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Abstract

The majority of olfaction studies focus on orthonasal stimulation where odors enter via the

front nasal cavity, while retronasal olfaction, where odors enter the rear of the nasal cavity

during feeding, is understudied. The coding of retronasal odors via coordinated spiking of

neurons in the olfactory bulb (OB) is largely unknown despite evidence that higher level pro-

cessing is different than orthonasal. To this end, we use multi-electrode array in vivo record-

ings of rat OB mitral cells (MC) in response to a food odor with both modes of stimulation,

and find significant differences in evoked firing rates and spike count covariances (i.e., noise

correlations). Differences in spiking activity often have implications for sensory coding, thus

we develop a single-compartment biophysical OB model that is able to reproduce key prop-

erties of important OB cell types. Prior experiments in olfactory receptor neurons (ORN)

showed retro stimulation yields slower and spatially smaller ORN inputs than with ortho, yet

whether this is consequential for OB activity remains unknown. Indeed with these specifica-

tions for ORN inputs, our OB model captures the salient trends in our OB data. We also ana-

lyze how first and second order ORN input statistics dynamically transfer to MC spiking

statistics with a phenomenological linear-nonlinear filter model, and find that retro inputs

result in larger linear filters than ortho inputs. Finally, our models show that the temporal pro-

file of ORN is crucial for capturing our data and is thus a distinguishing feature between

ortho and retro stimulation, even at the OB. Using data-driven modeling, we detail how ORN

inputs result in differences in OB dynamics and MC spiking statistics. These differences

may ultimately shape how ortho and retro odors are coded.

Author summary

Olfaction is a key sense for many cognitive and behavioral tasks, and is particularly unique

because odors can naturally enter the nasal cavity from the front or rear, i.e., ortho- and

retro-nasal, respectively. Yet little is known about the differences in coordinated spiking
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in the olfactory bulb with ortho versus retro stimulation, let alone how these different

modes of olfaction may alter coding of odors. We simultaneously record many cells in rat

olfactory bulb to assess the differences in spiking statistics, and develop a biophysical

olfactory bulb network model to study the reasons for these differences. Using theoretical

and computational methods, we find that the olfactory bulb transfers input statistics dif-

ferently for retro stimulation relative to ortho stimulation. Furthermore, our models show

that the temporal profile of inputs is crucial for capturing our data and is thus a distin-

guishing feature between ortho and retro stimulation, even at the olfactory bulb. Under-

standing the spiking dynamics of the olfactory bulb with both ortho and retro stimulation

is a key step for ultimately understanding how the brain codes odors with different modes

of olfaction.

Introduction

Olfactory processing naturally occurs in two distinct modes: orthonasal (ortho) where odors

enter the front of the nasal cavity and retronasal (retro) where odors enter the rear through

the throat. Orthonasal olfaction is essential for avoiding predators [1, 2], social interactions,

and finding food, and has been studied most extensively in olfaction research. Retronasal

olfaction is far less studied, but has a critical role in eating behaviors as chewed foods generate

odorants that enter the nasal cavity upon exhalation. Retronasal olfaction drives flavor percep-

tion [3–5] and aids in avoiding harmful foods. Moreover, studies have shown that olfactory

dysfunction with food odors is directly linked to obesity [6–8]. Previous studies have reported

differences in cortical fMRI BOLD signals for ortho versus retro stimuli [9] and recent evi-

dence suggests that food odors are easier to recognize when delivered retronasally versus

orthonasally [10]. Calcium imaging studies have shown that the input to olfactory bulb from

the nose differs for ortho versus retro stimulation [11]. However, the neural mechanisms that

differentiate ortho versus retro olfactory processing at the level of spiking activity in olfactory

bulb remain unknown.

Odor information is primarily processed in the olfactory bulb (OB) and then subsequently

relayed to cortical areas via mitral cell (MC) (and tufted cell) spiking. Thus, any differences in

MC spiking between ortho and retro are related to both the efficiency and accuracy [12–15] of

odor coding, but any such differences are largely unknown. Presynaptic to the OB are olfactory

receptor neurons (ORNs) whose activity is known to differ for ortho versus retro stimulation,

as observed in prior imaging studies with fMRI [16], calcium imaging [11], and optical imag-

ing in transgenic mice [17]. These and other prior studies [18–20] suggest that ORN synaptic

inputs is a key factor for differences in OB activity. The two routes of stimulation make contact

on different locations of the olfactory epithelium (shown in light green in Fig 1 experimental

diagram) and thus activate different ORN receptor types within the epithelium. However, the

implications of these differences in ORN activity for MC spiking have yet to be explored.

We perform in vivo recordings of rat OB mitral cells using multi-electrode arrays with a

food odor (Ethyl Butyrate) stimulus, delivered by both modes of stimulation, to determine

whether differences exist. We find significant differences in odor-evoked MC spiking with

ortho versus retro stimulation in both firing rate (larger with retro) and spike count covariance

(larger with ortho). However, understanding how retro stimulation can elicit both larger firing

rates and smaller co-variablity than ortho is generally difficult in recurrent networks because

of the numerous attributes that shape spike statistics [21–24]. Additionally, dissecting how

components of ORN inputs alter OB spiking is difficult experimentally due to the complexity
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Fig 1. Spike statistics from in vivo multi-electrode array recordings. Population average spike statistics for orthonasal (blue) and retronasal (red) with stimulus onset

at time t = 0 s as indicated by black arrow for 1 s duration. A) Firing rate (Hz) is statistically significantly different between ortho and retro for the duration of the

evoked period (0.4� t� 1.1 s). B) Spike count variance has no statistically significant difference between ortho and retro. C) Covariance of spike counts are

statistically significant different throughout the evoked state (0� t� 2) with ortho having larger values. Scaled measures of variability shown for completeness: Fano

Factor (D) is the variance divided by mean spike count, and Pearson’s correlation (E) is the covariance divided by the product of the standard deviations; both are also

different with ortho versus retro. Spike counts in 100 ms half-overlapping time windows averaging over all 10 trials. Significance: two-sample t-tests (assuming unequal

variances) for each time bin to assess differences in population means, p< 0.01, also see S1 and S2 Figs. From 94 total cells and 1435 simultaneously recorded cell pairs;

shaded regions show relative population heterogeneity: μ ± 0.2std (standard deviation across the population/pairs after trial-averaging; 0.2 scale for visualization).

https://doi.org/10.1371/journal.pcbi.1009169.g001
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of both the recurrent circuitry in the OB [25, 26] and resulting spatiotemporal ORN responses

[18, 20]. So we develop a single-compartment biophysical OB model that accounts for differ-

ences in ORN input to investigate how they affect MC spiking responses. Specifically, we

model ORN input as a time-varying inhomogeneous Poisson Process [27], where the input

rate has slower increase and decay for retro than ortho [11, 17], and the ORN input correlation

is smaller for retro than ortho [11, 17]. With these specifications, our biophysical OB network

model is able to capture the salient ortho versus retro MC spiking response trends in our

experimental data.

