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Abstract: Ca2+, as a second messenger in cells, enables organisms to adapt to different environmental
stresses by rapidly sensing and responding to external stimuli. In recent years, the Ca2+ mediated
calcium signaling pathway has been studied systematically in various mammals and fungi, indicating
that the pathway is conserved among organisms. The pathway consists mainly of complex Ca2+

channel proteins, calcium pumps, Ca2+ transporters and many related proteins. Crz1, a transcription
factor downstream of the calcium signaling pathway, participates in regulating cell survival, ion
homeostasis, infection structure development, cell wall integrity and virulence. This review briefly
summarizes the Ca2+ mediated calcium signaling pathway and regulatory roles in plant pathogenic
fungi. Based on discussing the structure and localization of transcription factor Crz1, we focus on the
regulatory role of Crz1 on growth and development, stress response, pathogenicity of pathogenic
fungi and its regulatory mechanisms. Furthermore, we explore the cross-talk between Crz1 and other
signaling pathways. Combined with the important role and pathogenic mechanism of Crz1 in fungi,
the new strategies in which Crz1 may be used as a target to explore disease control in practice are
also discussed.

Keywords: calcium homeostasis; Crz1; fungi; cellular functions; molecular regulatory mechanisms;
cross-talk

1. Introduction

Ca2+, as a second messenger, plays an important role in the regulation of biological
function in cells. Unlike other second messengers, Ca2+ does not need to be synthesized but
instead controls intracellular Ca2+ content through a series of complex regulatory mecha-
nisms when responding to external signals. The CaN-Crz1 signaling cascade in fungal cells
can be activated by different external stimuli, such as high temperature, low temperature,
hypertonicity, alkalinity, oxidative stress, ethanol stress, light sources, antifungal drugs and
others. The signal transduction mediated by Ca2+ can cause an instantaneous increase in
intracellular Ca2+, which is generally considered to be the switch to turn on the signaling
pathway [1–7]. The transient increase of intracellular Ca2+ content is caused by the entry of
extracellular Ca2+ into cells through Ca2+ channel proteins Mid1 and Cch1 on the plasma
membrane, or the release of Ca2+ from the intracellular calcium pool [8–10]. Intracellular
free Ca2+ combines with calmodulin (CaM) to form a Ca2+/CaM complex and then acti-
vates calcineurin (CaN), which further dephosphorylates transcription factor Crz1 and
allows it into the nucleus to regulate the expression of target genes [11]. The pathway is
considered the Ca2+/calmodulin/Crz1 signaling pathway, also known as the CCS (calcium
cell survival) pathway [8]. At present, the calcium signaling pathway has been systemati-
cally studied in mammals, parasites and yeasts [12–18]. Various components of the calcium
signaling pathway play an important role in vascular development, axon outgrowth, stress
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response and glycogen synthesis in organisms [19–24]. This review briefly summarizes
the calcium channels, calcium pumps and Ca2+ sensor proteins of the calcium pathway
system in fungi, pointing out that the calcium homeostasis system is involved in a variety
of life processes, such as cell growth, conidia production, stress response and maintenance
of normal organelle function. We highlight recent findings on how transcription factor
Crz1 regulates growth and development, stress responses, pathogenicity of pathogenic
fungi and its regulatory mechanisms based on discussing the structure and localization of
Crz1. In addition, cross-talk between Crz1 and other signaling pathways and how recent
advances in our understanding of CaN-Crz1 signaling cascade might be used in practice to
explore new strategies for disease control are also discussed.

2. Calcium Signaling Pathway in Fungal Cell

The calcium signaling system plays a very important regulatory role in the whole
process of fungal growth and development. Imbalance in the calcium signaling system
leads to abnormality of fungal cells in various aspects such as reproductive development,
polar growth, cell differentiation and division, stress response and programmed death.
Therefore, maintaining the stability of intracellular calcium levels is crucial for cell survival.
Under normal physiological conditions, the concentration of cytoplasmic Ca2+ in fungal
cells is in the low range of 50 to 100 nM [9,25]. The stability of Ca2+ levels in cells is
controlled by a complex Ca2+ homeostasis regulatory system (Figure 1), which includes
multiple Ca2+ channel proteins and pumps, as well as Ca2+ transporters, and many related
proteins and enzymes in eukaryotes [9,25,26]. These components, mainly located on the
plasma membrane or different subcellular organelles, are responsible for absorbing Ca2+

