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Abstract

Background: Rocuronium, a common neuromuscular blocking agent, is mainly excreted unchanged in urine (10e25%)

and bile (>70%). Age, sex, liver blood flow, smoking, medical conditions, and ethnic background can affect its pharma-

cological actions. However, reasons for the wide variation in rocuronium requirements are mostly unknown. We

hypothesised that pharmacogenetic factors might explain part of the variation.

Methods: One thousand women undergoing surgery for breast cancer were studied. Anaesthesia was maintained with

propofol (50e100 mg kg�1 min�1) and remifentanil (0.05e0.25 mg kg�1 min�1). Neuromuscular block was maintained with

rocuronium to keep the train-of-four ratio at 0e10%. DNA was extracted from peripheral blood and genotyped with a

next-generation genotyping array. The genome-wide association study (GWAS) was conducted using an additive linear

regression model with PLINK software. The FINEMAP tool and data from the Genotype-Tissue Expression project v8 were

utilised to study the locus further.

Results: The final patient population comprised 918 individuals. Of the clinical variables tested, age, BMI, ASA physical

status, and total dose of propofol correlated significantly (all P<0.001) with the rocuronium dose in a linear regression

model. The GWAS highlighted one genome-wide significant locus in chromosome 12. The single-nucleotide poly-

morphisms (SNPs) with the most significant evidence of association were located in or near SLCO1A2. The two top SNPs,

rs7967354 (P¼5.3e�11) and rs11045995 (P¼1.4e�10), and the clinical variables accounted for 41% of the variability in

rocuronium dosage.

Conclusions: Genetic variation in the gene SLCO1A2, encoding OATP1A2, an uptake transporter, accounted for 4% of the

variability in rocuronium consumption. The underlying mechanism remains unknown.
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Editor’s key points

� There is considerable inter-individual variability in

patient requirements for rocuronium, a drug that is

mainly excreted unchanged in the bile.

� The authors performed a genome-wide association

study in a large cohort of women undergoing breast

cancer surgery.

� Genetic variation in the gene SLCO1A2, which encodes

OATP1A2, an uptake transporter for which rocuronium

is a substrate, explained 4% of the variability in

rocuronium requirements.

� Clinical variables, such as age, BMI, ASA physical sta-

tus, and total dose of propofol, explained a much larger

portion of the inter-individual variability.
Rocuronium bromide is a commonly used amino-steroidal

non-depolarising neuromuscular blocking drug that competi-

tively binds to post-junctional nicotinic acetylcholine re-

ceptors in the neuromuscular junction, blocking the action of

acetylcholine and thereby inhibiting the contraction of striatal

muscles.

Rocuronium is mainly excreted unchanged in urine

(10e25%) and bile (more than 70%).1,2 Both renal and hepatic

insufficiencies decrease clearance and prolong its action.3,4

Based on in vitro studies with animal and human liver tissue,

rocuronium is a substrate for organic anion transporters

(OATPs). The transporters take up rocuronium in the liver.5,6

Rocuronium is not generally considered to be metabolised in

the liver, although there are conflicting views (https://www.

clinicalkey.com/#!/content/6-s2.0-552). Rocuronium is a high-

ly hydrophilic molecule and binds poorly (about 25%) to

plasma proteins.7

Several reports have demonstrated major inter-individual

differences in the duration of action of rocuronium.8e11

Advanced age,12 female sex,13 conditions and treatments

that alter the skeletal muscle acetylcholine receptors,14

decrease in hepatic blood flow during surgery,15 smoking,16

and ethnic background17e19 can also affect the pharmacoki-

netics or pharmacodynamics of rocuronium.