However, our biophysical OB model is too complex to directly analyze mathematically in

order to address the neural encoding problem of characterizing how MCs convert ORN input

to spike responses. We use a simple linear-nonlinear (LN) model framework to assess how our

biophysical OB network transfers input statistics (from ORN) to outputs (MC spike statistics).

We find that the linear filter component of the LN model, i.e., convolution with ORN inputs,

consistently has larger absolute values with retro than with ortho input. Thus the OB network

model is more sensitive to ORN fluctuations with retro-like inputs than with ortho. Finally, we

use our models to examine which key attribute(s) of ORN inputs (temporal profile, amplitude,

input correlation) are most significant for capturing our data. We find that temporal profile is

the critical attribute for ortho versus retronasal stimulus response.

This work provides a framework for how to analyze the sources driving different OB spik-

ing responses to different modes of olfaction, as well as important insights that have implica-

tions for how the brain codes odors.

Results

We performed in vivo multi-electrode array recordings of the OB in the mitral cell layer of

anesthetized rats (see Materials and methods: Electrophysiological recordings) to capture

odor evoked spiking activity of populations of putative MCs. This yielded a large number of

cells (94) and simultaneously recorded pairs of cells (1435) with which to assess population

average spiking statistics. The spike statistics are trial-averaged responses of a rat to a single

odorant, Ethyl Butyrate (food odor). We focus on a food odor because they dominate retrona-

sal smells, and a recent study showed that humans can more accurately detect food odors (vs.

non-food odors) delivered retronasally [10]. In addition, an fMRI study showed different cor-

tical activity [9] in humans for ortho versus retronasal stimulus, specifically with food odors.

The first and second order spike statistics are summarized in Fig 1, including the firing rate

(peri-stimulus time histogram, PSTH, Fig 1A), the spike count variance (Fig 1B), the spike

count covariance (Fig 1C), Fano Factor (variance divided by mean, Fig 1D), and Pearson’s cor-

relation (Fig 1E). For each cell and simultaneously record pair of cells, we calculated the trial-

averaged spike statistics with half-overlapping 100 ms time windows. The time window 100

ms is an intermediate value between shorter (membrane time constants, AMPA, GABAA, etc.)

and longer time scales (NMDA, calcium, and other ionic currents) known to exist in the OB.

We find statistically significant differences between ortho and retro stimulation in almost

all of the first and second order MC spike count statistics. At odor onset, orthonasal stimula-

tion elicits larger firing rates with a faster rise than retronasal, after which retronasal firing is

larger and remains elevated longer than with orthonasal. These trends are consistent with

imaging studies of the glomeruli layer in OB in transgenic mice (see [17], their Fig 2) as well as

EOG recordings of the superficial layers of the OB in rats (see [19], their Fig 7). More specifi-

cally, we find statistical significance (α = 0.01) between ortho- and retronasal firing rate after

and for the duration of the odor stimulation. We also find that MC spike count covariance for

ortho is significantly larger than retro for the entirety of the evoked state. MC spike count
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variance, however, is not significantly different. Note that we specifically tested whether the

population averages (averaged over all cells for PSTH and spike variance, over all simulta-

neously recorded pairs for spike covariance) are significantly different between ortho and

retro, via a two-sample t-test assuming unequal variances with the null hypothesis of equal

population averages (see S1 Fig). Further, we calculated Cohen’s d value to measure effect size

[28], and find medium effect size for the majority of the evoked time period for all spike statis-

tics considered except for variance, see S2 Fig.

Hereafter, we mainly focus on understanding the differences in firing rate and spike count

covariance because they directly impact common coding metrics (e.g. the Fisher information)

in contrast to scaled measures of variability (Fano factor and Pearson’s correlation) that are

nonlinear functions of the entities that impact coding [12]. Moreover, Fano factor and correla-

tion both depend on variance, which is not statistically different with ortho and retro (but see

S1(D) and S1(E) Fig for completeness).

OB network model captures data trends

To better understand how differences in MC spiking with ortho and retro stimulation come

about, we developed a single-compartment OB network model based on Li & Cleland’s multi-

compartment model [29, 30]. Our model is more computationally efficient than their larger

multi-compartment models [29, 30], requiring a fraction of the variables (tens of state variables

instead of thousands). Importantly, our single-compartment model retains important biophys-

ical features (Fig 2A).

In Fig 2A, we see in both models of MC (uncoupled) that the time to spiking decreases with

increasing current values, and the number of spikes in a cluster increases with current values

consistent with prior electrophysiological experiments [31–33]. The spacing between spike

clusters and number of spikes in a cluster in our model (right) qualitatively match the Li & Cle-

land model (left). The sub-threshold oscillations are not as prominent as in Li & Cleland, but

still apparent. In the uncoupled GC models, both ours and Li & Cleland’s models exhibit a

delay to the first spike with weak current step [34] (Fig 2A, bottom) and tonic firing without

appreciable delay for higher current injections [35] (Fig 2A, middle and top). In the uncoupled

PGC models, we do not observe repetitive firing in either models (Fig 2A, top and middle).

Also, releasing from a hyperpolarizing current injection (bottom) can illicit spiking in both

models, as observed by McQuiston & Katz [36]. Thus, we have a condensed OB model by

using far less equations than Cleland’s models while retaining many of the biophysical dynam-

ics known to exist in these 3 important OB cell types.

