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Increasing evidence showed that the dysregulation of DNA methylation

regulators is a decisive feature of almost all cancer types and affects tumor

progressions. However, few studies focused on the underlying influences of

DNA methylation regulators-related genes (DMRegs) in immune cell-

infi l t rat ion characterist ics, tumor microenvironment (TME) and

immunotherapy in HCC patients. In our study, the alterations of DNA

methylation regulators modification patterns (DMRPs) were clustered from

hepatocellular carcinoma (HCC) samples based on the expression of DNA

methylation regulators as well as genetic and transcriptional features. In

addition, based on molecular identification of three distinct molecular

subtypes, we found that different DMRPs alterations were related to different

clinicopathological characteristics, prognosis, and immune cells infiltration

features. Moreover, we constructed and validated a DNA methylation

regulators-related genes score (DMRegs_score) to predict the survival of

HCC patients. A high DMRegs _score, which was characterized by more

TP53 wild mutation, high expression of PD-1, CTLA-4, and remarkable

immunity activation, was indicative of poor prognosis. Furthermore, we

validated the expression of eight genes which were used for the prognostic

signature in this risk score by RT-qPCR using tissues from our center. More

importantly, DMRegs_score was highly correlated with targeted drug

sensitivity. Additionally, we developed a highly accurate scoring system that

could be used to improve the clinical applicability of DMRegs _score. In

conclusion, these findings may contribute to a better understanding of DNA

methylation regulators and provide new strategies for evaluating prognosis and

developing more effective combination therapy for HCC patients.
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Introduction

Liver cancer, more specifically hepatocellular carcinoma

(HCC), is the main leading cause of cancer-related death

worldwide in 2020 (1, 2). At present, surgery is still the most

effective treatment for HCC. However, due to the occult onset

and rapid progress of HCC, patients often have lost the best

opportunity for surgical treatment at the time of diagnosis.

What’s more, the patients with HCC have poor prognosis

because of high metastasis and recurrence rate (3). Therefore,

exploring the molecular mechanism of HCC development and

finding new early diagnosis and treatment targets are the focus of

HCC research.

Epigenetic modifications, such as DNA methylation, play a

crucial role in altering gene expression and contributing to

disease development in mammals (4). According to present

reports, methylation of the fifth carbon of the DNA cytosine

within CpG dinucleotides is the most mechanistically

understood form of DNA methylation (5). DNA methylation

modification is a dynamic and vary process which is modulated

by DNA methy la t ion regu la tor s , inc lud ing DNA

methyltransferases, DNA demethylases and DNA binding

proteins (6–8). In addition, a growing body of evidence had

demonstrated that dysregulation of DNAmethylation regulators

is a hallmark of almost all cancer types and affects tumor

microenvironment (TME) or immunotherapy (7, 9, 10).

Co-inhibitory receptors Cytotoxic T-lymphocyte antigen 4

(CTLA4), programmed cell death protein 1 (PD-1), and

programmed cell death ligand 1 (PD-L1) is expressed in the

tumor microenvironment. Immunotherapy such as immune-

checkpoint inhibitors (ICIs) that target these biomarkers

activated the properties of effector T cells which can be able to

kill cancer cells. Importantly, ICIs have radically reversed cancer

therapy (11). Cancer immunotherapy targeting CTLA4, PD-L1,

or PD-1 has become a widely used method of treating various

types of cancer (12–14). Recently, anti-CTLA-4 was reported a

survival benefit of HCC patients with sorafenib resistance (15).

However, these immunotherapies were responding differently

with patient to patient, and less than 20% of immune checkpoint

blockade therapy was effective (16–18). It has been reported that

the expression of PD-L1 and the status of tumor mutation

burden (TMB) may be used as biomarkers to assess the

effectiveness of immunotherapy (19–21). Interestingly, a recent

study has revealed the characteristics of DNA methylation

modification patterns of gastric cancer and explored the link

between TME and DNA methylation modification, which

indicated that DNA methylation may be a new predictor for

immunotherapy (8). Moreover, DNA methylation regulators

distinguish early HCC stages from chronic liver hepatitis B

and C as well as healthy controls, intensify as the disease

progresses, and is highly enriched in immune function-related
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genes such as PD-1 (22). These all suggest that DNA

methylation regulators are closely related to immunotherapy

and maybe predict the response to immunotherapy. However, it

is still unclear how DNA methylation regulators affect tumors,

especially cancer immunotherapy in HCC. Therefore, further

elucidation of DNA methylation regulators could provide an

attractive perspective on cancer immunotherapy.

In this study, we integrated patients from TCGA-LIHC cohort

and ICGC LIRI-JP cohort to comprehensively evaluate the

correlation between the DNA methylation modification patterns

(DMRPs) and tumor immune landscape. First, we explored the

expression of 20 DNA methylation regulators between normal

and carcinoma tissues, and then identified 3 distinct DMRPs

which were tightly correlated with immune cells infiltration and

prognosis. In addition, we investigated the functional annotation

to distinguish cancer associated signaling pathways to the three

patterns. Moreover, we continued to quantify the DMRPs of

individual HCC patients and assessed the clinical responses to

immunotherapy based on DNA methylation regulators-related

genes score (DMRegs_score). In conclusion, our novel

DMRegs_score provides a reliable insight by which to identify

and feature immune landscape of HCC, and the results suggest the

DMRegs_score may be a biomarker for survival and

precision treatment.
Materials and method

Data collection and preprocessing of
public database

HCC patients with RNA-seq, genetic mutations (VarScan)

and clinical information (included age, sex, TNM stage, follow-

up time, and survival status) were obtained from the Cancer

Genome Atlas (TCGA) data portal (TCGA-LIHC cohort,

n=374) (http://portal.gdc.cancer.gov/). The copy number

variant profiles (CNV) were downloaded from the UCSC xena

(http://xenabrowser.net). The normalized data from another

HCC cohort were downloaded from the International Cancer

Genome Consortium (ICGC) database (ICGC LIRI-JP, n=231)