release from extracellular and intracellular calcium pools, thereby synergistically regulating
the stability of Ca2+ levels in the cytoplasm and various organelles [27–29].
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Figure 1. Pattern of calcium homeostasis system in fungi. When the cytosolic Ca2+ concentration 
increases, calmodulin activates calcineurin, which in turn dephosphorylates Crz1. Crz1 is then im-
ported into the nucleus and induces or represses expression of its target genes. HACS: high-affinity 
calcium system; LACS: low-affinity calcium system; [Ca2+]c: cytosolic calcium concentration; CaM: 
calmodulin; CnA: calcineurin catalytic subunit; CnB: calcineurin regulatory subunit; Crz1: calcineu-
rin responsive transcription; PMC: plasma membrane Ca2+-ATPase; PMR: plasma membrane 
ATPase-related pump; ER: endoplasmic reticulum; FLC: flavin carriers; PLC1: phospholipase C; 
PIP2: inositol-4,5-diphosphate; IP3: inositol triphosphate; DAG: diacylglycerol. 

There are many kinds of calcium pools in fungal cells, such as endoplasmic reticu-
lum, Golgi apparatus and vacuoles. Different calcium pumps are distributed in these cal-
cium pools, and are responsible for transporting Ca2+ from the cytoplasm to various orga-
nelles against the concentration gradient. For fungal cells, vacuoles rather than endoplas-
mic reticulum are the most important calcium pools, where the concentration of Ca2+ is 
about 104 times that of cytoplasmic [54,55]. This large amount of Ca2+ storage is maintained 
by the action of two transporter proteins, Ca2+-ATPase Pmc1 and Ca2+/H+ exchanger Vcx1 
[10,26,56–60]. Vcx1 belongs to the CAX superfamily of calcium-permeable ion exchangers 
[61–63]. When there is a burst in the cytoplasmic content of calcium, the Vcx1 transporter 
sequesters the calcium into the vacuoles. In addition to calcium, the Vcx1 protein trans-
ports Mn2+ ions, thus allowing S. cerevisiae to grow in high concentrations of either calcium 
or manganese ions [64]. Pmr1 (Plasma membrane ATPase related) is the first member of 
the secretory pathway Ca2+-ATPase (SPCA) family, which mediates the transport of Ca2+ 
and Mn2+ in Golgi under normal physiological conditions [56,65–69]. 

In order to precisely regulate intracellular calcium signals, organisms have also 
evolved several calcium-sensing proteins to respond to different ranges of Ca2+ concentra-
tion levels [70]. CaM, located downstream of phospholipase C [71] in the calcium signal-
ing pathway, is a very important Ca2+ sensor that can sense the change of intracellular Ca2+ 
concentration and regulate a series of downstream target proteins by binding with Ca2+ 
[72–74]. CaN, as a Ca2+ and CaM dependent serine/threonine protein phosphatase, is com-
posed of the catalytic subunit CNA and the regulatory subunit CNB [75–79], and is the 
central mediator of the Ca2+/calmodulin/calcineurin/Crz1 signaling pathway. In fact, cal-
cineurin regulates the activity of diverse calcium transporters on the plasma membrane 
and is mainly responsible for calcium homeostasis [80]. Upon Ca2+ presence, the activated 
CaM binds to the CNA and CNB complexes to form a fully activated trimer [81], and then 
activated CaN dephosphorylates Crz1 and transfers it to the nucleus to regulate the 