Since our focus is on first and second order population-averaged spiking statistics, we use a

minimal OB network model with 2 glomeruli (Fig 2B). Each glomerulus has a PGC, MC and

GC; we also include a common GC that provides shared inhibition to both MCs because GCs

are known to span multiple glomeruli and shape MC spike correlation [26, 37, 38]. Within the

OB network, the PGC and GC cells provide presynaptic GABAA inhibition to the MCs they

are coupled to, while MC provide both AMPA and NMDA excitation to PGC and GCs (see

Materials and methods: Single-Compartment Biophysical Model for further details). The

ORN synaptic inputs are an important component of this coupled OB network; they are driven

by correlated inhomogeneous Poisson Process with increases in rate and correlation at odor

onset. The specific time-varying input rate and correlation we use are shown in Fig 2Ci and

2Cii, respectively. The differences in ortho versus retro (Fig 2Ci and 2Cii) are based on prior

studies of ORN input to the OB in response to both ortho and retro stimulation [11, 17]. We

fixed all model components and manually varied the ORN input rate λO/R(t), see Materials and

methods: Fitting biophysical network model to data for further details.
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A comparison of first and second-order statistics between our OB model and in vivo data is

shown in Fig 3. With the ORN activity specified in Fig 2C, our OB model is able to qualitatively

capture trends seen in our data for firing rate and spike count covariance. Firing rates in Fig

3A show that both the model and data exhibit larger firing rates for ortho at odor onset fol-

lowed by a sharper decline. After the initial increase in ortho firing rates, retro firing rates

Fig 2. Biophysical OB model. A) Dynamics of the 3 uncoupled cell models. MC voltage dynamics with current step inputs in Li & Cleland models (black curves on

the left, copied from Li & Cleland [29]) are captured by our single-compartment model (blue on the right). Rows 5–8 show expanded time view of first 4 rows to

highlight spike cluster sizes and sub-threshold oscillations (same voltage axis for each). GC voltage responses to three different levels of current injection in the Li &

Cleland model (black curves on the left) is similar to our model (green on the right). PGC responses with depolarizing current steps again are similar in both models.

Note that release from a hyperpolarizing current injection leads to transient spiking in both models (bottom). B) Coupled OB network model of 2 glomeruli with ORN

inputs. ORN synapses are driven by correlated inhomogeneous Poisson Processes (Eqs (10)–(12)). C) Based on ORN imaging studies, we set λO(t) to increase and

decay faster than λR(t) with odor onset at time 0s (i). Similarly, we set the input correlation of ORN synapses to the 2 MCs to cR/O(t) where cR(t)< cO(t) and cO(t) rises

quicker than cR(t) (ii).

https://doi.org/10.1371/journal.pcbi.1009169.g002
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Fig 3. OB model captures trends in our data. Comparison of all first and second-order statistics of coupled OB network model to our data. A) Firing rate of ortho

increases and decays faster than retro in both data and model. B) Variance of spike counts for ortho and retro shown for completeness, but recall that in experimental

data that they are not statistically different. C) Covariance of spike counts is larger for ortho than retro in both data and model (left), but the magnitudes of data and

model differ. Comparison of the ratio of retro covariance to ortho covariance in the evoked state (right) shows that the model captures the relative differences between

ortho and retro—here μ (resp. σ) is the average (resp. standard deviation) ratio over 20 time bins in the evoked state. For A–C, top shaded error regions of data (retro

in A, ortho in B,C) are cut-off to better compare model and data. Comparisons of the (D) Fano factor and (E) Pearson’s spike count correlation shown for
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continue to increase, eventually becoming larger than ortho and remaining elevated longer,

consistent with optical imaging experiments (see [17] their Fig 2). Although there is no signifi-

cant difference in the spike count variance between ortho and retro in our experimental data,

we show our data with model for completeness (Fig 3B).

Our OB model captures the trend that ortho spike count covariance is larger than retro

after odor onset, Fig 3C (left). The OB model certainly does not capture the magnitude of the

spike count covariance in the data; recall that covariance in our experimental data is the popu-

lation average over all 1435 simultaneously recorded pairs with significant heterogeneity while

our model is homogeneous. But the relative differences between retro and ortho (as measured

by the ratio of retro to ortho covariance in the evoked state) are similar (Fig 3C, right). Thus

our OB model captures the salient trends of the population-averaged spike count statistics. We

also show comparisons of Fano Factor (Fig 3D) and Pearson’s correlation (Fig 3E) for com-

pleteness. Consistent with our data, our OB model has larger Fano Factor and spike count cor-

relation for ortho than with retro. In the evoked state, the OB model matches spike count

correlation for both ortho and retro well. The larger ortho Fano factor in our data is captured

in our model, but the difference is very modest.

How OB network transfers ORN input statistics

We next sought to better understand how our OB network model operates with different ORN

inputs. In particular, we investigated whether the same OB network model transfers ortho and

retro ORN inputs to MC spike outputs differently or not. We addressed this in a simple and

transparent manner with a phenomenological LN model (Fig 4A) to approximate the overall

effects of the OB network on ORN inputs. LN-type models have often been used to circumvent

the complexities in biophysical spiking models (see [39–41] and Discussion).

Description of the LN model. The LN model first applies a linear filter to the input, X(t),
i.e., a convolution with a fixed temporal linear filter k, shifts the result by b, followed by a static

non-linearity (exponential function) to produce an output Y(t), see Fig 4A:

YðtÞ ¼ exp
Z t

� 1

kðt � tÞXðtÞdtþ b
� �

ð1Þ

For our purposes, XðtÞ 2 fmSðtÞ; s2
SðtÞ; Cov ðS1ðtÞ; S2ðtÞÞg are the statistics of ORN input

synapses to the MCs, and Y(t) is an approximation to the statistics of MC spiking response:

fPSTHðtÞ; s2
RðtÞ; Cov ðR1ðtÞ;R2ðtÞÞg. We calculate Y(t) (Eq (1)) by minimizing the L2-norm

of the difference between Y (t) and the simulated MC spike statistic from the biophysical OB

model. The LN model is applied separately to each statistic (further details to follow, see Eqs

(3)–(5)). For example, for ortho firing rate (Fig 5A, top left), PSTH(t) is the blue curve in Fig

5A, top left, the best fit Y (t) is black dotted curve in Fig 5A (top left), found via:

ðkðtÞ; bÞ ¼ arg min
kðtÞ;b
kYðtÞ � PSTHðtÞkL2 ð2Þ

(also see Materials and methods: Linear-Nonlinear (LN) model: numerical details). This

completeness despite both measures depending on spike count variance. D) The model has slightly larger Fano factor with ortho, consistent with the data. E) The

model does qualitatively capture the spike count correlation for both ortho and retro, at least in the evoked state.

https://doi.org/10.1371/journal.pcbi.1009169.g003
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procedure is repeated for each statistic and mode of olfaction:

mSðtÞ � !LN PSTHðtÞ ð3Þ

s2
SðtÞ � !LN s2

RðtÞ; ðspike count varianceÞ ð4Þ

CovðS1ðtÞ; S2ðtÞÞ � !LN CovðR1ðtÞ;R2ðtÞÞ; ðspike count covarianceÞ ð5Þ

That is, we consider different, separate LN models for each statistic, without any mixing effects

(e.g., s2
SðtÞ does not directly affect PSTH(t)). Although output statistics generally depend on all

input statistics [42–44], we emphasize that our ad-hoc approach here is meant to better under-

stand how the OB model operates on each statistic and is not a principled alternative model.

By construction, in the biophysical OB model, both the inputs to each MC and the spike

output of each MC have identical marginal statistics, so we are using the LN model to assess

how univariate input statistics (mean/var) are mapped to univariate output statistics (mean/

var). The covariances depend on 2 variables (bivariate: (S1, S2) for input and (R1, R2) for

Fig 4. LN framework used to analyze OB transfer of input statistics. A) Schematic of the phenomenological linear-nonlinear (LN) model to approximate how the

OB network transfers input statistics. B) The actual ortho (top row) and retro (bottom row) input synapses used in the biophysical OB model results in Fig 3.

Comparisons of the Monte Carlo simulations (Eqs (11) and (12)) and theoretical calculations (Eqs (13), (18) and (22) for respective columns) show smooth curve

matches even for correlated time-varying (inhomogeneous) Poisson processes.

https://doi.org/10.1371/journal.pcbi.1009169.g004
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output), but the LN model is only for assessing how covariance of inputs maps to covariance

of outputs without directly modeling multiple random variables.

For the inputs to the LN model, we use an exact theoretical calculation for

mSðtÞ; s2
SðtÞ;Cov ðS1ðtÞ; S2ðtÞÞ rather than relying on Monte Carlo simulations. The ORN

input synapses are driven by correlated time-varying inhomogenous Poisson processes yet we

are still able to calculate the first and second order statistics of the ORN inputs in the limit of

infinite number of realizations; detailed in Materials and methods: Calculating time-varying

ORN input synapses, Eqs (13), (18) and (22). A comparison of Monte Carlo simulations of

the actual ORN inputs used in our OB model results (Eqs (11) and (12)) to the theoretical cal-

culation (Eqs (13), (18) and (22)) is shown in Fig 4B. We clearly see that the calculations

(labeled ‘Theory’) matches all three ORN input statistics with smooth curves, properly

accounting for both time-varying ORN input and time-varying input correlation. These calcu-

lations do not depend on any asymptotic assumptions; see S4 Fig for more examples.

Applying LN models to biophysical OB model results. The LN model is able to fit well

to the biophysical OB model output MC spike statistics for both ortho and retro stimuli,

shown in Fig 5A. For this reason, we can assume that the LN model provides a decent

Fig 5. LN model shows that retronasal input results in linear filters with larger magnitudes. A) Comparison of LN model output (dashed black curves) to OB

network model output statistics for ortho (solid blue curves in top panels) and retro (solid red curves in bottom panels) stimulus with onset at t = 0 s. The LN output

qualitatively captures OB model output statistics. B) Linear filters k(t) in LN model for ortho (in blue) and retro (in red) stimulus over time (−5� t� 0 ms). Linear

filters for retro have larger positive and negative values than with ortho.

https://doi.org/10.1371/journal.pcbi.1009169.g005
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approximation of how the biophysical OB model transfers the different ORN input statistics.

Thus, the resulting linear filters, k(t) in Fig 5B, succinctly show how the various ORN input

statistics are convolved in time by the biophysical OB network model. For all 3 spike statistics,

retro input statistics result in filters with larger absolute values (both positive and negative)

than ortho, suggesting that the OB network operates in a regime where MC responses are

more sensitive to fluctuations with retro input. The resulting b values are listed in Table 1; they

represent an absolute shift independent of the temporal dynamics. The b values are similar for

ortho and retro for all statistics except spike count covariance. Although b is important for the

resulting LN curves (dot-black in Fig 5A), it is not a part of the temporal processing of ORN

inputs.

ORN input signatures for ortho/retro

Despite retro eliciting larger firing rates than ortho, the spike count covariance (as well as cor-

relation and Fano factor) with retro stimulation is smaller than with ortho. It has long been

known theoretically and experimentally that in uncoupled cells, the spike correlation increases

with firing rate (at least with moderate to larger window sizes) [45], in contrast with our data.

In coupled networks, the change in correlation with firing rate is complicated and depends on

numerous factors [21–24]. Thus, the components of ORN inputs that result in these differ-

ences (higher firing and less covariance for retro than with ortho) in the same OB network are

not obvious.

So we use our computational framework to uncover the important feature(s) of ORN input

that: i) results in MC spike statistics consistent with our salient data trends, and ii) linearly fil-

ters ORN inputs with larger values with retro than with ortho input. Here we disregard the

biological differences in ortho and retro ORN inputs to consider 3 core attributes of ORN

inputs that influence how the biophysical OB model operates:

• Temporal (faster increase and decay, or slower increase and decay; see Fig 6A, left)

• Amplitude (low or high, see Fig 6A, left)

• Input correlation (lower or higher, black and gray curves respectively, in Fig 6A, right)

We consider a total of 8 different ORN input profiles consisting of various combinations of

amplitude, input correlation, temporal profiles. The LN model fit to the OB model (i.e., MC

spike statistics) for these 8 different ORN input profiles are all similar, well approximating how

the OB coupled network transfers input statistics (see Fig 5A and S5 Fig). Fig 6B clearly shows

that the slower increase and decay in input rate (redish/lighter) consistently results in linear fil-

ters k(t) with larger absolute values than with faster increase/decay (bluish/darker). The larger

filter values holds with all 3 statistics, and with all variations of amplitude and input correla-

tion. Thus, the OB network consistently has filters with larger absolute values when the input

profile is slower (i.e., retronasal-like). The resulting LN model b values are listed in Table 2 for

Table 1. Parameter b for LN model fits to MC spiking statistics in Fig 5.