We hypothesised that pharmacogenetic factors might

explain part of the unaccounted variation in the pharmaco-

logical response to rocuronium. The aim of this study was to

identify genetic factors associated with the requirements of

rocuronium by performing the first-ever genome-wide asso-

ciation study (GWAS) in a large cohort of women undergoing

breast cancer surgery.
Methods

BrePainGen is a prospective study designed to examine the

role of genetics in acute and persistent post-surgical pain,

mood, and effects of drugs used in anaesthesia. One thousand

women undergoing surgery for breast cancer at the Helsinki

University Hospital were recruited between August 1, 2006 and

December 31, 2010. The study protocol was approved by the

coordinating ethics committee (136/E0/2006) and the ethics

committee of the Department of Surgery (Dnro 148/E6/05) of

the Hospital District of Helsinki and Uusimaa. Written

informed consent was obtained from all patients. A flow chart

of patient recruitment is provided in Supplementary Fig. 1.

After informed consent, the patients were interviewed for

background information about medical conditions,
medications, age, height, weight, previous operations, use of

alcohol, and smoking. Those using drugs affecting the phar-

macology of rocuronium were excluded.

All patients were premedicated with diazepam 2.5e15 mg

and paracetamol 1 g orally. Anaesthesia was induced with

propofol 2e3mg kg�1, and remifentanil infusion of 0.2mg kg�1

min�1 was started. Tracheal intubation was facilitated with

rocuronium 0.6 mg kg�1. During surgery, anaesthesia was

maintained with a propofol infusion at 50e100 mg kg�1 min�1

to keep state entropy (M-Entropy S/5TMModule for Anesthesia

Monitor; GE Healthcare Finland, Helsinki, Finland) at the level

of 50 [5]. Remifentanil infusion was used at 0.05e0.25 mg kg�1

min�1 to keep systolic BP at [15%] of baseline minus 20mmHg.

The neuromuscular block was maintained throughout the

surgery with rocuronium boluses of 10mg to keep the train-of-

four ratio at 0e10% (E-NMT; GE Healthcare Finland). Mechan-

ical ventilation was adjusted to normocapnia with 1:1 oxygen

and nitrous oxide. During closure of the skin, remifentanil

infusion was stopped, and boluses of fentanyl 1 mg kg�1,

ondansetron 4 mg, and droperidol 0.01 mg kg�1 were given

intravenously. Neuromuscular block was reversed with

neostigmine 2.5 mg and glycopyrrolate 0.5 mg. Before the pa-

tient woke from anaesthesia, a blood specimen was drawn for

DNA isolation.

DNA was extracted from peripheral blood using the Auto-

pure LS™ automated DNA purification instrument (Gentra

Systems, Inc., Minneapolis, MN, USA). Genotype data were

produced at the Wellcome Sanger Institute (Hinxton, UK) on

the HumanOmniExpress Illumina BeadChip (Illumina, Inc.,

San Diego, CA, USA) while blind to phenotypic information.

Sample quality control procedures have been described in

detail earlier.20 All single-nucleotide polymorphisms (SNPs)

were filtered based on minor allele frequency (MAF >0.0005),
HardyeWeinberg equilibrium (P>1 � 10�6), and success rate

(>0.97). The mean genotyping success rate was 0.997. After

quality control, genotyping data were available for 926 of the

1000 participants. Eight patients were excluded for clinical

reasons. The final participant population comprised 918 in-

dividuals with both genotype and clinical data available

(Tables 1 and 2).

Statistical analyses and data management were conducted

using IBM SPSS software versions 23.0 and 24.0 and R version

3.6.2 (R Foundation for Statistical Computing, Vienna, Austria).

