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Arrhythmia risk stratification of patients after
myocardial infarction using personalized heart
models
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Sudden cardiac death (SCD) from arrhythmias is a leading cause of mortality. For patients at

high SCD risk, prophylactic insertion of implantable cardioverter defibrillators (ICDs) reduces

mortality. Current approaches to identify patients at risk for arrhythmia are, however, of low

sensitivity and specificity, which results in a low rate of appropriate ICD therapy. Here, we

develop a personalized approach to assess SCD risk in post-infarction patients based on

cardiac imaging and computational modelling. We construct personalized three-dimensional

computer models of post-infarction hearts from patients’ clinical magnetic resonance imaging

data and assess the propensity of each model to develop arrhythmia. In a proof-of-concept

retrospective study, the virtual heart test significantly outperformed several existing clinical

metrics in predicting future arrhythmic events. The robust and non-invasive personalized

virtual heart risk assessment may have the potential to prevent SCD and avoid unnecessary

ICD implantations.

DOI: 10.1038/ncomms11437 OPEN

1 Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA. 2 Welch
Center for Prevention, Epidemiology, and Clinical Research, Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore,
Maryland 21287, USA. 3 Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland 21287, USA. * These
authors contributed equally to this work. Correspondence and requests for materials should be addressed to N.T. (email: ntrayanova@jhu.edu).

NATURE COMMUNICATIONS | 7:11437 | DOI: 10.1038/ncomms11437 | www.nature.com/naturecommunications 1

mailto:ntrayanova@jhu.edu
http://www.nature.com/naturecommunications


S
udden cardiac death (SCD) is a leading cause of death in the
industrialized world1. A large proportion of SCDs result
from ventricular arrhythmias—abnormal uncoordinated

heart rhythms—particularly among patients with prior heart
damage from myocardial infarction (MI). For patients at high risk
for SCD, mortality is reduced by the prophylactic insertion of
implantable cardioverter defibrillators (ICDs)2. To determine the
level of SCD risk, clinical cardiology practice relies on a ‘one-size-
fits-all’ metric representing a global reduction in ventricular
function: the left ventricular ejection fraction (LVEF)o35%
metric3. Mechanistically, in MI, arrhythmia results from the
heterogeneously distributed infarcted tissue, which can promote
the initiation and maintenance of electrical instability4. Global
LVEF poorly reflects these mechanistic factors5 and, hence, its use
to determine the level of SCD risk and stratify patients for ICD
implantation results in a low rate of appropriate ICD device
therapy, only 5% per year6. Thus, many patients are exposed to
ICD risks—infections, device malfunctions and inappropriate
shocks—without deriving any health benefit7–9. Further, the
LVEF metric only targets a relatively small subgroup of
individuals at high risk for SCD, failing to identify the majority
of SCD victims. Thus, inadequate SCD risk assessment poses a
large public health and socioeconomic burden. Development of
accurate non-invasive means of SCD risk stratification is a
paramount unmet clinical need.

Here we present the proof of concept of a novel targeted
approach to determine the risk of SCD in MI patients. The
approach is based on cardiac imaging and computational
modelling, and is personalized to each patient. To assess SCD
risk, we construct a three-dimensional (3D) computer model of
MI patient’s individual heart from the clinical magnetic
resonance imaging (MRI) data. The heart model incorporates
the patient’s ventricular geometry and MI structural remodelling
as well as electrical functions from the sub-cellular to the organ.
Thus, the interplay between abnormal myocardial structure and
electrical instability in the heart that predisposes to SCD can be
directly assessed. In each heart model, we conduct a virtual multi-
site delivery of electrical stimuli from ventricular locations at
different distances to remodelled tissue so that the patient’s heart
propensity to develop infarct-related ventricular arrhythmias can
be comprehensively evaluated. We term this non-invasive SCD
risk assessment approach VARP, a Virtual-heart Arrhythmia Risk
Predictor. In a proof-of-concept study, we assess the predictive
capability of the VARP approach as compared with that of other
clinical metrics. Our results demonstrate that VARP significantly
outperforms clinical metrics in predicting future arrhythmic
events. The robust and non-invasive VARP approach may thus
have the potential to prevent SCD and avoid unnecessary ICD
implantations in post-infarction patients.