(http://daco.icgc.org). GSE76427 (n=167) array was downloaded

from Gene Expression Omnibus (GEO) database (https://www.

ncbi.nlm.nih.gov/geo/). The 20 DNA methylation regulators

were extracted from previous study (8). The TCGA and ICGC

RNA sequence data (fragments per kilobase million, FPKM

value) were transformed into TPM (transcripts per kilobase

million) format. We excluded patients without complete

clinical information and the survival time of 0, thus, a total of

685 HCC patients were further analyzed in this study. These

detailed clinical information about 685 patients with HCC was

presented in Tables S1, S2.
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http://portal.gdc.cancer.gov/
http://xenabrowser.net
http://daco.icgc.org
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.3389/fonc.2022.877817
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Song et al. 10.3389/fonc.2022.877817
Tissue samples and real-time PCR and
immunohistochemical staining

Forty-one pairs HCC and nearby non-tumor tissues were

collected from HCC patients who underwent hepatic resection

in Sun Yat-Sen Memorial hospital between Nov 2020 and Mar

2021. Liquid nitrogen was used to store these samples until

further analysis could be completed. The patients’ clinical data

were also collected (Table S3). The study protocol was approved

by the Ethics Committee of Sun Yat-Sen Memorial hospital and

informed consent was obtained from each patient. We extracted

the RNA from the tissues with Trizol (Takara, China), and

performed reverse transcription using Prime Script RTase

(Takara, China), according to the manufacturer’s protocol,

respectively. According to the manufacturer’s instructions,

real-time PCR was used to measure mRNA expression levels

using SYBR green (Takara, China). A list of the primers used for

real-time PCR is provided for Table S4. Immunohistochemical

(IHC) staining was performed as described previously (23) using

the following antibodies: Anti- CDCA3, Anti-CDC20, Anti-

YWHAQ, Anti-ADH4, Anti-TRNP1, Anti-CYP2C9, Anti-

CALU, Anti-APOC1. All antibodies used in the study are

shown in Table S5. Quantitative evaluation of protein

expression of IHC tissues was measured by ImageJ software.

The number of stained cells was identified by trainable

Weka segmentation.
Interaction among DNA methylation
regulators, copy number variant (CNV)
analysis and gene mutation analysis

The crosstalk network diagram of multiple DNA

methylation regulators was constructed by using “igraph”

package, and presented the categories “Writers”, “Erasers” and

“Readers” of these genes. The “RCircos” R package was used to

visualize the location of 20 DNA methylation regulators in

human chromosomes and the gain or loss status of copy

number. The “maftools” R package was applied to evaluate the

mutation status of 20 DNA methylation regulators and drawn

the waterfall plots in HCC.
Molecular subgroups-based clustering
analysis for DNA methylation regulators

We performed the consensus clustering with Euclidean

squared distance metric and the K-means clustering algorithm

to identify distinct DMRPs based on the expression of 20 DNA

methylation regulators by using the “ConsensusClusterPlus” R

package. HCC samples were classified into k clusters with k=2 to

k=9. Based on the consistent cumulative distribution function

(CDF) and delta region graphs, an optimal number of clusters was
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determined (24). What’s more, we compared the relationships

between molecular subgroups, clinical characteristics, and

prognosis using the “survival” and “survminer” R packages. The

clinicopathologies including age, gender, TNM stage.
Function annotation based on gene set
variant analysis (GSVA)

To identify the difference between the biological process of

DMRPs, the “GSVA” package in R was utilized to performe

GSVA enrichment analysis. GSVA, a nonparametric and

unsupervised algorithm, can quantify the gene enrichment

results in the sample of a gene expression dataset (25). In

addition, we employed the “limma” R package to screen the

significant variance in KEGG pathways and Hallmark pathways.

The well-defined gene sets of “h.all.v7.4.symbols”, and

“c2 . cp .kegg .v7 .2 . symbol s” were downloaded f rom

MSigDB database.
Identification of differentially expressed
genes (DEGs) between DNA methylation
regulators modification patterns

The previous consensus clustering analysis had classified

patients into three distinct DMRPs based on 20 DNA

methylation regulators, and we identified DNA methylation

regulators modification-related differentially expressed genes

(DMRegs) among different DMRPs. The Bayesian method of

“limma” package was used to statistical analysis, and

“venndiagram” R package was applied to visualize the

DMRegs. The DMRegs with adjusted p<0.05 and |logFC|=0.5

were considered as screening criterion. To explore the potential

functions of DMRegs, the “clusterprofler” package in R software

was utilized for Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analysis with adjusted

P values < 0.05. What’s more, we further explored the gene

cluster based on the expression profiles of DMRegs using

unsupervised clustering methods.
Construction of the DNA methylation
regulators-related gene signature

We constructed a set of scoring system to quantify the

DMRPs of individual patient with HCC by using the method

of LASSO cox regression, and we termed the score as

DMRegs_score. The DMRegs_score was developed as follows.

Univariate cox regression analysis was performed to identify

overlapping DMRegs related to survival with P-values <0.05.

Then “glmnet” R package was employed to establish the

DMRegs_score based on the expression of significant
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prognosis of DMRegs among gene clusters. Finally, the

DMRegs_score was defined using a formula method like

previous study: DMRegs_score = S (Expi * coefi), where Coefi

and Expi represented the risk coefficient and expression of each

gene, respectively. The Kaplan-Meier survival curve, the area

under the curve (AUC) of the time-dependent receiver operating

characteristics (ROC) curve were implemented to evaluate the

predictive ability of the risk model. Combining clinical data with

univariate and multivariate cox analysis were done to determine

if the risk score was an independent feature.
Estimation the relationship between
DMRegs_score and TME, PD-1, PD-L1,
and CTLA4

The ESTIMATE algorithm was used to calculate the tumor

microenvironment (TME) scores, including stromal scores,

immune scores, and estimate scores, which represented the

infiltration of immune cells and stromal cells in TME (26).