To identify possible confounders that should be taken into

account when performing the GWAS, we first performed uni-

variate testing (n¼992) between clinical variables and the dose

of rocuronium needed to maintain adequate neuromuscular

block. We took the dose rates of rocuronium (in units of mg

kg�1 min�1) using the natural logarithms of their numerical

values to ensure normal distribution. The clinical variables to

be tested for relevance to rocuronium dose requirements were

age, height, BMI, total use of propofol during anaesthesia (mg

kg�1 min�1), total use of remifentanil during anaesthesia (mg

kg�1 min�1), ASA class, smoking (yes/no), alcohol use (yes/

abstinent), type of axillary surgery (sentinel node biopsy/

evacuation), and breast surgery (resection/mastectomy). We

also tested associations between CYP2D6 copy numbers,

CYP2D6-predicted phenotype (poor, intermediate, extensive,

or ultra-rapid metabolisers), CYP3A4 variant rs35599367 ge-

notype (CC/CT/TT) and CYP3A5 variant rs776746 genotype (GG/

AG/AA), and the natural logarithm of rocuronium dose rates

(expressed in mg kg�1 min�1), as the CYP data were available

from these patients.21 We tested these associations using t-

test, ManneWhitney U-test, analysis of variance, or

https://www.clinicalkey.com/#!/content/6-s2.0-552
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Table 2 Characteristics of the patients, anaesthesia, and total
dose of rocuronium; n¼918.

Median (inter-
quartile range)

Age (yr) 58 (50e64)
Height (cm) 164 (160e169)
Weight (kg) 68 (60e76)
BMI (kg m-2) 24.8 (22.3e28.2)
Total dose of rocuronium (mg) 75 (60e90)
Time to first additional dose after
induction (min)

38 (30e46)

Time to recovery after last dose (min) 47 (38e57)
Duration of anaesthesia (min) 138 (115e168)
Dose of rocuronium (mg kg�1 min�1) 7.9 (6.5e9.7)
Total dose of remifentanil during
anaesthesia (mg)

0.8 (0.6e1.1)

Dose of remifentanil (mg kg�1 min�1) 0.008 (0.007
e0.010)

Total dose of propofol during
anaesthesia (mg)

897 (718e1102)

Dose of propofol (mg kg�1 min�1) 95 (83e110)

Table 1 Characteristics of the subjects. n¼992 for all included
in the association testing, and n¼918 for genetic testing based
on the number of genetic data available.

All patients,
% (n)

Final genetic
analyses

ASA physical status
1 5.6 (56) 5.4 (50)
2 82.5 (818) 82.8 (760)
3 11.9 (118) 11.8 (108)

Type of surgery
in the axilla
Sentinel node biopsy 55.8 (554) 55 (505)
Evacuation of axilla 44.2 (438) 45 (413)

Type of surgery in
the breast
Resection 62.4 (619) 62.2 (571)
Mastectomy 37.6 (373) 37.8 (347)

Smoking habits
No 82 (813) 82.5 (757)
Yes 18 (179) 17.5 (161)

Alcohol use
No 17.5 (173) 18.1 (166)
Yes 82.5 (819) 81.9 (752)
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KruskaleWallis test, depending on the distributions of vari-

ables. Pairwise comparisons were adjusted with Bonferroni

corrections.

After studying possible associations, we conducted multi-

variate linear regression modelling based on variables that

had statistically significant (P<0.05) associations with rocuro-

nium requirements. We used a stepwise method to construct

the final model. The final linear regression model contained

only variables that remained significant in multivariate

testing. These were used as covariates in the GWAS. In addi-

tion, the first five dimensions from multidimensional scaling

of genotype data were also used as covariates to take into

account a possible hidden population structure.
The GWAS was conducted using an additive linear regres-

sion model with PLINK software.22 Associations between total

dose of rocuronium and 653 034 genetic variants (SNPs) were

tested. The standard threshold of genome-wide statistical

significance, P<5� 10�8, was used. After GWAS results became

available, we performed another linear regression round,

including four lead variants, to examine the impact of these on

the total dose of rocuronium.