Results
The VARP approach. A flow chart of the processes that comprise
VARP is presented in Fig. 1a. First, 3D patient-specific ventricular
wall geometry is reconstructed10 from the contrast-enhanced
clinical MRI (Fig. 1b). Pixels in the ventricular myocardium are
classified as non-infarcted or infarcted tissue based on signal
intensity. Previous research11 has indicated that the presence of
infarct border zone (termed also grey zone (GZ) because of its
intermediate signal intensity in clinical MRI) contributes to
arrhythmia propensity, thus pixels belonging to infarcted tissue
are further sub-classified as scar or GZ. The reconstructed
geometrical model of the infarcted ventricles is presented in
Fig. 1c, left. Next, fibre orientations are assigned (Fig. 1c, middle);
they are important determinants of electrical wave propagation in
the heart12. Fibre orientations cannot be currently acquired from
clinical MRI, therefore we estimate them using our novel

geometry-driven rule-based approach13. Once the ventricular
structure model is complete, region-specific cell and tissue
electrophysiological (EP) properties are assigned to the finite
elements in the model. Scar elements are considered electrically
non-conductive. Myocytes in non-infarcted tissue and GZ are
assigned human action potential dynamics, with GZ myocytes
exhibiting remodelled ion channel kinetics resulting in action
potentials of extended duration (Fig. 1c, right). GZ tissue
conductivities are also remodelled, reflecting disease-induced
changes in cell-to-cell connections.

The next step (Fig. 1d) is to electrically stimulate (pace) the
virtual heart model from a number of bi-ventricular locations.
Each stimulation is an attempt to elicit a re-entrant arrhythmia
triggered from a site positioned differently with respect to
remodelled tissue. In each patient-derived heart model, stimuli
are delivered (Fig. 1d) at 17 locations in the left ventricle (LV),
one in each AHA segment14, and at the apex and near the outflow
tract of the right ventricle; the pulse train given at each site is
shown in Fig. 1d. The response of the virtual heart to stimulation
is calculated using a validated simulation approach15. A patient is
classified as being at risk for SCD if arrhythmia is elicited from at
least one of the 19 pacing locations (that is, a positive VARP test).

Assessing the predictive capabilities of VARP. The predictive
capability of the VARP approach was evaluated retrospectively in
a proof-of-concept study using the data from 41 patients with
prior MI and LVEFo35%. The patients were chosen randomly
from the 136 patients enrolled before April 2009 in the
CMR-Prospective Observational Study of Implantable Cardio-
verter Defibrillators (CMR-PROSE-ICD)11,16,17. We chose a
cohort that was balanced between patients with (n¼ 21) and
without (n¼ 20) arrhythmic events; the rationale for this choice is
provided in Methods. All patients underwent implantation of
clinically indicated ICDs; contrast-enhanced MRIs were obtained
pre-ICD implantation. Patients were followed for the primary end
point of appropriate ICD firing due to ventricular arrhythmia
or cardiac death. Follow-up time averaged 4.8±2.9 years.
Supplementary Tables 1 and 2 summarize the baseline patient
characteristics and Supplementary Table 3 presents the VARP
outcomes; further details are provided in Methods below. For this
patient cohort, VARP predictive capabilities were compared to
the current clinical metric, LVEF, as well as to other existing
clinical metrics that have been used to predict arrhythmic risk,
such as GZ volume18, scar volume19 and LV mass20.
Furthermore, 32 of the 41 patients in the cohort underwent, at
the time of ICD implantation, an invasive procedure, termed
clinical EP testing21, a non-routine clinical means of assessing
arrhythmia propensity (see Methods for detail). For these 32
patients, VARP assessment was also compared with the outcome
of clinical EP testing. All VARP tests were conducted by
investigators who were blinded to clinical outcomes.