Moreover, based on the transcriptome profiles, we used “GSVA”

R package to perform single sample gene set enrichment analysis

(ssGSEA) to quantify the relative abundance of 23 immune cell

types in the TME among different DMRPs (27). The marker

genes of 23 immune cell types were acquired from a previous

study, including activated B cell, MDSC, macrophage, regulatory

T cell and so on (Table S6). Furthermore, we analyzed the

relationship between the DMRegs_score and the expression of

PD-1, PD-L1, CTLA4, and antigen presentation (HLA family).
Characteristics of mutation burden and
drug sensitivity analysis

By using “maftools” R package, the mutation annotation

format (MAF) from the TCGA database was used to explore

whether the mutations status of HCC patients was associated

with high- or low-risk group. The tumor mutation burden score

(TMB) was also calculated for each patient with HCC in both

groups. Using the “pRRophetic” package, we analyzed the IC50

of several chemotherapeutic drugs which were commonly used

to treat HCC in both groups.
Validation the DMRegs_score and
establishment of a nomogram
assessing system

The reliability and predictive ability of this DMRegs_score

was validated based on data from GEO dataset using same

methods above mentioned. Furthermore, to expand the role of

DMRegs_score in clinical practice, we used “rms” package to

develop a nomogram predicting the prognosis of HCC patients,
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which combined the clinical features and DMRegs_score. The

time-dependent ROC curves and calibration were performed to

describe the predictive value of 1-, 2- and 3-year, respectively.
Statistics analysis

The statistical analysis tools-R software (version 4.0.3, R

Foundation for Statistical Computing, Vienna, Austria) was used

in this study. Kruskal-Wallis tests or one-way ANOVA were

used as nonparametric or parametric methods for comparisons

of three groups, respectively using GraphPad Prism 8. And the

results of RT-qPCR and IHC were conducted statistical analysis

using pair t test. The forest plot and partial violin plots were

generated by Sanger Box online tool. The hazard ratio (HR) and

95% confidence intervals (CI) were calculated. All statistical

results with a P-value of <0.05 were considered significant.
Results

The landscape of DNA methylation
regulators in HCC

A total of 20 DNA methylation regulators were identified in

this study, including three writers (DNMT1, DNMT3A, and

DNMT3B), three erasers (TET1, TET2 and TET3) and fourteen

readers (MBD1, MBD2, MBD3, MBD4, ZBTB33, ZBTB38,

ZBTB4, UHRF1, UHRF2, MECP2, UNG, TDG, NTHL1 and

SMUG1). Based on a summary analysis of the incidence of

somatic mutations in these 20 DNA methylation regulators,

there was a low mutation rate for the patients with HCC from

TCGA cohort (Figure 1A). Thirty-four patients can be found

genetic mutation in available samples, and the mutation

frequency of 20 DNA methylation regulators range from 1%-

2%. The TET1 had the highest number of mutations of all the

DNA methylation regulators (2%). The exploration of copy

number variation (CNV) alteration frequency indicated

common CNV alteration in the 20 DNA methylation

regulators. DNMT1, UHRF1, TET2, MBD1/2/3 and ZBTB4

were focused on copy number deletion, while MECP2,

DNMT3A, ZBTB33/38, NTHL1, UHRF2 and UNG had

widespread frequency of CNV amplification (Figure 1B). In

addition, the locations of the CNV alterations in the 20 DNA

methylation regulators on chromosomes were presented in

Figure 1C. The status of CNV alterations indicated that CNV

might regulate the mRNA expression of DNA methylation

regulators. Further analysis revealed that 19 out of 20 DNA

methylation regulators were upregulated in tumor samples

except TET2, although the expression of TET2 in tumor

tissues is higher than in normal liver tissues (Figure 1D).

These data suggest the 20 DNA methylation regulators may

play important roles in HCC development.
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Identification of DNA methylation
regulators-related modification patterns
in HCC

From above results, we speculated that DNA methylation

regulators regulated deep-seated regulatory mechanism, which

promotes us to further to investigate their potential functional in

HCC. First, we gathered 570 patients from two HCC cohorts

(TCGA-HCC and ICGC-LIRC) to explore the expression

patterns of DNA methylation regulators involved in

tumorigenesis. Spearman correlation analysis was utilized to

assess mutual regulation among these DNA methylation

regulators (Figure 2A). The results revealed MBD2, ZBTB33

and TET2 had a significant positive correlation with other DNA

methylation regulators. Next, Cox regression and Kaplan-Meier

analysis were performed to classify the prognostic relationship of

these regulators with the HCC patients. Forest plot revealed that

DNMT1/3A//3B, TET1/3, MBD1/2/3, TDG, UHRF1, SMUG1

and UNG were significantly associated with shorter overall

survival and were considered as risk factors in HCC patients

(Figure 2B). The crosstalk network showed the interaction and

the prognostic value among 20 DNA methylation regulators in

patients with HCC (Figure 2C). In addition, to better understand
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the role of DNA methylation regulators in tumor immunity, we