The genomic region showing a significant association with

rocuronium dosage was further examined to identify the most

likely causal SNPs within the locus. For this, the genomic data

were first pre-phased with Eagle software version 2.4.23 Sub-

sequently, the genotypes were imputed using Beagle 4.1 and

population-specific Sequencing Initiative Suomi panel as

imputation reference.24,25 Poorly imputed variants were

excluded (INFO <0.7). The imputation reference panel con-

sisted of 3775 Finns. To identify the number of independent

association signals and the lead SNPs within the associated

locus, the FINEMAP26 tool was used. The FUMA27 tool was used

to examine the potential functional effect of each associated

SNP. Genetic effects on gene expression across tissue types

were studied using publicly available data from the Genotype-

Tissue Expression project v8.28 FINEMAP 1.426 was run,

allowing amaximum of K¼5 causal variants. The credible sets,

those containing the most likely causal variants, were re-

ported, assuming either one or two causal variants.
Results

To test associations with clinical variables, all 992 individuals

with complete clinical data were used. For 918 of these,

genome-wide genotype data were available and used for the

GWAS. The characteristics of the subjects and of rocuronium

requirements are shown in Tables 1 and 2. The total dose of

rocuronium had a linear relationship (R2¼0.412) with the

duration of anaesthesia (Fig. 1a). The median number of

additional doses was 4 (inter-quartile range [IQR]: 2e5), range

0e20. Twenty-one patients did not receive additional doses of

rocuronium after intubation.

Of the continuous variables tested, age (P<0.001), BMI

(P<0.001), and total doses of propofol (mg kg�1 min�1; P<0.001)
and of remifentanil (mg kg�1 min�1; P<0.001) had significant

correlations with the dose of rocuronium (in mg kg�1 min�1).

Of the dichotomous and ordinal variables, ASA class (P<0.001),
use of alcohol compared with abstinence (P¼0.001), and breast

resection vs mastectomy (P<0.001) were statistically signifi-

cant at P<0.05.
Multiple linear regression models were run to understand

the effects of the aforementioned variables on the dose of

rocuronium (in mg kg�1 min�1). There was homoscedasticity

as assessed by visual inspection of a plot of standardised re-

siduals vs standardised predicted values, normality of the re-

siduals being assessed by visual inspection of a normal

probability plot: there were no significant outliers, as assessed

by Cook’s distance. The results of the linear model are pre-

sented in Table 3. The clinical variables in the model accoun-

ted for 35.3% of the variability in rocuronium dosage.

The GWAS highlighted one locus on chromosome 12

showing genome-wide significant evidence of association

with rocuronium dose (Fig. 2). Eight genotyped SNPs reached

the standard threshold of genome-wide statistical signifi-

cance, P<5 � 10�8 (Table 4). The SNPs with the most signifi-

cant evidence of association were all located in or near gene

SLCO1A2. LocusZoom plots29 of the area are shown in
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lighted in blue. Mean rocuronium dosage in this group is lower than the average, and the individual data points are also clearly at the lower
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highlighted in blue in Fig. 2a. GWAS, genome-wide association study; SNP, single-nucleotide polymorphism.
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Table 3 Linear regression model with statistically significant
clinical variables and statistically significant clinical variables
and genetic variants with a dose-altering effect. The tested
variable was rocuronium dose (in mg kg�1 min�1).

В P-value 95%
CI
lower
bound

95% CI
upper
bound

Clinical variables
Age (yr) e0.004 <0.001 e0.006 e0.003
BMI e0.029 <0.001 e0.032 e0.025
ASA physical status 1 0.088 0.019 0.014 0.16
ASA physical status 2 0.06 0.009 0.015 0.10
Propofol
(mg kg�1 min�1)

2.0 <0.001 1.3 2.7

Adjusted R2¼0.35
Clinical variables and genetic variants
Age (yr) e0.005 <0.001 e0.006 e0.003
BMI e0.028 <0.001 e0.032 e0.025
ASA physical status 1 0.099 <0.001 0.025 0.17
ASA physical status 2 0.075 0.008 0.031 0.12
Propofol
(mg kg�1 min�1)

1.9 <0.001 1.2 2.6

rs7967354 e0.043 0.001 e0.069 e0.017
rs11045995 e0.090 <0.001 e0.12 e0.062
Adjusted R2¼0.41

CI, confidence interval.

SLCO1A2 and rocuronium dose requirements - 953
Supplementary Fig. 2a and b. Based on the genetic recombi-

nation patterns and the FINEMAP tool, the most likely sce-

nario is that two SNPs are needed to explain the association.