Figure 2 presents nine reconstructed patient heart models;
arrhythmia was induced in four (see Supplementary Figs 1 and 2
for all models). Shown are electrical activation maps obtained in
each model following VARP, with pacing from the location
indicated. The activation maps exhibit the wave rotational
sequence characteristic of re-entrant arrhythmias. Re-entrant
wave fronts often propagate through isthmuses in the scar, also
evident from the transmembrane potential maps (Fig. 3;
Supplementary Movies 1 and 2). In the five remaining models
in Fig. 2, no arrhythmia was induced from any pacing site, despite
the presence of infarcted tissue (the remaining non-inducible
models are shown in Supplementary Fig. 3).

Statistical analysis, the detail of which is provided in Methods,
demonstrated that a positive VARP test was significantly
associated with the primary end point, with a fourfold higher
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arrhythmia risk than patients with negative VARP test (P¼ 0.03,
conditional logistic regression; Table 1). The comparison of
VARP with the routine clinical risk metric, LVEF, as well as with
the other clinical risk predictors (GZ volume, scar volume and LV
mass), revealed that only VARP outcome was significantly
associated with arrhythmic risk in this cohort (Table 1). When
only appropriate ICD shock was used as a secondary end point,
the hazard ratio for VARP increased from 4.05 to 5.0 (95%
confidence interval 1.15–21.9, P¼ 0.032, conditional logistic
regression).

Among patients who had both VARP and invasive clinical
EP testing (n¼ 32), the hazard ratio for VARP was 10.4 (95% CI
1.4–79, P¼ 0.02, conditional logistic regression) versus 1.7
(95% CI 0.6–4.8, P¼ 0.35, conditional logistic regression) for
clinical EP testing. For the appropriate shock end point,
the hazard ratio for VARP remained significant at 8.60
(95% confidence interval 1.12–66.09, P¼ 0.04, conditional logistic
regression) versus 2.60 for clinical EP testing (95% confidence
interval 0.72–9.32, P¼ 0.14, conditional logistic regression).
Clearly, the non-invasive nature of VARP offers an additional
advantage over clinical EP testing, which entails risks of vascular
access, sedation and induction of ventricular arrhythmias requir-
ing defibrillation in already tenuous cardiomyopathy patients.

Discussion
This study demonstrated, in a 41-patient cohort, that the VARP
non-invasive personalized virtual heart approach is appreciably
superior in predicting arrhythmia risk associated with MI,
as compared with the current clinical metric, LVEF, as well as
to other existing non-invasive clinical metrics and the invasive
clinical EP testing, a non-routine clinical means of assessing
arrhythmia propensity. The superiority of the approach is rooted
in its ability to comprehensively evaluate the arrhythmogenic
propensity of the MI substrate as probed by triggers acting at
ventricular locations of different geometrical position with respect
to remodelled tissue.

As a proof-of-concept study, the evaluation of the novel
targeted approach for determining arrhythmia risk was done in a
small number of patients. Should the predictive capability of the
approach be demonstrated in larger studies, VARP has the
potential to radically change the process of SCD risk assessment
and patient selection for prophylactic ICD implantation. The
approach could eliminate many unnecessary ICD implantations
and their associated complications (infections, device malfunc-
tions and inappropriate shocks), benefiting innumerable patients.
Importantly, the methodology could be applied to patients with
prior MI but preserved LVEF 430–35%, who could also be at
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Figure 1 | VARP methodology. (a) Flow chart summarizing the VARP protocol. (b) Contrast-enhanced cardiac MRI stack (left), with landmark points and

splines delineating the endocardial and epicardial surfaces (middle), respectively, and the resulting ventricular segmentation (right) into non-infarcted

myocardium, grey zone and scar. (c) High-resolution ventricular structure model (left) with estimated fibre orientations (middle). Although fibre

orientation is assigned to each finite element in the computational mesh, a tractography approach is used here to visualize the general fibre orientation.