Figure 1. Pattern of calcium homeostasis system in fungi. When the cytosolic Ca2+ concentration
increases, calmodulin activates calcineurin, which in turn dephosphorylates Crz1. Crz1 is then
imported into the nucleus and induces or represses expression of its target genes. HACS: high-
affinity calcium system; LACS: low-affinity calcium system; [Ca2+]c: cytosolic calcium concentration;
CaM: calmodulin; CnA: calcineurin catalytic subunit; CnB: calcineurin regulatory subunit; Crz1:
calcineurin responsive transcription; PMC: plasma membrane Ca2+-ATPase; PMR: plasma membrane
ATPase-related pump; ER: endoplasmic reticulum; FLC: flavin carriers; PLC1: phospholipase C;
PIP2: inositol-4,5-diphosphate; IP3: inositol triphosphate; DAG: diacylglycerol.
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Two pathways have been reported to participate in extracellular Ca2+ uptake in
fungi: the high-affinity Ca2+ transport system (HACS) and low-affinity Ca2+ transport
system (LACS). The HACS, composed of Mid1 and Cch1, is responsible for Ca2+ uptake
at low calcium concentrations (about 100 nM) [4,30,31]. Recently, Ecm7, a member of the
PMP-22/EMP/MP20/Claudin superfamily of transmembrane proteins that includes
γ-subunits of voltage-gated calcium channels, was identified as another subunit of
HACS [32,33]. Cch1, the first Ca2+-related protein in the Ca2+/calmodulin/calcineurin/Crz1
signaling pathway, plays a critical role in regulating a variety of physiological activities
activated by the calcium signaling system in fungal cells [34–39]. Mid1 and Cch1 are subject
to feedback inhibition by calcineurin in a high calcium environment; then, the LACS plays
a major role. The only known component of LACS to date is the membrane protein in
Figure 1 [25,30,40]. The deletion of Figure 1 in fungi affects a wide range of cellular pro-
cesses, such as sexual reproduction, mycelial growth, virulence and conidia
production [41–44]. Recently, transient receptor potential (TRP) channels were found
among mammals, flies, worms, ciliates, Chlamydomonas and yeasts [45]. The TRP chan-
nels act as sensors for various stresses, including temperature, pH, osmolarity and nutrient
availability [46–49]. The first calcium-permeable TRP, initially isolated from Arabidopsis
thaliana, can be activated by hyperosmotic shock and, therefore, was named calcium-
permeable stress-gated cation channel 1 (CSC1) [47], which includes the PenV protein of
P. chrysogenum and CefP of A. chrysogenum [50]. The Yvc1 channel protein located on the
tonoplast is a homologue of mammalian transient receptor potential (TRP) channel protein
responsible for the release of Ca2+ from the vacuole into the cytoplasm [10,51,52]. FLC
was recently proposed as a member of the FLC family required for importing FAD into
the endoplasmic reticulum, and it represent a conserved fungal gene family of integral
membrane protein, spanning a TRP-like domain [49,53]. Some studies suggest FLC could
act as either a calcium sensor or directly as a calcium channel [49].

There are many kinds of calcium pools in fungal cells, such as endoplasmic reticulum,
Golgi apparatus and vacuoles. Different calcium pumps are distributed in these calcium
pools, and are responsible for transporting Ca2+ from the cytoplasm to various organelles
against the concentration gradient. For fungal cells, vacuoles rather than endoplasmic
reticulum are the most important calcium pools, where the concentration of Ca2+ is about
104 times that of cytoplasmic [54,55]. This large amount of Ca2+ storage is maintained
by the action of two transporter proteins, Ca2+-ATPase Pmc1 and Ca2+/H+ exchanger
Vcx1 [10,26,56–60]. Vcx1 belongs to the CAX superfamily of calcium-permeable ion ex-
changers [61–63]. When there is a burst in the cytoplasmic content of calcium, the Vcx1
transporter sequesters the calcium into the vacuoles. In addition to calcium, the Vcx1
protein transports Mn2+ ions, thus allowing S. cerevisiae to grow in high concentrations of
either calcium or manganese ions [64]. Pmr1 (Plasma membrane ATPase related) is the
first member of the secretory pathway Ca2+-ATPase (SPCA) family, which mediates the
transport of Ca2+ and Mn2+ in Golgi under normal physiological conditions [56,65–69].

In order to precisely regulate intracellular calcium signals, organisms have also
evolved several calcium-sensing proteins to respond to different ranges of Ca2+ concentra-
tion levels [70]. CaM, located downstream of phospholipase C [71] in the calcium signaling
pathway, is a very important Ca2+ sensor that can sense the change of intracellular Ca2+ con-
centration and regulate a series of downstream target proteins by binding with Ca2+ [72–74].
CaN, as a Ca2+ and CaM dependent serine/threonine protein phosphatase, is composed
of the catalytic subunit CNA and the regulatory subunit CNB [75–79], and is the central
mediator of the Ca2+/calmodulin/calcineurin/Crz1 signaling pathway. In fact, calcineurin
regulates the activity of diverse calcium transporters on the plasma membrane and is
mainly responsible for calcium homeostasis [80]. Upon Ca2+ presence, the activated CaM
binds to the CNA and CNB complexes to form a fully activated trimer [81], and then activated
CaN dephosphorylates Crz1 and transfers it to the nucleus to regulate the expression of Crz1-
dependent genes [11,82]. In fungi, the CaN-Crz1 signaling pathway is also conserved and
involved in many biological processes, such as cell growth, infection structure differentiation,
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cell wall integrity, pathogenicity and stress response [83–87] (Figure 1). The Figure 1 only
depicts genes in the calcium signaling pathway that are closely linked to Crz1 or directly
regulated by Crz1.