PSTH Variance Covariance

Orthonasal 2.10 -0.50 -1.56

Retronasal 1.94 -0.55 -3.02

The parameter b for the LN model fits (Eq (1)) between orthonasal and retronasal are similar for a given statistic,

except for spike count covariance.

https://doi.org/10.1371/journal.pcbi.1009169.t001
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Fig 6. Temporal profile is crucial for larger magnitude filters. A) Different combinations of input rates (left) including slower increase and decay (retro-like) and

faster increase and decay (ortho-like) as well as high and low amplitude as labelled. Two different input correlations (right), with high correlation in gray, and lower

correlation in black. B) Resulting linear filters k(t) have consistently larger absolute values when temporal profile of ORN inputs is slower (retro-like), compared to

faster (ortho-like).

https://doi.org/10.1371/journal.pcbi.1009169.g006
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reference, although these values represent an absolute scaling independent of the temporal

dynamics.

Fig 7 shows all 8 OB model results for each spike statistic. For all first and second order statis-

tics, including scaled measures of variability, the most distinct attribute that distinguishes our

model results is the temporal profile of input. Importantly, the temporal profile is the key attri-

bute to best capture the differences in ortho and retro our experimental data (see Fig 3). The

slow increase and decay in input rate consistently results in retro-like spiking trends while the

fast increase and decay in input rate results in ortho-like spiking trends. Thus, our models show

that the temporal profile is a signature of retro and ortho stimulation, and emphasizes the critical

role of ORN inputs for shaping how the same OB network modulates ortho and retro stimuli.

Discussion

We investigated how odors processed via the orthonasal and retronasal routes result in differ-

ent OB spike statistics, analyzing in detail how ORN inputs transfer to MC spike outputs.

Motivated by our in vivo rat recordings that showed significant differences in first and second

order spiking statistics of MC, we developed a realistic OB network model to investigate the

dynamics of stimulus-evoked spike statistic modulation (higher firing and lower covariance/

correlation with retro than with ortho). Our OB model balances biophysical attributes [29, 30]

with computational efficiency. The OB model is able to capture salient trends in our data with

both ortho and retro stimulation, and should be useful for future studies of OB. We success-

fully used the biophysical OB model, paired with a phenomenological LN model, to analyze

how different ORN inputs lead to different dynamic transfer of input statistics. We also

showed that the temporal profile of ORN inputs is a key determinant of ortho versus retro

input via model matching our data. The output spike statistics are crucial because the OB

relays odor information to higher cortical regions, and thus our work may have implications

for odor processing with different modes of olfaction [9–11].

To the best of our knowledge, our experiments detail the differences in MC spiking with

ortho and retro stimuli for the first time. However, the work of Scott et al. [19] is related; they

used 4 electrodes to record OB spiking activity in the superficial layers of OB in rats. Their

results are difficult to directly compare to ours as they focus on superficial OB in the epithe-

lium rather than the mitral cell layer, but at least the trial-averaged firing rates in their data

appear to be consistent with our data. Moreover, our multi-electrode array recordings enable

us to consider trial-to-trial covariance of spiking.

Table 2. Parameter b for LN model fits to MC spiking statistics in Fig 6.

Temporal Amplitude ORN correlation PSTH Variance Covariance

Fast (ortho) High High 2.10 -0.50 -1.56

High Low 1.99 -0.56 -1.35

Low High 2.03 -0.55 -1.62

Low Low 1.97 -0.61 -3.42

Slow (retro) High High 2.04 -0.50 -1.11

High Low 1.94 -0.55 -3.02

Low High 1.70 -0.72 -1.36

Low Low 1.59 -0.81 -3.18

The parameter b for the LN model fits (Eq (1)) of the various parameters for temporal profile, amplitude, and input correlation. Amplitude and ORN input correlation

profiles as defined for Figs 3–5 and associated values previously listed in Table 1 are noted in bold.

https://doi.org/10.1371/journal.pcbi.1009169.t002
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Fig 7. Comparison of all 8 OB model results. The 8 different OB model results are from varying temporal profile, amplitude height, and input

correlation (2 ways each, see Fig 6A). Different temporal profiles is key for both having different model spike statistics and for best matching

qualitative differences in our data (see Fig 3). A) Firing rate in Hz (left) is slightly lower with low input rate amplitude, but no significant difference

with different input correlations. B) Spike count variance, similar to firing rate, has only slightly lower values with low input rate amplitude. C) Spike

count covariance is lower with lower input correlation for all of ortho evoked state (not surprisingly). However, retro (fast) with lower amplitude

steadily increases above higher amplitude after about 1 s in the evoked state. D) Fano Factor model results only change modestly. E) Pearson’s spike
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The key attribute(s) of ORN inputs that can result in different ortho and retro MC spike sta-

tistics consistent with our data are not obvious. Indeed, retro stimulation resulted in larger fir-

ing rates than ortho, and the spike count covariance (as well as correlation and Fano factor)

with retro stimulation is smaller than with ortho, in contrast to uncoupled cells where correla-

tion increases with firing rate [45]. Using various models, we were able to consider how three

components of ORN inputs (temporal profile, amplitude, and input correlation) result in dif-

ferent OB dynamics with regards to transferring input statistics to outputs. Prior experiments

[11, 16, 17] have shown these input components can differ with ortho and retro inputs. We

found that the temporal profile (fast versus slow) plays a critical role for both capturing our

data and for shaping the transfer of inputs to outputs, i.e., retro inputs consistently resulted in

larger temporal filter values, so the OB network is more sensitive to fluctuations of retro input

statistics than ortho. To capture the salient trends in our data, we find slower input rate (rise

and decay) is a key signature of retronasal stimulation, while faster rise and decay [11, 17, 19]

is similarly a key signature of orthonasal stimulus.