Action potential traces from the non-infarcted myocardium (red) and grey zone (green) are in right panel. (d) VARP pacing sites on the endocardial surface

of the ventricles (left panels) and a corresponding colour schematic (right) of the myocardial wall segments (numbered), as per the American Heart

Association nomenclature, in which these sites are located. The train of pacing pulses is shown on the bottom right. Additional detail is provided in

Methods.
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significant risk for arrhythmia because of their remodelled
myocardium, but are generally not targeted for therapy under
current clinical recommendations22. Indeed, because current
guidelines for ICD placement target low LVEF patients who
constitute only one-third of SCD victims23, VARP has the
potential to identify increased SCD risk in a much larger number
of at-risk patients. We also envision that patients could be re-
imaged and VARP repeated to account for changes in arrhythmia
susceptibility over time as the diseased heart remodels.

The VARP approach is easily extendable to patients with
non-ischaemic cardiomyopathy, where myocardial structure
incorporates a distributed scar. Finally, because our simulation
platform represents processes from the molecular to the whole
organ, it can be potentially modified to input patient-specific
genetic and pathophysiological data. Thus, we envision that the
approach could be significantly broadened to stratify SCD risk for
cardiac diseases of various etiologies, and also combined into
multi-factor risk models on a patient-specific basis.

Patient 1

Patient 3

Patient 29 Patient 30 Patient 31 Patient 32 Patient 33

Patient 2

Patient 4

Positive VARP

Negative VARP

Non-infarcted Grey zone Scar Pacing site 0 ms 400

Figure 2 | Illustrative examples of VARP results for 9 of the 41 personalized heart models. Shown is the induced arrhythmia in four hearts (top),

for which geometrical models are presented together with electrical activation isochronal maps, obtained following pacing from the site indicated by the

star. White arrows represent the direction of propagation of the re-entrant arrhythmias. All induced arrhythmias were monomorphic ventricular

tachycardias. The geometrical models of the five hearts, in which no arrhythmia was induced from any pacing site, are shown at the bottom.
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Figure 3 | Initiation of ventricular tachycardia in patients 1 and 2. Shown are patient heart geometries and transmembrane potential maps at three time

points. White arrows show direction of propagation. The time instant below each map is counted from the delivery of the last pacing stimulus. In patient 1,

conduction block occurs in a GZ region located in the anterior portion of the ventricles. The wavefront propagates around that GZ region and forms a

figure-of-8 re-entrant circuit. In patient 2, unidirectional block occurs in GZ region located in the septum. The wavefront re-enters via an isthmus of

excitable myocardium and forms a re-entrant circuit that eventually anchors to intramural scar. See Supplementary Movies 1 and 2 for corresponding

movies of the VT initiation and resulting VTs.
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This is the first study to develop a significant number of
patient-derived computational models of the heart and apply
them to address a clinical need. Previous cardiac EP models have
been limited to very small sample sizes or simplified geometries,
and had been used to examine arrhythmia mechanisms. This
study makes a leap forward in integrating image-based computa-
tional modelling of the heart into heart disease diagnosis and
treatment. We believe that computer modelling is poised to
transform areas of medicine and serve as a vehicle to advance
personalized approaches to human health.