3. Calcineurin-Activated Transcription Factor Crz1
3.1. Structure and Localization of Calcineurin Responsive Transcription Factor Crz1

Crz1 is the earliest identified downstream target protein of CaN in the Ca2+/CaM-CaN
signaling cascade reaction [88]. Crz1 contains six important domains, including the C2H2
zinc finger DNA-binding domain, the calcineurin-docking domain (CDD), the serine-rich
region (SRR), the nuclear export signal (NES), nuclear localization signal (NLS), and cal-
cineurin docking motif (docking site to calcineurin, PIISIQ) [11,89–94]. The C2H2 zinc
finger domain can bind to some target gene promoter response elements, which are called
CDREs (calcineurin-dependent response elements). Therefore, a gene promoter sequence
with this element is likely to be regulated by Crz1 [88]. The docking motif PIISIQ reported
in Saccharomyces cerevisiae is the site of interaction between CaN and Crz1 [92]. The SRR
structural domain, a serine-rich region containing several serine residues, is the target site
for dephosphorylation of Crz1 by calcineurin and determines the localization and phospho-
rylation level of Crz1 [82,95]. Without external stresses or stimulus, Crz1 is localized in the
cytoplasm, while upon increased Ca2+ concentration, CaN is activated to dephosphorylate
Crz1, and then dephosphorylated Crz1 relocates to the nucleus for regulating targeted
genes. This localization can be reversed by inhibitors, such as cyclosporine A, which
inhibits CaN activity and redistributes Crz1 to the cytoplasm [11]. In addition, Crz1 can
be phosphorylated in the presence of protein phosphokinase. The homologous protein
Hrr25 of casein kinase 1 in mammals was detected by the high-throughput protein chip
method [96]. In S. cerevisiae, Hrr25 plays a role in responding to DNA damage, mitosis
and vacuole transport. In vivo, Hrr25 can bind to Crz1 and phosphorylate it to change
its localization. The phosphorylated Crz1 is transported to the cytoplasm to avoid its
accumulation in the nucleus. The ability of Crz1 to transport between cytoplasm and
nucleus is regulated by NLS and NES. NLS and NES are able to form complexes with
cellular input or output proteins, respectively. There is an NLS at the C-terminus of de-
phosphorylated Crz1, which can bind to the nuclear input protein Nmd5. Therefore, Nmd5
is responsible for transporting Crz1 to the nucleus. Interaction between NES and nuclear
export protein Msn5 is responsible for nuclear export of phosphorylated Crz1 [73,82,97].
However, different Crz1 nuclear input and output proteins have recently been found in the
industrial fungus Penicillium oxalicum [98]. Using tandem affinity purification combined
with mass spectrometry (TAP-MS), no Msn5 homologue was found in P. oxalicum instead
of the nuclear transporter Los1. Therefore, it is more likely that PoCrz1 is exported from
the nucleus through Los1 than through Msn5. Los1 and Msn5 play some overlapping
roles in nuclear output [99]. In addition, PoCrz1 enters the nucleus through Srp1 rather
than Nmd5 [98]. These findings suggest that Crz1 transportation between cytoplasm and
nucleus is also finely regulated.

3.2. Transcription Factor Crz1 Regulates Fungal Growth and Development

The transcription factor Crz1 regulates target genes and proteins through the cal-
cium signaling cascade pathway and ultimately affects fungal growth, development and
pathogenicity. Deletion of Crz1 resulted in abnormal development of vegetative growth
of most pathogenic fungi. The ∆BcCrz1 mutant in Botrytis cinerea demonstrated impaired
mycelial growth and abnormal branching on CM medium [90]. Similarly, the vegeta-
tive growth of ∆FgCrz1 in Fusarium graminearum and ∆AnCrz1 in Aspergillus nidulans
shows severe defects [100,101]. However, in Penicillium digitatum, Aspergillus fumigatus,
Magnaporthe grisea and Verticillium dahliae, the absence of Crz1 has no significant effect
on their vegetative growth [91,102–104]. In human pathogenic fungus Candida lusitaniae,
the deletion of Crz1 is associated with the loss of the ability to transform from yeast to
hyphal morphology [105]. The cell structure of the WT and Crz1 mutants in Candida glabrata
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was observed via transmission electron microscope and it was found that compared with
WT, the Crz1 mutants demonstrated irregular plasma membrane structure and abnor-
mal organelles [106]. Formation and development of fungal conidia require Crz1. For
example, after knocking out Crz1 in B. cinerea, the ∆BcCrz1 cannot produce sporophores or
conidia [90]. The ∆FgCrz1 in F. graminearum was unable to form perithecium, which affected
its sexual development [100]. After the deletion of Crz1, Valsa pyri could not form a fruiting
body structure [107]. Other studies have reported that the A. nidulans could open the calcium
channel through the pressure sensor on the cell wall, and the CNA/Crz1 complex was acti-
vated, thereby promoting the polar growth of mycelia [108]. In a word, Crz1 is involved in
various physiological functions of fungi, which we summarized in Table 1.