The top candidates are rs7967354 (P¼5.3e�11; b¼e0.143 for
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allele G; MAF¼0.22) and rs11045995 (P¼1.4e�10; b¼e0.147 for

allele G; MAF¼0.18), both located in gene SLCO1A2 and in

moderate linkage disequilibrium (LD) with each other

(r2¼0.26). The minor alleles of both variants (rs7967354-G and

rs11045995-G) are associated with decreased rocuronium

requirements.

Patients with two minor alleles (G/G) of the variant

rs7967354 needed significantly less rocuronium during anaes-

thesia (n¼47; median dose rate: 6.1 mg kg�1 min�1; IQR: 5.5e7.5)

compared with patients with G/A genotype (n¼310; median

dose rate: 7.7 mg kg�1 min�1; IQR: 6.4e9.5) and A/A genotype

(n¼561; median dose rate: 8.2 mg kg�1 min�1; IQR: 6.3e9.1)

(Fig. 1b) in KruskaleWallis testing (P<0.001). Similarly, patients

with rs11045995G/G genotypeneeded significantly lower doses

of rocuronium during anaesthesia (n¼37; median dose rate: 6.3

mg kg�1min�1; IQR: 5.6e7.0; P<0.001) than the patientswith G/A

(n¼254;mediandose rate: 7.5mgkg�1min�1; IQR: 6.3e9.1) andA/

A genotypes (n¼627; median dose rate: 8.3 mg kg�1 min�1; IQR:

6.8e10.1) (Fig. 1c). We also found that patients with two minor

alleles in both dose-altering variants (rs7967354-GG þ
rs11045995-GG; n¼19; median dose rate: 5.9 [IQR: 5.4e6.5] mg
kg�1 min�1) needed even less rocuronium during anaesthesia

than with other genotype combinations in the KruskaleWallis

test (Fig. 1a and d; Supplementary Tables 1 and 2).

The final linear regression model included both the clinical

variables and the two lead SNPs rs7967354 and rs11045995

(Table 3). The variables in the model accounted for 41% of the

variability (adjusted R2) in the rocuronium dose. In this

multivariate analysis, age (P<0.001), BMI (P<0.001), ASA 1 vs

ASA 3 (P¼0.008), ASA 2 vs ASA 3 (P¼0.001), dose of propofol

(P<0.001), rs7967354 (P¼0.001), and rs11045995 (P<0.001)
remained significant at P<0.05. By including the two SNPs in
osome

9 10 11 12 13 14 15 16 17 18 19 202122 23

0

10

O
b

se
rv

ed
 –

lo
g

10
 P

-v
al

u
e

Expected –log
10

 P-value

1

2

3

4

5

6

7

8

9

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

tested in the GWAS, plotted against their respective chromosomal

n chromosome 12. The quantileequantile plot in the upper-right

expected P-values under the null hypothesis of no association.

rphism.



Table 4 Dose-altering variants found in this genome-wide association analysis.

Chr SNP Gene Minor
allele

MAF b P-value SNP is r2 rs7967354 r2 rs11045995

12 rs7967354 SLCO1A2 G 0.22 e0.1425 5.302e�11 Intron variant 1 0.261516
12 rs4149005 SLCO1A2 A 0.22 e0.1417 6.809e�11 Non-coding

transcript
exon variant

0.996918 0.263069

12 rs875234 SLCO1A2 G 0.22 e0.14 1.129e�10 30 UTR variant 0.996919 0.260478
12 rs11045995 SLCO1A2 G 0.18 e0.1473 1.416e�10 Intron variant 0.261516 1
12 rs10743413 SLCO1A2 G 0.20 e0.1424 2.516e�10 Intron variant 0.233591 0.873469
12 rs10841798 SLCO1A2 C 0.18 e0.1417 6.672e�10 Intron variant 0.259925 0.982672
12 rs10770800 SLCO1A2 G 0.18 e0.1399 1.228e�9 Intron variant 0.266367 0.98603
12 rs10841782 SLCO1A2 A 0.08 e0.1757 8.452e�8 Intron variant 0.322123 0.316403

Chr, chromosome; MAF, minor allele frequency in the study sample; r2 squared correlation coefficient measure for linkage disequilibrium, range 0e1;
SNP, single-nucleotide polymorphism.