Methods
Patient-specific geometrical model construction. Patient-specific geometrical
models of 3D ventricular structure were reconstructed from the contrast-enhanced
MR images. For each patient, the myocardial boundaries in the two-dimensional
slices in the MRI stack were contoured with cubic splines fit through landmark
points manually identified using the software ImageJ24 (Fig. 1b, middle).
From the landmark points, the patient-specific 3D ventricular wall geometry
was reconstructed using a methodology based on variational implicit functions
interpolation developed and validated previously by our team10 (Fig. 1c, left).
To represent the personalized geometry of the infarct in each ventricular geometry
reconstruction, the myocardial regions in the two-dimensional slices of the MR
image were classified as infarcted and non-infarcted areas by means of signal
thresholding performed in CineTool (General Electric Healthcare). Each infarct
region was further classified into scar and GZ using a full width half maximum
approach validated previously by our team11 (Fig. 1b, right). The 3D geometries
of the infarct zones were reconstructed using a shape-based interpolation
method25, and merged with the corresponding ventricular geometry reconstruction
(Fig. 1c, left).

Next, the 3D volumetric finite element computational mesh of each infarcted
heart was generated using an octree-based approach for image-based mesh
generation developed by our team26. The meshing technique is automatic, and
produces boundary-fitted, locally refined and smooth conformal meshes. Each
finite element ventricular mesh had an average resolution of 350 mm; ventricular
models thus comprised of B4 million nodes. The choice of finite element size was
dictated by the need to resolve wavefront propagation in the simulations while
simultaneously minimizing computational expense, and validated by our team27,28.

Finally, fibre orientations were assigned to each ventricular computational mesh
using an efficient rule-based approach developed and validated by our group13.
Fibre orientations were assigned in each model on the basis of the individual
geometry of the ventricles. The fibre orientation methodology used the Laplace–
Dirichlet method29,30 to define transmural and apicobasal directions at every point
in the ventricles. It then employed bi-directional spherical linear interpolation to
assign fibre orientations based on a set of fibre orientation properties (rules)
derived from a large amount of histological and diffusion tensor MRI data. After
fibre orientations were assigned to all elements in the ventricular mesh, the
corresponding ‘masks’ of infarct scar and GZ were superimposed.

Altogether, reconstruction of each patient heart took B8 h.

Electrophysiological modelling. Once the 3D finite element ventricular mesh was
generated, cell and tissue EP properties were assigned to the three regions: scar,
GZ and non-infarcted tissue. All finite elements that belonged to the scar region
were considered electrically non-conductive. Finite elements that belonged to
non-infarcted tissue and GZ were assigned human ventricular cell action potential
dynamics31. Modifications to the ionic model based on experimental recordings
were implemented to represent EP remodelling in the GZ. Specifically, patch-clamp
studies of cells harvested from the infarct border zone have reported a 62%
reduction in peak sodium current32, 69% reduction in L-type calcium current33

and a reduction of 70 and 80% in potassium currents IKr and IK, respectively34.
As a result, the GZ action potential was characterized by a longer duration,
decreased upstroke velocity and decreased peak amplitude compared with those in
the non-infarcted myocardium (360 versus 310 ms, 6.7 versus 11.6 V s� 1 and
20 versus 35 mV, respectively), similar to what has been previously reported35,36.

Since no significant change was found in the density of connexin-43,
the gap junction protein responsible for cell-to-cell electrical communication,
in non-infarcted myocardium of infarcted hearts37, we used the conductivities of
normal tissue38,39 in these regions. These conductivities were further adjusted using
a systematic approach40 to match human myocardium conduction velocity
measured in experimental studies41–44. The values of the non-infarcted tissue
conductivities used in this study were 0.255 and 0.0775 S m� 1 in the longitudinal
and transverse directions, respectively.

Tissue in the GZ region was characterized with a 90% decrease in transverse
conductivity to reflect connexin-43 remodelling in the infarct border zone45.
No additional change in fibre orientation was implemented in the GZ since
evidence of the degree of the potential change in fibre orientation in the GZ is
lacking. We assessed the impact of this potential uncertainty in fibre orientation in
the GZ. On the basis of the analysis in the study by Bayer et al13, we found
that, given that GZ volume is on average 11.6% of total ventricular volume
(Supplementary Table 1), up to 25� change in fibre orientation in GZ would result
in up to 2 ms change in activation time in the GZ. Thus, we concluded that the
consequences of the uncertainty in GZ fibre orientation would be minimal.