3.3. Transcription Factor Crz1 Is Essential for Fungal Pathogenicity

The virulence regulated by Crz1 was first studied in C. albicans [94,109], a human
pathogenic fungus, and it was confirmed that the deletion of Crz1 would reduce the vir-
ulence. Crz1 is also associated with the virulence of other Candida species. In emerging
fungal pathogens C. lusitaniae and C. glabrata, it has been shown that the signal transduc-
tion pathway of CaN-Crz1 can control the virulence of the systemic infection model in
mice [105,106,110]. Interestingly, the effect of Crz1 on virulence was also related to the
specific niche of the host. For example, Crz1 is particularly important for murine eye
infection, but it does not play a role in the murine urinary tract infection model [106]. It is
well known that Crz1 is also necessary for mycelial growth, morphological transformation
and spore and appressorium formation of filamentous fungi [89–91,102–104], on top of
being the precursor for the formation and maintenance of pathogenicity of pathogenic
fungi. In Magnaporthe oryzae, compared with the WT, the reduced pathogenicity of the
Crz1 knockout strain is mainly due to the decreased swelling pressure of appressorium,
which leads to osmotic damage [89]. The reduction of appressorium swelling found in
∆MgCrz1 is reported to be caused by disruption of lipid metabolism [103]. In B. cinerea, the
absence of Crz1 can cause defects in cell wall and membrane integrity, thus weakening the
ability of hyphae to penetrate plant tissues [90]. The significantly decreased pathogenicity
of the ∆FgCrz1 in F. graminearum was suggested to be associated with impaired toxin
DON biosynthesis [100]. In summary, through these studies on the pathogenic infection
mechanisms of fungi pathogens, it was found that although Crz1 played a conservative
role in fungi virulence or pathogenicity, the pathogenic mechanisms were different.

3.4. Transcription Factor Crz1 Involved in Fungal Stresses Responses

Fungi are frequently exposed to a variety of environmental stresses, including metal
ions, oxidative stress, pH and cell wall interference agents. In order to cope with these
environmental stresses, fungi evolve various strategies to quickly sense these signals, and
then reduce the damage caused by environmental stresses. The transcription factor Crz1
is activated by stress-induced elevated Ca2+ levels and regulates the expression of related
genes in response to these stresses. Crz1 is involved in the response of fungi to various
stresses, as shown in Table 2.

3.4.1. Transcription Factor Crz1 in Ion Stress Response

In fungi, the Crz1 mutant is sensitive to ion stress, especially hypersensitivity to Ca2+,
which has been reported in several studies [89–91,102,103,111,112] and may be due to
the dephosphorylated Crz1 being transferred into the nucleus to induce the expression
of multiple genes related to calcium ion stress, such as PMC and PMR [69,93,113,114].
However, sensitivity to other cation ions stresses such as Na+, Li+, Mg2+ and Mn2+ varies
among Crz1 deleted fungal species. In A. fumigatus, the ∆Af Crz1 demonstrated strong
sensitivity to Mn2+, but low sensitivity to Na+ and Li+ [91]. For M. grisea, the ∆MgCrz1
was insensitive to Na+, Li+ and Mn2+ [89,103]. On the contrary, the ∆BcCrz1 mutant
demonstrated a strong sensitivity to these four ion stresses. In addition, it was found that
the addition of Mg2+ restored growth defects and cell wall integrity in the ∆BcCrz1 of
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B. cinerea [90]. These data suggest that ion stress responses and ion homeostasis regulated
by Crz1 are a common feature in fungi, although there was species specificity.

3.4.2. Transcription Factor Crz1 in Oxidative Stress Response

Yeast glutathione peroxidase GPX2 is a part of the antioxidant system that protects
cells from oxidative stress. The expression of GPX2 induced by H2O2 is strictly regu-
lated by transcription factor YAP1 and response regulator SKN7 [115,116]. Meanwhile,
SKN7 has been found to be a multicopy enhancer of CaN-Crz1 dependent transcription in
yeast, and SKN7 regulates calcineurin signaling by stabilizing Crz1 through direct protein–
protein interaction [117]. The sensitivity of Crz1 to oxidative stress was also confirmed in
B. cinerea [90], M. acridum [118] and P. digitatum [102]. The specific regulatory role of Crz1
in fungal pathogen response to oxidative stress needs to be further elucidated.