The temporal differences between ortho versus retro have previously been thought to play a

role in distinguishing ortho/retro stimulation at the ORN [11, 16, 17, 19, 20], but whether this

carried over to the OB and if this held at the level of spiking was unknown. Here we demon-

strate the importance of different temporal input to OB for ortho versus retro.

We used an ad-hoc LN model framework because many of biological complexities are

removed yet important features are retained. That is, neurons are known to linearly filter

inputs, and spike generation is inherently nonlinear, i.e., finding linear filters of neurons is not

new [41], and they are related to the spike-triggered average [46]. Thus, LN-type models have

been used in many contexts, often to circumvent biophysical modeling, and most notably with

generalized linear models [47, 48] (also see [40]) where various filters (stimulus, post-spike)

and model components are fit to data using maximum likelihood. Connecting the large gap

between biophysical models and LN models is daunting, but see Ostojic and Brunel [39] who

relate stochastic integrate-and-fire type models to LN. Our approach here is much simpler

than the aforementioned works because we simply wanted to assess how a particular statistic

(mean, variance or covariance) mapped via the OB network model in a simple and transparent

manner. An enhanced data-driven approach to fitting an LN-type model that relies on experi-

mental data of both ORN inputs and MC spike outputs with many trials might better reveal

differences in how the OB operates with ortho versus retro. However, we currently do not

know if such a dataset exists.

Here we list some limitations of our study. We only considered the MC response to a single

food odor despite a large variety of food (and non-food) odors animals encounter. Different

odors activate different olfactory receptors that could lead to qualitatively different population

MC spiking activity than what we report here. Retronasal odors are predominately food odors,

and studies have shown that humans can more accurately detect food odors (vs. non-food

odors) delivered retronasally [10]. Frasnelli et al. [49] showed that food versus non-food odors

illicit varying neural responses in humans when introduced ortho- versus retronasally. An

fMRI BOLD study showed that cortical activity in humans differed when odors were intro-

duced via the ortho or retro routes, specifically with food odors [9]. Thus our choice of a food

odor is a natural first step for investigating retronasal MC responses. Also, we attributed the

differences in ortho/retro MC responses solely to ORN inputs when in fact many regions syn-

apse to OB [50]. For example, optogenetic studies [51, 52] have shown that feedback from

count correlation, similar to spike count covariance, is lower with lower input correlation and similarly for retro (fast), there is an increase with

higher input correlation.

https://doi.org/10.1371/journal.pcbi.1009169.g007
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olfactory cortex to OB is relatively strong and inhibition dominated. Whether this cortical

feedback (or other external modulation) differs for ortho and retro stimulation is currently

unknown. Moreover, odor-specific cortical feedback to OB [53] could alter the OB spike corre-

lation, a factor that our modeling study did not account for. Finally, our data is from anaesthe-

tized rats that enabled control of odor delivery and excluded confounding factors such as the

breath cycle and sniff rate [54, 55]. However, the MC spike activity in awake rodents can be

quite different than in anesthetized [56], so whether our reported differences in ortho versus

retro MC spiking hold in awake rodents is an open question. We hope our work here inspires

more research into the differences between ortho versus retro olfaction, in particular in down-

stream olfactory circuits and with other experimental preparations.

With a combination of experiments and different scales of neural network modeling, we

provide a basis for understanding how differences in OB spiking statistics arise with these 2

natural modes of olfaction. More generally, our model framework provides a road map for

how to analyze attributes responsible for different OB spiking when driven by differences in

ORN inputs.

Materials and methods

Ethics statement

All procedures were carried out in accordance with the recommendations in the Guide for the

Care and Use of Laboratory Animals of the National Institutes of Health and approved by Uni-

versity of Arkansas Institutional Animal Care and Use Committee (protocol #14049). Isoflur-

ane and urethane anesthesia were used and urethane overdose was used for euthanasia.

Code availability

See https://github.com/michellecraft64/OB for MATLAB code implementing the single-com-

partment biophysical model, the equations for synaptic input statistics, and the linear-nonlin-

ear (LN) model.

Single-compartment biophysical OB model

Models of all three cell types (MC, PGC, GC) are based on models developed by the Cleland

Lab [29, 30]. We consider two glomeruli each with a representative MC, PGC, GC (see Fig

2B). Each cell is a conductance-based model with intrinsic ionic currents. The voltage

responses of all three cell types, measured in experiments and in a multi-compartment model

[29, 30], are generally captured in our single-compartmental model, see Fig 2A. Here we

describe all of the pertinent model details thoroughly; for other extraneous details and imple-

mentation, please refer to provided code on GitHub.

Individual cell model.

Cj

dVj

dt
¼ Ij;App �

X
Ij;Ion �

X
Ij;Synapse �

X
Ij;ORN; ð6Þ

The voltages of all model cells are governed by a Hodgkin-Huxley type current balance

equation (Eq (6) above for the jth cell) consisting of voltage (V), membrane capacitance (C),

applied current (IApp), ionic currents (IIon), synaptic currents (ISynapse), and ORN inputs

(IORN); see Tables 3 and 4 for units and numerical values, respectively. For our modeling pur-

poses, the ionic currents and the ORN inputs are modified from [29, 30] and described below.
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Ionic currents.

Ii ¼ gimphqðV � EiÞ; ð7Þ

The ionic currents are defined by Eq (7) above (for specific ion type i) and account for maxi-

mal conductance (g), activation variable (m) with exponent (p), inactivation variable (h) with

exponent (q), time-varying voltage (V assumed to be isopotential), and reversal potential (Ei). All

parameters and function for intrinsic ionic currents and their gating variables are the same as in

[29, 30] with the exception of maximal conductance. We chose to condense the model as defined

in [29, 30] by collapsing all compartments to a single-compartment, and we set the maximal con-

ductance as the sum of all maximal conductance values (e.g., in PGC, INa has maximal conduc-

tance gNa = 70 mS/cm2 because [29] set gNa = 50 mS/cm2 in the soma and gNa = 20 mS/cm2 in

Table 3. Description of model parameters.