Simulation of electrical activity and numerical aspects. The propagation of
electrical activity in a virtual heart was simulated by solving, using the finite
element method, a reaction-diffusion partial differential equation representing
the spread of current in the ventricular myocardium, together with the ordinary
differential and algebraic equations representing myocyte membrane dynamics at
each node in the mesh27. The system of equations was solved with a time step of
25 ms. Simulations of electrical activity in the patient-specific heart models were
executed in a monodomain representation of the myocardium using the software
package CARP (CardioSolv LLC) on a parallel computing system. The software
utilizes sophisticated solver techniques that have been optimized to ensure the high
levels of accuracy, stability and efficiency in obtaining solutions on the large
computational meshes necessary to model electrical behaviour in human
hearts46,47. Using 40 processors, simulation run time was B1 h for each second of
simulated activity. Solutions to EP problems (for example, arrhythmogenesis and
defibrillation in the rabbit heart) using this software have been experimentally
validated in a number of publications from our team48–50 and used in mechanistic
human arrhythmia studies51.

Validation of modelling of post-infarction arrhythmias. The approach to
construct a model of the infarcted ventricles by thresholding the infarct into scar
and (homogeneous) GZ, as done in the present study, has been recently validated
with experimental data. Deng et al.15 used sock epicardial data for infarct-related
ventricular tachycardia (VT), obtained from in vivo swine hearts, and
demonstrated that ventricular models reconstructed from MRI data of the
corresponding hearts were able to predict fairly accurately the morphology of each
VT re-entrant circuit and its organizing centre (for example, isthmus). This
indicates that small heterogeneities in GZ, the Purkinje system and additional
regional EP heterogeneities play a secondary role, with the geometrical
morphologies of scar and GZ, as well as the representation of different EP
properties in non-infarcted tissue and GZ being primary, in determining the
inducibility of a given VT and the location of its organizing centre. This is
consistent with the findings by Arevalo et al.52, where a parameter sensitivity
analysis of the GZ model representation was conducted. The study found that the
inclusion of small scar heterogeneities in a physiological density did not alter
inducibility of infarct-related VT. These studies provide a justification for the EP
modelling approach undertaken in this study.

VARP protocol. Each patient-derived ventricular model was subjected to pacing
from multiple locations in an attempt to elicit re-entrant arrhythmias, thus
assessing the potential of the disease-remodelled ventricles to cause degeneration of
electrical signal propagation into arrhythmic activity following premature beats
that originate at different locations in the heart. For SCD risk stratification, as
discussed in a recent editorial53, the site or mode of stimulation of the heart and the
resultant different VT morphologies induced are of little importance—what
matters is whether or not arrhythmia is induced. Thus, the VARP protocol was
designed to take maximum advantage of the capabilities of a validated simulation
platform. Each virtual heart was paced from 19 different locations on the
ventricular endocardium (Fig. 1d), two right ventricular endocardial sites (one at
apex and another from a central location near the outflow tract) plus 17 pacing
sites on the LV endocardium, one in each AHA segment14. The rationale for
choosing a large number of pacing sites was based on clinical studies, which have
shown a positive correlation between the number of pacing sites and inducibility of
ventricular arrhythmia54,55. The distribution of pacing sites throughout the LV
ensured that the protocol covered a large range of possibilities for potential sites at
which ectopic foci could emerge and captured all the possible arrhythmias that
could arise from the given infarct morphology, thus fully assessing the
arrhythmogenic propensity of the substrate. In a previous computational study52,
we showed that further increasing the number of pacing sites does not uncover
more unique VTs. All pacing sites were assigned in the model automatically using
an approach described previously56.

Table 1 | Hazard ratios for the primary end point.