3.4.3. Transcription Factor Crz1 in pH Stress Response

Crz1 is essential for tolerance to high pH conditions in yeast. Upon stimulation of
alkaline conditions, Ca2+ enters the cytoplasm through the Cch1-Mid1 channel and then
activates CaN to dephosphorylate Crz1 into the nucleus to induce several alkaline pH-
responsive gene expressions, including ENA1, PHO84, PHO89 and PHO12 [119,120]. The
colony growth rate of ∆BcCrz1 slowed down under extreme pH (3 or 9). Interestingly,
exogenous Mg2+ addition could restore the growth phenotype at pH 9, but the ∆BcCrz1
growth defect phenotype did not recover at pH 3 [90].

3.4.4. Transcription Factor Crz1 in Cell Wall Interference Agents

The growth of Crz1 mutants in P. digitatum, M. oryzae and B. cinerea were seriously
damaged in the medium containing cell wall inhibitors [89,90,102]. However, compared
with the WT, the mycelial growth of ∆VpCrz1 was significantly increased on CM agar
medium containing SDS, CR or CFW, which was inconsistent with previous reports. It
was suggested that VpCrz1 acted as a negative regulator of cell wall stress in V. pyri [107].
Similarly, the Crz1 mutant demonstrated resistance to SDS in human pathogenic fungus
Candida lusitaniae, indicating that Crz1 negatively regulated cell membrane integrity, while
Crz1 was found to respond to SDS by an unknown mechanism independent of CaN [105].

In addition, the involvement of Crz1 in fungal stress resistance was also reflected in
the tolerance of antifungal drugs, temperature and ethanol. It has been reported that the
damage of Crz1 in S. cerevisiae increases its sensitivity to azole drugs, while its overex-
pression reduces the sensitivity [7]. Similarly, Crz1 is responsible for azole resistance in
P. digitorum as well as ∆PdCrz1 reduced imidazole and difenoconazole tolerance [102]. In
C. neoformans, Crz1 homologous phospholipid binding protein Cts1 was identified as a
CaN substrate for high-temperature stress [121]. The ∆CgCrz1 in C. glabrata could not grow
as normally as the WT at 40 ◦C [106]. Ethanol was a common stress source in yeast. The
cells lacking Crz1 demonstrated poor adaptation to ethanol stress, while the multi-copy
plasmid of Crz1 improved the tolerance to ethanol stress. Therefore, Crz1 was crucial for
the survival of yeast cells under ethanol-induced stress [122]. It has been demonstrated
in C. neoformans that Crz1 is involved in cell survival, biofilm formation and fluconazole
sensitivity in the hypoxic environment [123].



J. Fungi 2022, 8, 1082 7 of 16

Table 1. Regulatory roles of transcription factor Crz1 in fungi.

Fungal Species Cellular Functions of Crz1 Selected References

Alternaria alternata

Infection structure differentiation
Pathogenicity

Vegetative growth
Stress tolerance

Cell wall integrity
Melanin production

Calcium homeostasis

[86]

Magnaporthe oryzae

Conidiation
Ionic homeostasis
Cell wall integrity

Virulence

[89]

Botrytis cinerea

Vegetative growth
Mycelial morphology

Conidiation
Cell wall integrity

Virulence

[90]

Fusarium
graminearum

Vegetative growth
Sexual development

Toxin synthesis
Stress responses

Virulence

[100]

Penicillium digitatum
Conidiation

Virulence
DMI resistance

[102]

Magnaporthe grisea

Conidiation
Appressorium formation

Calcium tolerance
Melanin production

Lipid metabolism
Virulence

[103]

Verticillium dahliae

Microsclerotia development
Melanin accumulation

Cell wall integrity
Virulence

[104]

Candida lusitaniae

Cell wall integrity
ER stress

Pseudohyphal growth
Ca2+ homeostasis

Virulence

[105]

Candida glabrata

Thermotolerance
cell morphology

Virulence
ER stress tolerance

[106]

Valsa pyri

Fruiting body formation
Mycelial morphology

Virulence
Cell wall perturbing agents resistance

[107]

Cryptococcus
neoformans

Hypoxic adaptation
Inbiofilm formation
Cell wall integrity

Fluconazole tolerance

[123]
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Table 2. Stress responses regulated by transcription factor Crz1 in fungi.