954 - Ahlstr€om et al.
the model, the proportion of the variance explained increased

by 4 percentage points.

As both rs7967354 and rs11045995 are located in the

intronic regions of SLCO1A2, we analysed the region further

using imputed genome data, and FINEMAP and FUMA pro-

grams, to locate other variants possibly driving the association

signal. On the imputed data, FINEMAP gives a probability of

74% to one causal variant and 26% for two causal variants.

Assuming one causal variant, the 95% credible set (the set of

variants containing the causal variant with 95% probability)

contains 20 variants (Supplementary Table 3). Assuming two

causal variants, the lead variants are rs7967354 and

rs10743413 (the latter of which is highly correlated with

rs11045995; r2¼0.88), and the two credible sets contain,

respectively, 13 and 5 variants with probability over 1% of

being causal (Supplementary Table 4). FINEMAP estimates that

the SLCO1A2 region explains 3.75% of the variance of the

phenotype (95% credible interval: 1.77e6.29%).

Next, we performed FUMA analysis to check whether the

most likely causal variants were associated with tissue-

specific changes in the expression level of SLCO1A2 or other

genes. For the 20 potentially causal variants, FUMA analysis

detected 39 expression quantitative trait loci (eQTL) for four

genes at a false discovery rate of 5% (Supplementary Table 5).

For SLCO1A2, three variants were eQTL in the brain and three

in the cerebellum. Other eQTL were found for the gene RECQL

(expression measured in blood), PYROXD1 (in blood), and

C12orf39 (in lymphocytes and in blood). Plots for tissue-wide

expression results for rs7967354 and rs11045995 are in

Supplementary Fig. 3a and b.
Discussion

We explored clinical and genetic factors explaining variation

in rocuronium requirement during surgery for breast cancer in

918 women. We showed that a locus containing gene SLCO1A2

affects the dose rate needed for maintaining adequate

neuromuscular block. Of the clinical variables examined, age,

BMI, total dose of propofol, and ASA class were associated with

the rocuronium dose. Combined, these factors explained 41%

of the dose rate variation. Our study provides further confir-

mation that neither CYP2D6 nor CYP3A4 plays a role in

determining rocuronium requirements.

The median rocuronium dose used is in line with previous

reports.30,31 In our study, advanced age,12 lower BMI, and
higher ASA class decreased the amount of rocuronium

needed. Previous reports on the effect of BMI on rocuronium

requirements are conflicting.32,33 Our patients weremedicated

according to their actual body weight, which might explain

why lower BMI decreased rocuronium requirements. We

observed that higher propofol doses were associated with

increased need for rocuronium, whereas some previous

studies suggested that propofol would have muscle-relaxing

effects,34 reducing the required dose of neuromuscular

blockers.35 However, the designs of these studies were very

different from ours. There are no previous linear regression

models evaluating rocuronium needs during propofol

anaesthesia.

Our GWAS identified one genome-wide significant associ-

ation peak, on chromosome 12, in and around the SLCO1A2

gene, which encodes the OATP1A2. The signal was best

explained by two lead SNPs, rs7967354 and rs11045995. Higher

numbers of the minor alleles of these SNPs were associated

with a lesser need for rocuronium. The biggest variation in

rocuronium dosage was observed when we compared partic-

ipants homozygous for both rs7967354 and rs11045995 minor

alleles (G) with those homozygous for the major alleles (A)

(Fig. 1a and d; Supplementary Tables 1 and 2).

Organic anion transporters are cellular transmembrane

proteins, important in the distribution, metabolism, and

excretion of various drugs and expressed in pharmacokineti-

cally important organs, such as liver, kidney, and intestine.36

Based on immunohistochemical staining, OATP1A2 trans-

porters are located in cholangiocytes, where they have an

important role in excretion of drugs into the bile.37 As

rocuronium is a known substrate of OATP1A236 and is mainly

excreted unchanged in the urine (10e25%) and bile (>70%),1,2

the role of OATPs in its excretion is of interest.