Predictor Hazard ratio (95% CI) P value

VARP 4.05 (1.20–13.8) 0.03
LVEF 0.95 (0.90–1.01) 0.12
GZ volume 1.02 (0.98–1.06) 0.26
Scar volume 1.02 (0.99–1.04) 0.16
LV mass 1.00 (0.99–1.01) 0.98

CI, confidence interval; GZ, grey zone; LVEF, left ventricular ejection fraction.
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The pacing pulse train was generally similar to pacing trains delivered in
standard clinical protocols16. It consisted of eight pacing stimuli (S1) at a cycle
length of 600 ms. A premature stimulus (S2) was delivered 300 ms after S1. If S2
did not result in the generation of re-entrant arrhythmia, the S1–S2 interval was
shortened, in 10-ms steps, until arrhythmia was induced or the S2 failed to capture
the tissue. If arrhythmia was not induced, an additional S3, and if necessary S4, was
delivered in the same manner as S2 (initially delivered 300 ms after previous
stimulus, and then shortened until arrhythmia was induced or the stimulus failed
to capture). In all simulations, the size of the pacing electrode was 1� 1� 1 mm,
injecting transmembrane current. Simulations were monitored to ensure that in
each case an excitation wave was initiated and propagated away from the pacing
location. The re-entrant arrhythmia periods among all patients and all pacing sites
in the 41 patients were in the range 276–445 ms, which is consistent with reported
human VT cycle lengths57.

Overall, 779 whole-heart simulations were performed (arrhythmia induction
tested in 41 hearts from 19 pacing sites), rendering the current simulation study the
largest cardiac simulation study performed thus far. To ensure computational
tractability of the study, each simulation run calculated B7 s of electrical activity in
the ventricles (corresponding to 7 h of execution time), the first 5 s of which was the
pacing protocol, and the remaining 2 s represented the post-pacing period used to
detect the presence of arrhythmia. In this 2-s time interval, when activity was
present after the cessation of pacing, three scenarios were observed: sustained
arrhythmia, unsustained arrhythmia and an incomplete re-entry (single beat).
We made a choice to count all episodes of unsustained and sustained arrhythmia
as positive outcome in regards to inducibility (the 1 s criterion separated the
unsustained/sustained arrhythmias from the single beat). Thus, VARP outcome
was classified as positive if re-entrant arrhythmia that persisted for 41 s was
elicited. The rationale for the choice to count both unsustained and sustained
arrhythmias was the following: we observed that in the cases of unsustained
arrhythmia, often a small change in the size of an isthmus or other feature of the
infarct zone converted an unsustained arrhythmia into sustained. Given that there
are uncertainties in the image processing involved in model construction, we made
a choice to err on the side of increased sensitivity of the VARP approach.

Image processing and simulation tools. The image processing software ImageJ is
available from http://imagej.nih.gov/ij/. For grey-level thresholding, the software
CineTool was used here (GE Medical Systems). Computational meshes are gen-
erated using the software Tarantula (CAE Software Solutions). The human ven-
tricular ionic model by ten Tusscher et al. is freely available from the repository
CellML (https://www.cellml.org/). The rule-based approach to assign fibre orien-
tations in the computational mesh can be reproduced from the original publica-
tion13, which presents a set of algorithms and subroutines that can be easily
implemented. The electrophysiology simulations were executed using the software
package CARP (CardioSolv, LLC). The simulations can also be executed using the
open-source software CHASTE (http://www.cs.ox.ac.uk/chaste/). The patient MRI
images used to construct the personalized heart models are available on request
and on approval of Johns Hopkins Institutional Review Board.

Evaluating VARP predictive capabilities with patient data. The predictive
capability of VARP in stratifying SCD risk was evaluated retrospectively using data
from 41 patients with prior MI and LVEFo35% chosen randomly from the 136
patients enrolled in PROSE-ICD clinical trial16,17 with MRI scans acquired before
April 2009. All patients underwent implantation of clinically indicated ICDs.
We chose a cohort that was balanced between patients with (n¼ 21) and without
(n¼ 20) arrhythmic events. Of the 21 patients who reached the primary end point,
18 had appropriate shocks and 3 had cardiac death. Cardiac death was classified
as a primary end point to minimize under detection of potentially arrhythmic
events in the low risk group. Appropriate shock only was assessed as a secondary
end point.