Environmental Stresses Fungal Species Selected References

Ion stress

Magnaporthe oryzae [89]
Botrytis cinerea [90]

Aspergillus fumigatus [91]
Penicillium digitatum [102]
Magnaporthe grisea [103]

Torulaspora delbrueckii [111]
Aspergillus nidulans [112]

Oxidative stress

Botrytis cinerea [90]
Penicillium digitatum [102]

Saccharomyces cerevisiae [115,116]
Metarhizium acridum [118]

Alkaline stress
Botrytis cinerea [90]

Saccharomyces cerevisiae [119,120]

Cell-wall-perturbing agents

Magnaporthe oryzae [89]
Botrytis cinerea [101]

Penicillium digitatum [102]
Candida lusitaniae [105]

Antifungal agents Saccharomyces cerevisiae [7]
Penicillium digitatum [102]

High temperature stress Candida glabrata [106]
Cryptococcus neoformans [121]

Ethanol stress Saccharomyces cerevisiae [122]

Hypoxic stress Cryptococcus neoformans [123]

3.5. Molecular Regulatory Mechanisms of Transcription Factor Crz1 in Pathogenic Fungi

The zinc finger domain of Crz1 specifically binds to the 24 bp CDREs sequence to
initiate target gene expression [88,124]. In S. cerevisiae, the core consensus site for Crz1
binding is 5′-GNGGCKCA-3′ [93], and the putative DNA common sequence bound by Crz1
in Trichoderma reesei was identified as 5′-GDGGCKBNB-3′ [125]. Therefore, we hypothesize
that 5′-GNGGCK-3′ is a common sequence of Crz1-binding DNA. The target genes in-
volved in ion homeostasis, cell wall maintenance, lipid synthesis, protein degradation and
glucose metabolism are regulated by Crz1. Several studies have identified species-specific
genes regulated by Crz1, and Crz1 can also be used as an inducer or inhibitor of gene
expression. Crz1 is necessary for PMC and PMR to respond to Ca2+. PMC and PMR belong
to the P-type ATPase superfamily, which can obtain energy by hydrolyzing ATP to drive
Ca2+ transport from the cytoplasm to the vacuole and the Golgi, respectively, to maintain in-
tracellular calcium homeostasis [67,113]. In fungi, the expression of PMC and PMR genes is
significantly induced in response to Ca2+, but the expression levels are not highly activated
in the Crz1 mutants [89,91,102]. The reduced expression of these ATPases prevented the
normal translocation of excess Ca2+ from the cytoplasm to various organelles, resulting in
a disruption of calcium homeostasis, which may account for the sensitivity of Crz1 mutants
to Ca2+. ENA1, ENA2, and ENA3 belong to the encoding plasma membrane
Na+/Li+-ATPase, which are necessary for yeast survival under high Na+ and Li+ concen-
trations, and their expression is also induced by CaN in a Crz1-dependent manner [93,126].
In addition, other genes involved in ion homeostases such as MEP1, ENB1, PHO84, PHO89
and KHA1 are also regulated by CaN-Crz1 pathway [93]. Under external stress stimu-
lation, the β-1,3 glucan synthase (FKS) and the chitin synthase (CHS) are essential for
maintaining cell wall integrity. In the Crz1 mutant, both FKS and CHS expression are
disrupted [88,90,92,112]. Other genes involved in maintaining cell wall integrity such
as CRH1, RHO1, SCW10 and KRE6 are also regulated by the CaN-Crz1 pathway [93].
In P. oxalicum, an industrial fungus, Crz1 plays a role in cellulase synthesis by regulating the
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expression of cellulose decomposition genes such as cbh1, eg1 and eg2 [98]. Expression of
genes related to lipid and sterol metabolism such as SUR1, CSG2, YSR3, ERG26, HES1 and
PLB3, as well as genes involved in vesicular transport such as GYP7, YPT53, YIP3, PEP12,
RVS161, SHE4, CVT17, CVT19 and VPS36, all of which are regulated by Crz1, thus enables
cells to maintain normal membrane function and complete the process of substance delivery
to the cell surface [93]. However, studies have found that not all Crz1 functions depend on
CaN. As demonstrated in C. neoformans, Crz1 exhibits a specific CaN-independent response
to different environmental stress stimuli [127,128], Furthermore, in C. dubliniensis, Crz1
regulates haptotropic (surface-sensing) responses independently of CaN [129].

3.6. Cross-Talk between Transcription Factor Crz1 and Other Signaling Pathways

At present, it has been found that Crz1, a downstream transcription factor of the
calcium signaling pathway, is not only related to calcium signaling but also participates
in the transcriptional regulation of other signaling pathways. The cell wall integrity (CWI)
pathway, one of the MAPK cascades pathways, maintains cell wall integrity by mediating cell
wall biosynthesis. Since cell wall integrity is critical for cells to cope with environmental stress,
CWI pathways need to cross-talk with other proteins or pathways to enhance their transduction
ability [130,131]. Numerous studies have found that Crz1 maintains cell wall integrity by
regulating genes involved in CHS and FKS biosynthesis [88,90,92,112,132,133]. Therefore, it is
inferred that Crz1 cooperates with the CWI pathway to regulate cell wall integrity.