explored the correlation between the 20 DNA methylation

regulators and TME-infiltration immune cells using Spearman

correlation analysis, and we found a significant negative

relationship between most of these regulators and immune

cells interaction (Figure 2D). Among them, DNMT1, ZBTB4

and MBD2 presented a strong positive correlation with most

types of immune cells, such as activated CD4+ T cells, immature

dendritic cells, and regulatory T cells. These results revealed that

DNA me t h y l a t i o n r e g u l a t o r s r e g u l a t e d t umo r

microenvironment, which might provide strategies for

immunotherapy. To understand the heterogeneity of DNA

methylation regulators in HCC patients, we then performed

unsupervised clustering analysis to classify patients based on the

expression profiles of 20 DNA methylation regulators (Figures

S1A–I). These results indicated that k=3 could achieve the best

cluster efficacy. Therefore, the patients were categorized into

three different DMRPs, including pattern A (n=199), pattern B

(n=206) and pattern C (n=165) (Figure 2E). The Kaplan-Meier

curves revealed that the pattern C had the poorer prognosis than

pattern A and pattern B (Figure 2F). PCA analysis suggested

three clusters were apparently discernible dimensions in the 20

DNA methylation regulators transcription profiles (Figure 2G).
A

B

DC

FIGURE 1

Landscape of genetic variations and transcriptional expression of DNA methylation regulators in HCC from TCGA cohort. (A) 34 of the 364
patients occurred genetic variations of 20 DNA methylation regulators with 9.34% mutation frequencies. (B) The frequency of CNV gain or loss
among DNA methylation regulators. (C) The locations of CNV variations in DMRs on 23 chromosomes. (D) The expression level of 20 DNA
methylation regulators between normal and HCC tissues. HCC, hepatocellular carcinoma; TCGA, The Cancer Genome Atlas; CNV, copy number
variant.
frontiersin.org

https://doi.org/10.3389/fonc.2022.877817
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Song et al. 10.3389/fonc.2022.877817
Distinct DMRPs and function pathways
analysis

What’s more, we found most of these DNA methylation

regulators were highly expressed in pattern B. Pattern A was

presented high expression levels of ZBTB4/33/38. Only NTHL1

was relatively highly expressed in pattern C (Figure 3A). These

data indicated that three DMRPs had distinct characteristics in

the DNA methylation regulators modification. Furthermore, as

shown in the heatmap, we explored the association between the

various clinicopathological characteristics and three patterns
Frontiers in Oncology 06
based on 20 DNA methylation regulators expression of the

metadata set (Figure 3B). And we found pattern B was related

to female patients and patients younger than 60 years old

(p<0.05), and the number of deaths were higher than the other

two patterns (p<0.001). Hence, the patients in pattern B had

poorer prognosis than other two patterns. The comprehensive

comparisons of the clinical features of the three DMRPs

suggested most of these DNA methylation regulators played

potential roles on oncogenesis. To investigate the underlying

molecular mechanism and signal pathways to each DMRP, the

GSVA enrichment analysis based on KEGG and Hallmark gene
A B

D

E F
G

C

FIGURE 2

Prognosis of DNA methylation regulators and patterns of DNA methylation regulators modification. (A) The correlation of 20 DNA methylation
regulators in HCC patients. (B) The prognosis of 20 DNA methylation regulators in HCC patients. (C) The interaction among 20 DNA
methylation regulators in HCC. The pink and blue line represents positive and negative correlation. The size of the circle represents the p value
of the log-rank test. Green points represent favorable factors for OS. Purple points represent risk factors for OS. (D) The correlation between 20
DNA methylation regulators and 23 types of immune cells. (E) The consensus cluster matrix for patients with HCC. (F) The survival analysis for
different patterns of patients. (G) PCA analysis indicated significant separation among three patterns. * p < 0.05.
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sets were conducted. As presented in Figures 3C, D, the results

indicated significant difference between three patterns. The

pattern B was significantly enriched in cell cycle and cancer-

associated pathways, including DNA replication, PI3K/AKT/

mTOR signaling. The pattern A was highly enriched in processes

of metabolism and some carcinogenic activation pathways, such
Frontiers in Oncology 07
as retinol metabolism, Wnt pathway, mTOR pathway, and TGF-

b signaling pathway (Figure 3C and Figures S2A, B, Table S7).

However, the pattern C mainly presented enrichment

metabolism in tyrosine and drug (Figures S2C, D). Thus, our

results identified each DMRP is associated with its specific

clinicopathological features and signaling pathways. Some
A

B

D

C

FIGURE 3

The clinical features of different DNA methylation regulator-related patterns and relevant function mechanism. (A) The expression of 20 DNA
methylation regulators among three DNA methylation regulator-related patterns. (B) The heatmap of the differences between the expression of
20 DNA methylation regulators and clinicopathological factors. (C, D) GSVA showed the results of KEGG and Hallmark pathways in distinct DNA
methylation regulators related modification patterns, respectively. * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001.
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previous studies had reported that PI3K/mTOR signaling

pathway played a critical regulatory role in the tumor

microenvironment. In immunology, mTOR was becoming as a

key regulator of immune responses, which played an essential

regulatory role in the differentiation and function of both innate

and adaptive immune cells (28).What’s more, the previous

results revealed that most of DNA methylation regulators were

associated with multiple immune cells. Consequently, it’s

essential to explore the correlation between DMRPs and

tumor immune cells infiltration.
Frontiers in Oncology 08
Characteristics of the TME immune cell
infiltration in distinct DMRPs

Previous studies had reported DNA methylation played a

crucial role on tumor immune microenvironment (29, 30).

Hence, we evaluated the relationship between three DMRPs and

23 types of immune cell subsets of every HCC sample using

ssGSEA. The heatmap displayed significant differences in 23

immune cells infiltrations among these DMRPs with various

clinicopathological features (Figure 4A). We found that natural
A

B

D

E

F G H

C

FIGURE 4

Characteristics of the TME immune cells infiltration in distinct DNA methylation regulators related modification patterns. (A) The heatmap of
immune cell infiltration in three patterns. (B) The distribution of immune cells among three patterns. (C–E) The differences of TME score
(stromal score, immune score and estimate score) among three patterns. (F–H) The expression levels of three important immune checkpoint in
the three DMRPs. DMRPs: DNA methylation regulators related modification patterns; TME: tumor microenvironment. * P < 0.05, ** P < 0.01, ***
P < 0.001, **** P < 0.0001. ns, no significance.
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killer T cells, eosinophils, gamma T cells and type 1T helper cells

