.0144128.t001
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Srinagarind Hospital, Khon Kaen province, Thailand, where melioidosis is endemic. It was
identified as B. pseudomallei based on its biochemical characteristics, colonial morphology on
selective media, antibiotic sensitivity profiles, and reaction with polyclonal antibody [44].
NF10/38 was a blood culture isolate, obtained from the National Institute of Health, Ministry
of Public Health, Thailand [45]. Target gene disruption was carried out in PP844 for the con-
struction of rpoS and bpsImutants and in NF10/38 for the ppk strain, as previously reported
[38–40]. All bacterial isolates were kept as glycerol stocks for conducting experiments in labo-
ratory and were cultivated on Ashdown’s selective agar to affirm the absence of any microor-
ganism contaminations. All laboratory operations were performed under BSL3 conditions.
Our previous studies using ClinProTools software revealed that the four biomarkers specific to
clinical isolates (m/z 3658, 6322, 7035, and 7984 Da) displayed significantly higher peak inten-
sities in the clinical average spectrum than those of the environmental average spectrum in B.
pseudomallei [36]. Each average MALDI spectrum obtained of both the wild-type and the
three mutants contained the four typical clinical isolate-specific biomarkers (m/z 3658, 6322,
7035, and 7984 Da) as shown in Fig 3, supporting their clinical origin.

Fig 1. Taxon-specific biomarkers in B. pseudomallei averagemass spectra. Five effective species-specific biomarkers, including m/z 4410, 5794, 6551,
7553, and 9713, were detected in all of the average mass spectra examined (the vertical dashed lines).

doi:10.1371/journal.pone.0144128.g001
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Cluster analysis
To determine whether MALDI profiles of each mutant with a single gene mutation were dis-
tributed in a distinct cluster, the total of single MALDI spectra of PP844, rpoS, ppk, and bpsI
isolates were subjected to PCA and unsupervised hierarchical clustering analyses using Clin-
ProTools. E. coli DH5α was used as an outgroup species in analyses. All isolates exhibited
distinctly separate distribution, as illustrated by results of PCA score plot (Fig 4A). The unsu-
pervised hierarchical clustering analysis derived from the PCA scores, resulting in a dendro-
gram (Fig 4B), revealed that PP844, rpoS, and ppk clustered in the same clade. In addition,
the rpoS and ppk isolates were grouped closer and displayed the shortest distance among all
the bacterial isolates tested. This indicated a high similarity in MALDI profiles between rpoS
and ppk. It was observed that a clade of bpsI isolate showed a greater distribution from the
others. Hence, based on this study, the whole-cell MALDI-TOF MS technique could be used
to distinguish B. pseudomalleimutants containing single gene disruptions from the wild-type
PP844.

Candidate biomarkers
Comparison between MALDI spectra of PP844, rpoS, ppk, and bpsI isolates revealed visually
slight, but significant changes in mass intensities. To determine the biomarkers specific to
each strain observed from the whole-cell MALDI-TOF MS analysis, the average mass spec-
trum of each of the three mutants was individually compared against that of the PP844 wild-
type (pair test) using ClinProTools. We employed the statistical approach incorporated with
ClinProTools to provide the average mass peak list of each pair test (signal to noise threshold
of 5.00 in the mass range of 2–20 kDa). Subsequently all peaks were evaluated referring to
fold differences of average peak intensities and the p-value fromW/KW statistical calcula-
tion. The average peak intensity was calculated from peak intensity of the respective mutant
isolate divided by that of the wild-type. As listed in Table 1 and displayed in Fig 5, the specific

Fig 2. Colonymorphology ofB. pseudomallei. Colony morphology of the strains was observed after
incubation at 37°C for 7 days. The rpoS (B), ppk (C), and bpsI (D) mutants which contained each single gene
mutation in rpoS, ppk, and bpsI genes, respectively, showed distinct morphology from the wild-type (A).

doi:10.1371/journal.pone.0144128.g002
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biomarkers for each mutant displayed significant differences (p< 0.001) and> 2-fold differ-
ences in average peak intensity. With these analyses, the mass peaks at m/z 2721 and 2748
Da were identified for the rpoS isolate, while the peaks at m/z 3150, 3378, and 7994 Da were
specific for ppk. A total of seven mass peaks were defined for bpsI isolate, with a mass ranging
from m/z 3000–6000, including m/z 3420, 3520, 3587, 3688, 4623, 4708, and 5450 Da. More-
over, Quick Classifier (QC) model, a univariate sorting algorithm that statistically calculates
individual peak area, was used to evaluate cross validation of all data sets. A value of 100%
was obtained, indicating high reliability of the model prediction and thus accurate classifica-
tion of test isolates. In addition, the area under the ROC curve (AUC) value of individual
mass peaks was determined, with each mass peak showed the AUC value of 1, indicating
100% sensitivity (all true positives were found) and 100% specificity (no false positives were
found). However the same level of specificity and sensitivity might not be achieved if larger
number of samples was examined. All together these mass peaks, unique to each isolate,
could be potential biomarkers in order to facilitate the differentiation of the corresponding B.
pseudomallei wild-type and mutants.