Resistance and Capacitance

Variable Description

Rm Membrane Resistance (KO-cm2)

Cm Membrane Capacitance (μF/cm2)

Ra Cytoplasmic (Axial) Resistance (O-cm)

Ionic Currents (μA/cm2)

Variable Description

INa Fast, Spike-Generating Sodium Current

INaP Persistent Sodium Current

IDR Potassium Delayed Rectifier

IA Fast-Activating Transient Potassium Current

IM Noninactivating Muscarinic Potassium Current

IKS Slow-Inactivating Transient Potassium Current

IH Hyperpolarization-Activated Current

ICaL L-type Calcium Current

ICaP/N High-Threshold Calcium Current

ICaT Low-Threshold Inactivating Calcium Current

ICAN Ca2+-Activated Nonspecific Cation Current

IKCa Ca2+-Dependent Potassium Current

Reversal Potentials

Variable Description

EL Leak Current Reversal Potential

ENa Sodium Reversal Potential

EK Potassium Reversal Potential

EH Hyperpolarization-Activated Reversal Potential

Ecation Ca2+-Activated Nonspecific Cation Reversal Potential

ECa Calcium Reversal Potential

Calcium Dynamics

Variable Description

w Perimembrane Thickness

z Ca2+ Ion Valence

F Faraday Constant

τCa Ca2+ Removal Rate

[Ca2+] Intracellular Ca2+ Concentration

[Ca2+]rest Ca2+ Resting Concentration

https://doi.org/10.1371/journal.pcbi.1009169.t003
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the spine). All summed maximal conductance values used are listed for reference in Table 4. The

calcium dynamics used to define the calcium-related ionic currents are the same as in [29, 30].

Synaptic currents.

Isyn ¼ wgsynsBðVÞðV � EsynÞ; ð8Þ

ds
dt
¼ aFðVpreÞð1 � sÞ þ bs; ð9Þ

Eqs (8) and (9) are the equations for the synaptic variables, where all presynaptic GCs and

PGCs provide GABAA inputs, and all presynaptic MCs provide both AMPA and NMDA

Table 4. Parameter values for each cell type. Each of these values are the same as defined by [30] with the exception

of maximal conductance values which are the sum of all cell compartments (soma, dendrite, axon, etc.) as defined by

[30]. Additionally, any conductance value denoted by − implies that this ionic current is not included in the associated

cell.

Resistance and Capacitance

Variable MC Value GC Value PGC Value

Rm 30 30 20

Cm 1.2 2.0 1.2

Ra 70 70 80

Maximal Conductance (mS/cm2)

Variable MC Value GC Value PGC Value

gNa 120 70 70

gNaP 0.42 — —

gDR 70 25 25

gA 10 80 40

gM — 0.5 1.0

gKS 84 — —

gH — — 0.2

gCaL 0.85 — —

gCaP/N — 0.2 1.0

gCaT — 0.1 3.0

gCAN — 1.0 —

gKCa 5 0.5 2.0

Reversal Potentials (mV)

Variable MC Value GC Value PGC Value

EL -60 -60 -65

ENa 45 45 45

EK -80 -80 -80

EH 0 0 0

Ecation 10 10 10

Calcium Dynamics

Variable MC Value GC Value PGC Value

w 1 μm 0.2 μm 0.2 μm

z 2 2 2

τCa 10 ms 800 ms 800 ms

[Ca2+] dynamic dynamic dynamic

[Ca2+]rest 0.05 μmol/1 0.05 μmol/1 0.05 μmol/1

https://doi.org/10.1371/journal.pcbi.1009169.t004
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inputs. B(V) in Eq (8) is the NMDA-specific magnesium block function (B(V) = 1 for all other

synapses), and s(t) is the fraction of open synaptic channels. The channel opening rate con-

stants (α and β) are normalized sigmoidal function of presynaptic membrane potential

(F(Vpre) in Eq (9)), the same as in [29, 30]. We also define the conductance parameter (gsyn)

and reversal potentials (Esyn) as [29, 30] have, with gGABA = 1.5 nS for GC!MC synapses,

gGABA = 2 nS for PGC!MC synapses, gAMPA = 2 nS and gNMDA = 1 nS for both MC!PGC

and MC!GC synapses; Esyn = 0 mV for AMPA and NMDA currents, and Esyn = −80 mV for

GABAA currents.

ORN input.

IORN ¼ SðtÞðV � EXÞ; ð10Þ

tX
dS
dt
¼ � Sþ aXtX

X

j

dðt � tkÞ; ð11Þ

The ORN inputs for each cell consist of both excitatory and inhibitory inputs as specified in

Eqs (10) and (11) where X 2 {E, I}. The reversal potential value (EX) is much larger for excit-

atory inputs and smaller for inhibitory. The function Sðtþk Þ ¼ Sðt�k Þ þ aX accounts for the ran-

dom times (tk) when S instantaneously increases by aX. The random times, tk, are governed by

an inhomogeneous Poisson process with rate λX(t). This aligns with experimental evidence

that ORN spiking is Poisson-like in the spontaneous state [27]. Thus, we extend the notion

that ORN spiking would be Poisson-like in the evoked state with increased rate λX(t) varying

in time. Finally, we set the synaptic rise and decay time constants (τX) to be 5.5 ms for PGCs

and GCs, 10 ms for MCs, as in [29, 30].

The ORN input rates can be pairwise correlated, which is achieved by the parameter

cj,k 2 [0, 1], for cells j and k detailed by Eq (12) below:

ljðtÞ ¼ ~l jðtÞ � �lðtÞcj;kðtÞ: ð12Þ

where ~l jðtÞ and ~lkðtÞ are the individually defined ORN input rates for cells j and k, and

�lðtÞ≔ minð~l jðtÞ; ~lkðtÞÞ.

Fitting biophysical network model to data

The biophysical OB model described thus far was adopted directly from Li & Cleland, aside

from our single-compartment simplification where we lumped all ionic currents into one

compartment and used the sum of the (maximal) conductances from all compartments. Here

we describe how the network model was tuned to capture the salient features of our experi-

mental data. We did not systematically consider large volumes of parameter space due to the

enormous computational resources required for 50,000 simulations of the model for each

parameter set to accurately simulate the spike count statistics. After model parameters were

set, the only manual tuning we did was to consider several Poisson input rates λO/R(t) (see Eqs

(10)–(12)) for the ORN input synapses (see S3 Fig)—even the ORN input correlations cj,k(t)
that we arbitrarily chose were fixed throughout.