had a higher proportion in pattern A than pattern B and C. The

infiltration level of activated B cells, activated CD8 T cells,

CD56bright natural killer cells, CD56dim natural killer cells,

MDSCs, macrophages, monocytes, neutrophils, and type 17 T

helper cells were higher in pattern C, while activated CD4 T cells

and type 2 T helper cells had significantly higher infiltration in

pattern B (Figure 4B). The immune landscape stated clearly that the

significant differences of the relative expression of multiple immune

infiltration cells among three DMRPs. To explore the influence of

DNA methylation regulators on the TME of HCC, further analysis

of TME scores (immune score, stromal score and estimate score)

were evaluated by using the ESTIMATE algorithm. These results

showed that the stromal score was the highest in pattern A than

other two patterns, but there was no statistical significance between

pattern B and pattern C (Figure 4C), and the highest immune score

was found in pattern C (Figure 4D). However, there weren’t any

significant differences in estimate scores among the three patterns

(Figure 4E). In addition, blocking therapy against immune

checkpoints was believed to increase the aggressiveness of the

host immune system against tumor cells. Hence, we further

assessed the expression levels of PD-1, PD-L1 and CTLA4 among

three DMRPs. The analysis of immune checkpoints suggested that

pattern B exited the highest expression of PD-1compared to pattern

A and pattern C (Figure 4F). Similarly, the pattern B had a higher

expression level of CTLA4 than pattern A and pattern C

(Figure 4G). We also compared the PD-L1 expression levels in

different DMRPs and found a significant upregulation in pattern A

(Figure 4H). Based on these results, we identified that HCC patients

with specific DMRPs were associated with different immune

infiltration characteristics, which might influence the development

and progression of HCC. What’s more, potential immunotherapy

could be selected according to the expression of immune

checkpoints in patients with different DNA methylation

regulators modification.
DMRPs-related DEGs and gene clusters
in HCC

To investigate the potential genetic alterations and

expression perturbations affected by the three DMRPs in

HCC, we screened a total of 151 DMRegs from three DMRPs

using “limma” R package based on the metadata set (Figure

S3A). Function annotation for these genes showed that some

DMRegs were significantly correlated with metabolism in

biological processes (Figure 5A), while material metabolism,

glycolysis, and cell cycle were mainly pathways in KEGG

analysis (Figure 5B). When we used univariate cox regression

analysis to explore their relationship with the OS status of the

HCC patients, and 112 DMRegs with significant prognostic

value were selected to further identify (Table S8). Based on the

expression profiles of these significant genes, we performed
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consensus clustering analysis and obtained three genomic

clusters, namely gene Cluster A-C (Figure 5C and Figures

S3B–I). The heatmap displayed the distinct characteristics of

three phenotypes on the expression of prognostic DMRegs, and

clinical analysis showed geneCluster C tended to relate to the

advance TNM stage (Figure 5D). Additionally, the survival

analysis demonstrated geneCluster C had a poorer survival

rate (Figure 5E). Obviously, the expressions of DNA

methylation regulators were significantly different among three

gene clusters in the metadata set (Figure 5F). Most of these DNA

methylation regulators (15/20) were presented higher expression

levels in geneCluster C, such as DNMT1/3A/3B, TET1/3,

ZBTB4, MBD1/2/3, TDG, UHRF1/2, SMUG1, UNG and

MECP2. However, there was no significant difference between

the expression of TET2, MBD4 and three gene clusters. Above

all, these results illustrated the existence of specific clusters of

genes in different DMRPs, which further supported the

important roles of the three DMRPs in HCC.
Generation of DMRegs_score in HCC

In order to more understand the impact of these DNA

methylation regulators on patients on HCC patients and better

apply the research results to clinical practice, we constructed a

DMRegs_score based on 112 prognostic DMRegs. As displayed in

Figures 6A, B, we performed LASSO cox analysis to build

prognostic risk score based on optimal l. According to the

results, we obtained 8 genes (CDCA3, CDC20, YWHAQ,

ADH4, TRNP1, CYP2C9, CALU and APOC1) in the signature,

including five high-risk genes (CDCA3, CDC20, YWHAQ,

TRNP1, and CALU) and three low-risk genes (ADH4, CYP2C9,

and APOC1) (Figure S4A). We therefore chose these 8 genes to

establish the DMRegs_score using following: DMRegs_score =

(0.1507*expression of CDCA3) + (0.1259*expression of CDC20)

+ (0.0408*expression of YWHAQ) + (0.0220*expression of

TRNP1 ) + ( 0 . 0 4 4 3 * e x p r e s s i o n o f CALU ) +

(-0.0189*expression of CYP2C9) + (-0.0096 * expression of

APOC1) + (-0.0055 * expression of ADH4). With an optimal

survival cut-point value of 3.75, we divided the patients into high-

risk group (n=139) and low-risk group (n=431) (Table S9). A

significant worse prognosis was observed for the patients in the

high-risk group compared to the low-risk group (Figure 6C). The

differential expressions of eight genes between high- and low-risk

group were presented in Figures S4B–J.

Three genes (ADH4, APOC1 and CYP2C9) were highly

expressed in low-risk group, and the expression levels of five

genes (CDCA3, CDC20, YWHAQ, TRNP1, and CALU) were

higher in high-risk group. We also explored the relationship

between eight genes expression and clinicopathological factors

(Figure S5A). These results revealed advanced stage and death

patients had higher expression level of high-risk genes. The

mutated frequency of these genes was drawn using “maftool”
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package, and we found the few alterations happened in eight

genes based on all HCC patients from TCGA (Figure S5B). The

loop graph presented the chromosome locations and the gain or

loss status of CNV among these risk genes (Figures S5C, D). The

mutated frequency and CNV results indicated that these eight

genes were epigenetically regulated by DNA methylation rather

than DNA mutation or genomic alteration. What’s more, the 1-,

2-, and 3-year survival rate of DMRegs_score were illustrated by

AUC values of ROC curves, 0.751, 0.724 and 0.710, respectively
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(Figure 6D). In addition, we discovered significant differences in

DMRegs_score between three DMRPs and three gene clusters

(Figures 6E, F). The DMRegs_score was highest in pattern B,

while that of pattern A was lowest. Differently, the gene cluster C

had the highest DMRegs_score than the other two phenotypes.