A study with Slco1a/1be/e knockout mice showed that lack

of functioning OATP1A2 leads to accumulation of the sub-

strates of this transporter in plasma.38 Previous studies also

indicate that OATPs are a target for drug interactions.

Expression of OATPs, especially OATP-A, were significantly

increased in patients treated with carbamazepine.39 Carba-

mazepine use is known to increase the required rocuronium

dosage.40 Our results suggest that this would be attributable to

induction of OATP1A2 rather than of CYP3A4.

Few previous studies have addressed the pharmacoge-

netics of rocuronium. A candidate gene study based on only 30

patients, by Costa and colleagues,41 showed evidence of
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association between a variant e189_188InsA (rs3834939),

located in the promoter region of the SLCO1A2 gene, and

reduced clearance of rocuronium. Neither this SNP rs3834939

(P¼0.000026 in our study) nor the other variants tested by

Costa and colleagues were amongst the SNPs showing

genome-wide significant evidence of association (a standard

threshold of genome-wide statistical significance is P<5 �
10�8).

The other two earlier rocuronium studies were also

candidate gene studies, analysing only a few variants in small

patient samples. Based on a sample of 105 Chinese patients,

Qi and colleagues42 reported that SNPs rs12720464 and

rs1055302 in the ABCB1 gene, coding for an ATP-dependent

drug efflux pump, associate with prolonged spontaneous re-

covery after a single dose of rocuronium. In the study of Mei

and colleagues,43 another ABCB1 SNP (rs1128503) and an SNP

(rs2306283) in the OATP1B1 transporter gene SLCO1B1 showed

association with the clinical action time of rocuronium in 200

patients. Our data do not provide support for the ABCB1

findings, whilst several variants within the SLCO1B1 gene,

located right next to SLCO1A2, show almost genome-wide

significant evidence of association in our study

(Supplementary Fig. 2a). Further analyses showed that these

SNPs were not independent from our SLCO1A2 lead variants

(data not shown).

The top SNPs in our study, rs7967354 and rs11045995, and

the variants in high LD with them, are located in non-coding

parts of the gene. The intronic rs7967354 is in high LD with

SNPs rs4149005 (non-coding exon transcript variant) and

rs875234 (30 UTR variant). Our extensive eQTL analyses suggest

that a possible mechanism for the genotypeerocuronium dose

association is tissue-specific gene expression regulation. As

OATP1A2 has a role in excretion of rocuronium into bile,6

changes in the expression of SLCO1A2 caused by poly-

morphisms in the genemight prolong the effect of rocuronium

by reducing clearance.

One unexplored option to explain variation in rocuronium

dose requirement is that of inter-individual differences in

neuromuscular junctions. Here, we can only speculate on the

possibility of some underlying variation in neuromuscular

junction in otherwise healthy patients that could explain the

variation in dose needs. Interestingly, SLCO1A2 is highly

expressed in neural tissues, including peripheral nerve tis-

sue, and our eQTL analyses suggested that the lead variants

affect the SLCO1A2 expression level in the brain. It is

tempting to speculate that neural tissue also plays a

role in the impact of SLCO1A2 variants on rocuronium

requirements.

Our study has some limitations. Creatinine or creatinine

clearance values were not available to assess kidney function.

However, patients with clinically relevant kidney failure were

excluded from the study. Although the study cohort is the

largest thus far examined for pharmacogenetic data suitable

for rocuronium studies, it is small for the GWAS approach,

which usually requires thousands of participants. As our re-

sults are based on only 918 participants, all female, it is likely

that some of the more subtle genetic effects remain

undetected.

Our study suggests that genetic variation in the gene

SLCO1A2, encoding OATP1A2, is significantly associated with

differences in rocuronium requirements. Our discovery offers

one explanation for inter-individual differences in the dura-

tion of action of rocuronium. This variation was estimated to

account for 4% of the variability in rocuronium dose. The most
likely underlying mechanism is altered uptake of rocuronium

by OATP1A2.
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