The sample size was chosen following the rule of thumb that survival data need
to include at least 10 outcomes of each kind per independent variable, for sufficient
confidence in the results58. The sample size also ensured computational tractability
of the simulations, given the run times indicated above. Specifically, since only
small numbers of patients with ICDs have arrhythmia events (B5% annually)6,
if the patient cohort was not balanced between patients with and without
arrhythmia, the majority of the whole-heart models would have been not inducible
for arrhythmia. The small number of non-inducible cases in the cohort would have
then prevented us from assessing statistically the arrhythmia risk predictive
capability of VARP. We also could not increase the number of patients in the
cohort above 41 because of issues of computational expense, as outlined in the
section above.

Patient characteristics for the nested case–control group and the entire cohort
are presented in Supplementary Tables 1 and 2 in Supplementary Information,
respectively. For the patients who underwent VARP, mean±s.d. age was
61.8±11.1 years. Participants were 78% men and 82% Caucasian. Fifty-one percent
of the patients reached primary end point at a mean of 2.8±1.8 years after
enrolment. The mean follow-up time in patients without events was 6.8±2.2 years.
There was no significant difference in risk factors or medications between patients
who did and did not have events.

All patient images used here are from the CMR-PROSE-ICD study11,59.
Patients underwent contrast-enhanced short-axis MRI with a 1.5-T scanner (Signa
CV/i, GE Healthcare Technologies, Waukesha, Wis, or Avanto, Siemens, Erlangen,
Germany) pre-ICD implantation. Each patient’s MRI stack consisted of 10–14
contiguous short-axis slices. The MRI was gated and the reconstructed geometry
was diastolic. Late gadolinium-enhanced images were acquired 15–30 min after a
total injection of 0.2 mmol kg� 1 gadodiamide (Omniscan, GE Healthcare
Technologies) with an inversion recovery fast gradient-echo pulse sequence.
Imaging parameters were as follows: TR 5.4-8.3 ms, echo time 1.3–3.9 ms, average
in-plane spatial resolution 1.5� 2.4 mm, 8-mm slice thickness, 2-mm gap and
inversion time (TI) adjusted to null the signal of normal myocardium. All imaging
acquisition parameters were standardized and pre-specified, and have been
published previously11,17. The segmentation signal intensity threshold values used
for this study were determined using a semi-automatic full width half maximum
approach developed previously by our team11; reproducibility of segmentation was
also assessed in that publication. The protocol was approved by the Johns Hopkins
Hospital Institutional Review Board, and all patients provided written informed
consent.

The clinical EP testing data are also from the CMR-PROSE-ICD study11,59.
The EP testing protocol consisted of three extrastimuli at two different drive cycle
lengths delivered from the right ventricular apex alone (ICD, n¼ 30) or the right
ventricular apex and outflow tract (EP study, n¼ 2).

Statistical analysis. As specified above, the 21 cases and 20 controls were selected
at random among 41 participants with events and 95 participants without events
in the CMR-PROSE-ICD cohort. Baseline characteristics for the entire cohort
(Supplementary Table 2) and the case–control group (Supplementary Table 1)
were summarized as median together with interquartile range for continuous
variables or proportions for categorical variables. The characteristics were
compared between the two groups using two-tailed rank-sum test60 or Fisher’s
exact test61, as appropriate. Hazard ratios and corresponding 95% confidence
intervals were calculated using conditional logistic regression models62. All
statistical tests were performed using a significance level of P¼ 0.05. Stata
(StataCorp LP) was used to perform all analyses. All tests we utilized here were
appropriate for the data.
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