The Sankey diagram showed the distribution of patients in three

DMRPs, three gene clusters, DMRegs_score and survival status

(Figure 6G). In addition, the correlation strength among these

genes in DMRegs_score was presented in Figure 6H.
A B

D

E

F

C

FIGURE 5

DNA modification pattern-related DEGs and gene clusters in HCC. (A, B) GO and KEGG enrichment analysis for DEGs of DMRPs. (C) Consensus
cluster matrix of 570 patients for k = 3. (D) The relationship of clinical characteristics and unsupervised clustering of DEGs. (E) Kaplan-Meier
curves of three gene clusters. (F) The expression levels of 20 DNA methylation regulators among three gene clusters. * P < 0.05, ** P < 0.01,
*** P < 0.001, **** P < 0.0001.
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Assessment of TME, immune-infiltrating
cells and immune checkpoint between
different risk group

In order to clearly understand the relationships between

DMRegs_score, TME and immune infiltrating cells, firstly, we

evaluated the differences of TME scores between high- and low-

risk groups. Figure 7A illustrated the low-risk group had higher

stromal score than high-risk group. However, no significant

differences of immune score and estimate score were observed
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between two risk groups. As represented in Figure 7B, the

correlation of DMRegs_score and 23 immune-infiltrating cells

illustrated DMRegs_score was positively correlated with actively

CD4 T cells, MDSC, immune dendritic cells, natural killer T cells

and type 2 T helper cells, while was negatively correlated with

eosinophil, monocytes, neutrophil, regulatory T cells, and type

1T helper cells. And the heatmap displayed the abundance of 23

types of immune cell infiltration in patients with different

clinical features (Figure 7C). Notably, we found the

DMRegs_score was associated with T cells, so we further
A B

D E F

G H

C

FIGURE 6

Generation of DMRegs_score. (A, B) The screen of candidate prognostic genes through LASSO cox regression analysis. (C) Survival analysis of
the OS between different risk groups. (D) The predictive value of DMRs score. (E, F) The differences of DMRegs_score among DMRPs and gene
clusters, respectively. (G) Sankey diagram of the DNA patterns, gene clusters, DMRegs_score and survival status. (H) The correlation between
DMRegs and DMRegs_score. * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001.
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explored the expression of human leukocyte antigen (HLA)

related genes in different risk groups (Figure 7D). Most of the

HLA-related genes presented higher expression level in high-risk

group. Similarly, analysis of three important immune

checkpoints revealed higher expression of PD-1 and CTLA4 in

high -risk group, while the expression of PD-L1(CD274)

between different risk groups was no significant difference

(Figures 7E–G). These results suggested a strong correlation

between DMRegs and TME of HCC patients. We guested that

the DMRegs played crucial roles on the development of HCC

through influenced the immune status of HCC patients.
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Evaluation of the relationship between
DMRegs_score and clinical
characteristics

To investigate the effect of the DMRegs_score on clinical

characteristics, we performed univariate and multivariate cox

regression to identify whether the DMRegs_score can be an

independent predicator to predict the prognosis of HCC patients.

The forest plot showed the DMRegs_score could function as an

independent prognostic indicator for overall survival in the

multivariate analysis (Figure 8A). The clinical heat map showed
A B

D

E F G

C

FIGURE 7

The immune cell infiltration characteristics of DMRegs_score in HCC patients. (A) The differences of TME score in the two risk groups. (B) The
relationship of DMRegs_score and 23 types of immune cells infiltration. (C) The landscape of immune cells infiltration of DMRegs_score in
patients with different clinicopathological features. (D) The expression differences of HLA-related genes between two risk group. (E–G) The
expression level of CD274, CTLA4 and PDCD1 in two risk groups. * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001. ns, no significance.
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more advanced stage patients gathered in high-risk group

(Figure 8B). The DMRegs_score was significantly higher in death,

female, and advanced stage patients, while no statistical difference

was observed in age (<60 or >=60) (Figures 8C–F).What’s more, we

also explored the proportion of patients with different clinical

characteristics in two risk groups (Figures 8G–J). The Kaplan-

Meier curves suggested that, whatever the age, gender and TNM

stage, the patients in high-risk group had poorer survival rate than

patients in low-risk group (Figure S6).
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Function enrichment, tumor mutation
burden and drug sensitivity analysis

To evaluate the potential molecular mechanism of this

signature, we applied GSEA based on KEGG and Hallmark

gene set. The function enrichment analysis demonstrated that

cell cycle, glycolysis and cancer-associated pathways were

mainly enriched in high-risk group (Figures 9A, B). These

results were consistent with previous DMRPs and gene-related
A

B

D E F

G IH J

C

FIGURE 8

The clinical features of DMRegs_score in HCC patients. (A) The forest plot of univariate and multivariate cox analysis for independent prognostic
factor. (B) The correlation heatmap of two risk groups with different clinical features. (C–F). The correlation between DMRegs_score and
survival status, age, gender and TNM stage. (G–J) The percentile of patients with different clinical features in two risk group. * P < 0.05, ** P <
0.01, *** P < 0.001, **** P < 0.0001.
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phenotypes. In previous studies reported TMB played a crucial

role in cancer progress and immunotherapy. Therefore, we also

assessed the mutational feature between two risk groups based

on TCGA-LIHC cohort. The high-risk group had a higher

mutation frequency (91.46%) in 82 patients, while the
Frontiers in Oncology 14
alteration frequency in the low-risk group was 82.46%

(Figures 9C, D). The top ten mutated genes in the high- risk

group were TP53, CTNNB1, TTN, MUC16, LRP1B, PCLO,

APOB, MUC4, RYR2, and FAT3, and the most common type

of mutation was missense mutation. Moreover, the Kaplan-
A B

D

E F

G IH

C

FIGURE 9

The TMB and drug sensitivity analysis for patients with different risk score. (A, B) The GSEA analysis in different risk groups. (C, D) The characteristics of
tumor genetic alterations in two risk groups. (E) The survival analysis of patients with different TMB. (F) The survival analysis among four patient groups
stratified by both TMB and DMRegs_score. (G–I) The drug sensitivity analysis of patients with different risk score. TMB: tumor mutation burden.
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Meier curves showed that patients with lower level of TMB had a

more favorable survival rate than high-TMB (Figure 9E).