Fig 3. Clinical isolate-specific biomarkers in B. pseudomallei average mass spectra. All four biomarkers, including m/z 3658, 6322, 7035, and 7984 Da,
were detected in all of the average mass spectra examined (the vertical dashed lines).

doi:10.1371/journal.pone.0144128.g003
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Discussion
In the present study, we have accomplished the accurate identification of B. pseudomallei wild-
type and mutant isolates with scores ranging from 2.43–2.81 using BioTyper analysis. Five
taxon-specific biomarkers previously determined among B. pseudomallei species, including m/
z 4410, 5794, 6551, 7553, and 9713 Da [35], were investigated. These five prominent species-
specific biomarkers were detected on the average spectra of the wild-type and mutants (Fig 1),
which were confirmed as the B. pseudomallei species, in agreement with the results previously
reported [35]. These results indicated the capacity of the whole-cell MALDI-TOF technique to
consistently produce conserved and stable mass peaks in the examined bacterial species.

Fig 4. Cluster analysis of B. pseudomalleiwild-type andmutants. (A) PCA score plot representing
clusters of each isolate (dashed circles) illustrated separately distribution with the rpoS and ppk isolates
producing a much closer cluster. (B) Dendrogram derived from PCA scores demonstrates that B.
pseudomallei PP844, rpoS, and ppk clustered on the same clade, while a clade of bpsI showed a greater
distance than others.

doi:10.1371/journal.pone.0144128.g004
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Moreover, as shown in Fig 2, these mutants, whose parent was clinical B. pseudomallei isolates,
exhibited various different phenotypes that did not conform to those morphologies previously
observed [46]. Nonetheless their MALDI profiles identified them as B. pseudomallei species.
These results implied that MALDI profiles generated from desorbed components of bacterial
cell surface were more reliable than identification based on colony morphology. However, it
could also be possible that certain proteins affected by the mutated genes were responsible for
the distinct colony appearances.

As displayed in Figs 1 and 3, the MALDI mass patterns for these wild-type and mutants
were relatively similar, with nearly identical and differential peak intensities observed. Similar
concentrations of each bacterial isolate (see Materials and Methods) were used in sample prep-
aration, mass peaks could then be compared. Nearly identical peak intensities observed for iso-
lates in each pair test could be referred as internal controls for comparison. Each sample
displayed differential peak intensities at particular mass peaks, thus reflected different protein
expressions. This could possibly be caused by gene knockdown in each mutant. The mutants
examined in our study, including rpoS, ppk, and bpsI, have shown their roles involving the

Fig 5. The box and whiskers plot of candidate biomarkers in B. pseudomalleimutants. All of the candidate biomarkers were selected from
ClinProTools analysis on the basis of W/KW statistics with significance at p < 0.001 and exhibiting average peak intensity differences > 2-fold. The
biomarkers at m/z 2721 and 2748 Da were identified for rpoS (A), m/z 3150, 3378, and 7994 Da for ppk (B), and m/z 3420, 3520, 3587, 3688, 4623, 4708,
and 5450 Da for bpsI (C). The top and bottom whiskers indicate the maxima and minima values of mass peak intensity, respectively. The intersection line
represents the median. In the box, a range below and upper the intersection line displays the 25%-quartiles and 75%-quartiles, respectively.

doi:10.1371/journal.pone.0144128.g005
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regulation of stress responses, virulence, and pathogenicity of B. pseudomallei. RpoS is an alter-
native sigma factor encoded from the rpoS gene and plays a role in the stationary growth phase
in response to carbon starvation and oxidative stress [38, 47], and could regulate apoptotic cell
deaths in mouse macrophages [48]. The ppk gene is naturally conserved in all cell types and
encodes a polyphosphate kinase enzyme to synthesize inorganic polyphosphates (poly P) [49].
Its role in B. pseudomallei is essential for the virulence properties, such as oxidative stress
response, motilities, and biofilm formation [39]. The BpsI protein, encoded from the bpsI gene,
regulates acyl-homoserine lactone (AHL) production and functions in the quorum sensing
(QS) system [50], an important system involved in cell survival under oxidative conditions, as
well as pathogenicity and production of virulence factors [40–42].