The high-osmolarity glycerol (HOG) pathway is used to regulate various stress genes
for osmotic protection, and activation of this pathway is regulated by two upstream
branches, one mediated by the Sho1 sensor and the other by a system consisting of Sln1,
Ypd1 and Ssk1 [134–138]. At the same time, Crz1 participates in the regulation of ion os-
motic homeostasis by mediating the expression of ion transport genes [89,91–93,102,116].
Shitamukai et al. [139] found that there was a crosstalk relationship between the HOG and
the CaN-Crz1 signaling pathway, and proved that there was an antagonistic effect between
them. The CaN-Crz1 signaling pathway is involved in the downregulation of the HOG
pathway by regulating the Sln1 branch. In addition, the cyclic adenosine monophosphate-
protein kinase A (cAMP-PKA) pathway is also antagonistic to the CaN-Crz1 signaling
pathway. It was found that Crz1 is a substrate for PKA, which is functionally opposite to
the CaN signaling pathway, and PKA can directly phosphorylate Crz1 to inhibit its nuclear
localization and activity [140].

In S. cerevisiae, Neurospora crassa and mammals, it has been shown that external signals
are sensed by G protein-coupled receptors (GPCRs) [141,142]. After sensing the stimulation
of external signals, membrane binding receptors trigger G protein to dissociate Gα subunit
from Gβ/γ subunit. The released Gα subunit activates phospholipase C (PLC), which
hydrolyzes inositol-4,5-diphosphate (PIP2) to generate two important messenger molecules,
diacylglycerol (DAG) and inositol-1,4,5-triphosphate (IP3) [143]. Among them, IP3 can
stimulate endoplasmic reticulum, vacuoles, Golgi and other organelles to release Ca2+,
thereby activating calcium signaling pathway [144–146]. Therefore, we propose a correla-
tion between CaN-Crz1 signaling and the G protein-coupled receptor system (Figure 1). It
was reported that glucose addition stimulates a rapid increase in free calcium level in yeast,
thus activating the calcium signaling pathway [147,148]. Furthermore, Plc1p is essential for
glucose-induced calcium increase. Studies suggest that Plc1p is activated by glucose firstly,
and then lead to cleavaging PIP2 and generating IP3 for raising the calcium level in the
cytosol [148]. However, in strains with a deletion in the GPR1 or GPA2 genes, the calcium
influx induced by addition of high glucose was inhibited, which suggests the physiological
process requires the Gpr1p/ Gpa2p receptor/G protein-coupled (GPCR) complex [149,150].

In S. cerevisiae, DNA microarray data indicated that a total of 150 genes responded
to the alkaline pH environment, but the expression of many alkali-induced genes was
inhibited in the CaN or Crz1 mutants, suggesting that calcium signaling is involved in the
alkaline stress response [120]. The Rim101 signal transduction pathway is responsible for
the adaptation of C. albicans to the alkaline environment [151]. Wang et al. [2] confirmed
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that C. albicans activated the calcium influx system in response to alkaline stress, and both
Rim101 and Crz1 were involved in the activation of PHO89 promoter induced by alkaline
stress, indicating that Rim101 and Crz1 signaling pathways had potential chelating effects
in C. albicans response to alkaline stress. In addition, the interaction between CaN-Crz1
and heat shock proteins (Haps) is involved in response to different environmental stress
conditions [152]. Hsp90 physically interacts with calcineurin and mediates echinocandin
resistance in C. albicans [153]. In A. fumigatus, the MAPK, Hsp90, and calcineurin signaling
pathways are linked and play a role in drug resistance and development [154]. These data
show that cross talk between calcineurin-Crz1 and other signaling pathways is common
but the detailed molecular mechanisms need to be investigated further.

4. Conclusions and Prosect

In response to complex environmental stimuli, fungi regulate multiple cellular
metabolic processes by sensing intracellular Ca2+ concentration changes and then acti-
vating expressions of target genes. As an important transcription factor downstream of
the calcium signaling pathway, Crz1 is highly conserved in fungi and plays a critical role
in growth, development, tolerance to stress conditions and pathogenicity. Although our
insight into Crz1 biological function has recently advanced with unprecedented speed,
there are still some open research problems that urgently need to be addressed: (1) the spe-
cific molecular mechanism of Crz1 in transcriptional regulation of target genes in calcium
homeostasis system still needs to be further elucidated, (2) It is necessary to further carry
out genetic and biochemical analysis experiments combined with transcriptome sequenc-
ing technology to understand the metabolic pathway regulated by the transcription factor
Crz1 in fungi, (3) new, environmentally safe, species-specific strategies for disease control,
such as RNA interference (RNAi) technology, should be explored based on clarifying its
regulatory mechanism of Crz1.
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