Combined TMB with the DMRegs_score to assess the

prognosis of HCC patients, we found patients with both high-

TMB and high DMRegs_score had the poorest prognosis

(Figure 9F). We further screened target therapeutic drugs for

the treatment of HCC patients to assess the sensitivity in

different risk groups. Importantly, we observed that patients in

high-risk group had lower IC50 value for sorafenib (VEGFR

inhibitor), tipifarnib (farnesyltransferase inhibitor), A.443654

(AKT inhibitor), veliparib (PARP inhibitor), olaparib (PARP

inhibitor), IPA-3 (PAK inhibitor), GSK-650394 (SGK inhibitor)

and CCT018159 (Hsp90 inhibitor) (Figures 9G, H, Figure S7),

while the IC50 values of axitinib (VEGFR inhibitor), motesanib

(VEGFR), CCT007093 (PPM1D inhibitor), and lesteurtinib

(JAK inhibitor) were higher in patients with high

DMRegs_score (Figure 9I , Figure S7) . In a word,

DMRegs_score was significantly correlated with TMB and

patients’ clinical response to targeted therapy.
Verification the DMRegs_score and
development a nomogram to
predict prognosis

To validate the reliability of the DMRegs_score, we used

GSE76427 as external validation group. Patients were categorized

into high- and low-risk groups. The multivariate cox analysis

revealed the DMRegs_score could be an independent prognostic

factor (Figure S8). Survival analysis indicated the high

DMRegs_score had bad survival rate (Figure 10A). And the

ROC curves showed the DMRegs_score still had accurate AUC

values, 1-year for 0.733, 2-year for 0.789 and 3-year for 0.823

(Figure 10B). We further established a nomogram based on the

risk data of DMRegs_score and the patients’ clinical features from

metadata set. The nomogram composed of DMRegs_score,

gender and TNM stage (Figure 10C). The AUC value of

nomogram for 1-year, 2-year, and 3-year were 0.768,0.728, and

0.757, respectively (Figure 10D). In addition, we used calibration

curves to confirm this nomogram prediction model (Figure 10E).

However, compared with the AUC value of DMRegs_score, the

nomogram scor ing sys tem had a s l ight ly weaker

predictive ability.
Validation of the expression levels of the
eight risk genes which are used for the
prognostic signature

Forty-one HCC tissues and adjacent normal tissues were

used to detect the mRNA and protein expression of eight genes

in this risk score by qRT-PCR and IHC. As presented in

Figure 11, the mRNA expression level of ADH4, APOC1, and
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CYP2C9 were downregulated while those of CALU, CDC20,

CDC3A, TRNP1, and YWHAQ were elevated in HCC tissues

compared to the levels in the paired normal tissues. The results

of IHC staining showed the same result as qRT-PCR, and almost

genes expressed in cytoplasmic except TRNP1 expressed in

nucleus (Figure 12).
Discussion

DNA methylation is closely related to carcinogenesis, tumor

progression and metastasis (31, 32). In addition, by impacting

multiple oncogenic pathways and tumor suppressor genes, DNA

methylation regulators contribute to carcinogenesis in a broad

range of tissue histologist (33, 34). In our study, based on

expression levels of 20 DNA methylation regulators, we

identified three DMRPs, and each DMRP correlated with

different prognosis and signal pathway. Furthermore, Pattern

B had the poorer prognosis and enriched in cell cycle and

cancer-associated pathways, while the other two patterns

mainly enriched in processes of metabolism. Besides, in order

to confirm the efficacy of this regulatory mechanism, we applied

consensus clustering analysis and found that genes cluster C was

closely associated with more advanced TNM stage and poorer

prognosis. Therefore, our study elucidates that the involvement

of DNA methylation regulators in tumor development from a

horizontal perspective, and provides new insights into the

molecular networks involved in the regulation of DNA

methylation regulators.

DNA methylation regulators can also impact the activation,

differentiation, and functional fate of immune cells, which serve

as a surveillance system against cancer (9, 35). For example,

DNA demethylase TET2 promotes melanoma progression by

maintaining the immunosuppressive function of myeloid cells

and enhances anti-tumor immunity by governing G-MDSCs

and CD8 + T-cell numbers (36, 37). The vast majority of studies,

however, focused on a single DNA methylation regulator and its

effect on altering TME (38–40). The immune cells infiltration

characteristics, which are mediated by multiple synergistic DNA

methylation regulator, have remained poorly understood. In this

study, the DMRPs and TME immune infiltrating cells were

closely related to each other. In addition, the immune scores and

immune infiltrating cell types were significantly different in three

DMRPs. More importantly, Based on DNA methylation

regulators features found in individual tumors, we developed

an effective DMRegs_score model and demonstrated its

predictive ability. The clinicopathological features, prognosis

and stromal score of high- and low-risk score were

significantly distinct. Moreover, DMRegs_score was positively

correlated with actively CD4+ T cells, MDSC, immune dendritic

cells, natural killer T cells and type 2 T helper cells. Previous

studies have indicated that more CD4+ T cells suggest a better

prognosis (41, 42). However, our study found the tumor stage
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was more advanced in the population with high-risk group and

more CD4+ T cells, and this group had better efficacy with drugs

such as sorafenib and higher expression of PD-1 and CTLA-4,

suggesting that the group may have a better outcome with

combination therapy despite their late staging. In addition,

other cancer immunotherapies in clinical trials, including

dendritic cell vaccines and oncolytic viruses are also associated

with TME immune infiltrating cells, such as T cells and dendritic

cells (43, 44). During tumor growth, the stromal component is

powerfully constricting to the immune cells, which can both be
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present in the tumor capsule and throughout the tumor tissue in

order to prevent them from exerting anti-tumor effects (45). This

is also supported by the evidence of strong stromal activation in

DMRP C, where the activation of immune cells was inhibited by

the AKT/mTOR pathway.