As shown in Fig 3, the clinical isolate-specific biomarkers appeared in all mass spectra of
wild-type and mutants. Consequently, the B. pseudomallei rpoS, ppk, and bpsI isolates exhibited
a clinical source manner whilst bearing target gene mutations, emphasizing their parental
strains originated from the clinical source. These results accentuated that the whole-cell MAL-
DI-TOF MS could reproducibly generate reliable conserved biomarkers. Thus, the ability to
rapidly and accurately identify these mutants using the clinical isolate-specific biomarkers
would be advantageous for tracking original source of isolates.

The results of the PCA and dendrogram clarified that all examined isolates were separately
distributed, with rpoS and ppk clustered at a much closer distance (Fig 4A and 4B). It was nota-
ble that patterns of rpoS and ppkmass profiles contained a high degree of similarity but were
not identical, reflecting disruptions of these two genes and the corresponding patterns in their
altered protein expressions. Despite high similarity of their MALDI profiles, there is no known
evidence concerning cross-talk regulation or correlation between rpoS and ppk in B. pseudo-
mallei. Interestingly, bpsI further separated from the others, indicating different and unique
ionized protein patterns. Other proteins associated with the QS system, in response to AHLs
that play role in communication between bacteria and pathogenesis [40–42], might contribute
to the mass profiles observed with the bpsImutant strain. Hence, our results supported that the
whole-cell MALDI-TOFMS technique could be a promising method to distinguish mutants
with altered single gene mutations. Our conclusions are in agreement with Hazen et al [24],
where whole-cell MALDI-TOF MS in Vibrio parahaemolyticus was used to differentiate the
two mutant strains, opaR (quorum sensing regulator gene) andmutS (mismatch repair gene)
bearing single gene deletions.

The use of sophisticated algorithms complementary with whole-cell MALDI TOF MS can
also generate potential biomarkers specific for each isolate type or strain [17], thus providing
greater identification and classification of microorganisms. In our study, biomarker analysis of
MALDI profiles of all isolates, rigorously performed with data processing methods and statisti-
cal analysis such as those featured in ClinProTools to reduce bias and measurement variations
(see Materials and Methods) resulted in accurate data interpretation. In addition, through TIC
normalization in ClinProTools, all of the twelve biomarkers demonstrated especially low values
of coefficient of variation (ranging from 0.07–0.28, Table 1) of each mass peaks, indicating sen-
sitive and reliable data analysis in this study. For the first time, we obtained a total of twelve
candidate biomarkers that could be specified for rpoS (m/z 2721 and 2748 Da), ppk (m/z 3150,
3378, and 7994 Da), and bpsI (m/z 3420, 3520, 3587, 3688, 4623, 4708, and 5450 Da). These
mass peaks containing the AUC value of 1 could thus be potential biomarkers for the differen-
tiation of the corresponding B. pseudomallei wild-type and mutants.

The whole-cell MALDI-TOF MS routinely detects mass peaks in the range of 2–20 kDa
which are small-size protein molecules, reflecting ribosomal proteins, nucleic-acid binding
proteins, and cold shock proteins [4, 51, 52]. An initial attempt to annotate the twelve biomark-
ers of the three mutant isolates using the Expasy TagIdent tool identified these mass peaks
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corresponding to ribosomal proteins, cold shock-like proteins, and uncharacterized proteins
(unreported data). Other small to midsize molecules might also be encompassed in mass spec-
tra in addition to those detected proteins. MALDI-TOF/TOF MS and MALDI-TOF MS com-
bined with the shotgun nanoLC-MS/MS analyses could be more straightforward approaches to
identify the biomarkers on MALDI mass spectra [53–56].

Our study has extended the utilization of whole-cell MALDI-TOF MS for distinguishing
between wild-type and mutants possessing altered single gene mutations. This whole-cell
MALDI-TOF MS approach would benefit several laboratories that need to rapidly identify and
classify extensive libraries of bacterial constructions based on MALDI mass profiles. Moreover,
to enhance the distinction power of MALDI-TOF, the creation and expansion of a local data-
base in each laboratory should be considered. This will allow for specific biomarker detection
for more accurate identification and differentiation of microorganisms [8, 12, 15].

Conclusions
There are several advantages, compared to conventional approaches, offered by whole-cell
MALDI-TOF MS making it a powerful tool in microbiological research. The distinctive spec-
tral profiles generated from whole-cell MALDI-TOF MS is beneficial to species examination.
In addition to the ability to identify and type microbial isolates at different taxonomic levels,
there is an increasing utilization of this technology in the detection of antibiotic resistance,
recombinant proteins, and plasmid insertion in bacteria. We demonstrated the efforts to use
the whole-cell MALDI-TOF MS for distinguishing between B. pseudomallei wild-type and
mutants, including PP844, rpoS, ppk, and bpsI, and further clarified the potential biomarkers
that were specific to each isolate. These whole sets of biomarkers could thus be employed in the
identification and differentiation of individual B. pseudomallei, in particular of mutant isolates.
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