ICIs have been found to be effective in combinatorial

strategies in advanced HCC patients (46). However, there is

no effective biomarker for assessing the response to ICIs therapy

and the prognosis of patients with HCC (47). Our detailed

analyses indicated that the DMRegs_score signature probably is
A B

D E

C

FIGURE 10

Validation of DMRegs_score in GSE76427 set and construction of nomogram. (A) The Kaplan- Meier curves of the OS between the two groups.
(B) The predictive value of DMRegs_score was presented by ROC curves. (C) Nomogram to predict the 1-, 2- and 3-year OS of HCC patients in
training set. (D, E) ROC and calibration curves of Nomogram for predicting of 1-, 2-, and 3-year OS in training set. ROC: receiver operating
characteristic.
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a robust and reliable biomarker to assess HCC patients’

responses to ICIs and TKIs. Patients with high DMRegs_score

displayed higher expression of PD-1 and CTLA-4 compared

with patients with lower DMRegs_score. Previous studies

indicated that higher expression of PD-1, CTLA-4 and TMB

might be inclined to respond to ICIs (48, 49). Thus, we

concluded that patients with high DMRegs_score, which have

high TMB, high expression of PD-1, and CTLA-4 might be more

suitable to ICIs. Furthermore, for advanced hepatocellular

carcinoma (HCC), tyrosine kinase inhibitors (TKIs) are

effective therapeutic strategies. High DMRegs_score group had

lower IC50 value for some types of TKIs, such as sorafenib,

tipifarnib, veliparib, olaparib, which suggested that the

DMRegs_score may be predictive of TKIs and ICIs

combination therapy for HCC.

In comparison to existing studies of prognostic signatures of

HCC, this study has some notable advantages and limitations.

First, the global DNA methylation regulators landscape was

modeled in order to systematically examine the effects of DNA
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methylation regulators on TME in HCC patients, which have

not been clarified before. Furthermore, we examined the possible

role of DNA methylation regulators-related status in predicting

the clinical response to immunotherapy in HCC. Our data give

rules about how DNA methylation regulators influenced the

multiplicity of TME. Secondly, all analyses and samples were

obtained primarily based on bioinformatics analysis, and

although we did some clinical validation, it is indispensable to

conduct prospective studies to further validate the efficacy of

DMRegs_score. Besides, a few important clinical variables like

surgery and chemoradiotherapy were missing, which could have

affected the prognosis of DNA methylation regulators status and

the immune response.

In summary, in our comprehensive research on DNA

methylation regulators, we uncovered a broad range of

regulatory mechanisms in HCC through which they affected

clinicopathological features, TME, and prognosis. Additionally,

we investigated the therapeutic effects of DNA methylation

regulators in targeted therapy and immunotherapy in HCC.
A B
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FIGURE 11

The mRNA expression levels of 8 DMRegs of prognostic signature in hepatocellular carcinoma tissues and corresponding normal tissues by RT-qPCR.
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Our study emphasized the important clinical implications of

DNA methylation regulators and provide new insights into how

to personalize immunotherapy for patients with HCC.
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SUPPLEMENTARY FIGURE 1

The unsupervised clustering of DNA methylation regulators and

consensus matrix heatmaps. (A) Cumulative distribution function (CDF)
curve. (B) CDF Delta area curve, which indicates the relative change in the

area under the CDF curve for each category number k compared with k-1.
(C) The consensus matrix heatmaps for k = 2, and k = 4-9.

SUPPLEMENTARY FIGURE 2

The GSVA analysis of DNA methylaiton regulators-related patterns

between pattern (A–C) and pattern (B, C).

SUPPLEMENTARY FIGURE 3

The unsupervised clustering of DNAmethylation regulators-related DEGs

and consensus matrix heatmaps. (A) Venn diagram of DEGs among three
DNA methylation regulators-related patterns. (B) CDF Delta area curve.

(C) The consensus matrix heatmaps for k = 2, and k = 4-9.

SUPPLEMENTARY FIGURE 4

Characteristics of eight genes in the risk model. (A) The prognosis of eight
genes in HCC patients. (B–I) The expression differences of eight genes in

two risk groups.

SUPPLEMENTARY FIGURE 5

Landscape of genetic variations and transcriptional expression of eight
genes. (A) The expression level of eight genes between different risk

groups with clinical features. (B) 7 of the 364 patients occurred genetic
variations of eight genes with 1.92% mutation frequencies. (C) The

locations of CNV variations in eight genes on 23 chromosomes. (D) The
frequency of CNV gain or loss among eight genes.

SUPPLEMENTARY FIGURE 6

Stratification analysis of the DMRegs_score in HCC. (A, B) Age (age ≤ 60

and age > 60 years old). (C, D) Gender (female and male). (E, F) Tumor
stage (I-II or III-IV).

SUPPLEMENTARY FIGURE 7

The relationship between DMRegs_score and therapeutic sensitivity.

SUPPLEMENTARY FIGURE 8

The univariate and multivariate cox analysis of DMRegs_score in
validating set.
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