Note that we did not further tune the intrinsic properties of the individual cells; the PGC,

MC, and GC parameters are as stated above with behavior shown in Fig 2A.

Specifying coupling strengths. We used the same equations for the synaptic variables as

Cleland [30], but set the coupling strengths w (see Eq (8)) to: wM G = 3 (independent inhibi-

tion), wM Gc = 0.3 (common inhibition to MC), wG M = 1 (same for both AMPA, NMDA),

wGc M = 0.5 (inhibition to common GC), wP M = 1 and wM P = 2 (same for both AMPA,
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NMDA). These coupling strengths were chosen in part from results in Ly et. al [57] who used

a related/simpler OB network model with the same 2 glomeruli architecture to find regions of

parameter space that best fit orthonasal experimental data. Similar to Ly et. al [57] (see their

Figs 2, 3, and 6) we set independent inhibition from GC to MC to be greater than excitation

from MC to GC, and shared GC inhibition to MC to be relatively weak (i.e., wGc M� wG M

� wM G). The coupling strengths were never tuned, they were fixed throughout.

Specifying ORN input. The ORN inputs (Eqs (10)–(12)) consists of a Poisson input rate,

and input correlation between pairs of cells. We set the correlation (cj,k) between the following

cell pairs: MC and PGC pair within a glomerulus have cj,k = 0.3 because they receive inputs

from the same ORN cells; the two MCs have correlated ORN input [58] (cj,k(t) time-varying as

in Fig 2Cii); and between all 3 GCs because they are known to synchronize [30, 59] (cj,k = 0.3

for all 3 different pairs of GCs). All other pairs of cells have no ORN input correlation. Note that

input correlation for the 2 MCs increased with odor to mimic increased correlation of glomeruli

activity. In Fig 2Cii, input correlation for the 2 MCs are constrained such that cR(t)< cO(t). This

is based on prior imaging studies that show retronasal stimulation activates spatially smaller

regions of glomeruli inputs than orthonasal, and that the activation regions from retro are sub-

sets of ortho [11, 17]. For specific algebraic formula of cR/O(t), please refer to code on GitHub.

We considered several different λO/R(t), the inhomogeneous Poisson input rate of tk in Eq

(11) (with constraints described below) and chose the ones that best matched the time-varying

firing rates (Fig 7A). The ortho- vs. retronasal odor input rates, λO/R(t), are constrained such

that λO(t) increases faster and more abruptly than λR(t) with odor, and λR(t) decays slower

than λO(t); this is all based on ORN imaging studies [11, 17]. Inputs consist of both excitatory

synapses (with rate λO/R(t)) and inhibitory synapses (with rate 0.75λO/R(t)) to capture other

unmodeled inhibitory effects.

To first understand how MC firing rates depends on λ(t) without any consideration for

ortho or retro, we used a simple alpha-function form in the evoked state: λ(t) = te−t/τ, surveying

6 different τ (see S3(A) Fig, left). The resulting MC firing rates (S3(A) Fig, right with 2,000

realizations) was informative for how to manually set the input values (spontaneous, peaked-

evoked, etc.). S3(B) Fig shows all of the λO/R(t) we tried, notice that they all satisfy the con-

straints described above. Via trial and error with 2,000 realizations, we only looked at the

resulting firing rates (PSTH), insuring the simulations matched the ortho data well. We were

fortunate in fitting the retro firing rate data, trying only 2 λR(t). The other spike statistics (e.g.,

covariance, Fano factor) were never accounted for in our consideration of different λO/R(t),
which is perhaps why the fit to the spike covariance data is so bad.

Calculating time-varying ORN input statistics of synapses

Here we describe a method to capture the effects of ORN input statistics of synapses to the bio-

physical OB model, in the limit of infinite realizations. These methods are very useful as inputs

for the LN model, without which one would have to use averages from Monte Carlo simula-

tions that contain deviations from finite size effects. Taking the expected value of Eq (11)

results in an equation for the average of S(t), μS(t):

tXmSðtÞ ¼ � mS þ tXaXlðtÞ; ð13Þ

To derive the equation for variance s2
SðtÞ, we multiply Eq (11) by itself. We can equivalently

rewrite Eq (11) as an integral:

SðtÞ ¼ aX

Z t

� 1

e� ðt� uÞ=tXDðuÞ du; ð14Þ
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where DðtÞ≔
X

j

dðt � tkÞ. So

S2ðtÞ ¼ ðaXÞ
2

Z t

� 1

Z t

� 1

DðuÞDðvÞe� ðt� uÞ=tX e� ðt� vÞ=tX dudv ð15Þ

Recall that E½DðuÞDðvÞ� ¼ lðvÞdðu � vÞ þ lðuÞlðvÞ, so we have:

E½S2ðtÞ� ¼ ðaXÞ
2

Z t

� 1

lðvÞe� 2ðt� vÞ=tX dvþ ðmSðtÞÞ
2

ð16Þ

) s2
SðtÞ ¼ ðaXÞ

2

Z t

� 1

lðvÞe� 2ðt� vÞ=tX dv; ð17Þ

Equivalently, s2
SðtÞ satisfies the ODE:

tX
ds2

SðtÞ
dt
¼ � 2s2

S þ tXðaXÞ
2
lðtÞ; ð18Þ

Similarly for Sj(t)Sk(t) correlated synapses, we have:

SjðtÞSkðtÞ ¼ ðaXj
aXk
Þ

Z t

� 1

Z t

� 1

DðuÞDðvÞe� ðt� uÞ=tXj e� ðt� vÞ=tXk dudv; ð19Þ

By our model construction E½DðuÞDðvÞ� ¼ cj;kðvÞ�lðvÞdðu � vÞ þ ljðuÞlkðvÞ, where

�lðtÞ≔ minðljðtÞ; lkðtÞÞ, so we have:

E½SjðtÞSkðtÞ� ¼ ðaXj
aXk
Þ

Z t

� 1

cj;kðvÞ�lðvÞe
ð� tXj � tXk

Þðt� vÞ=ðtXj tXk
Þ dvþ mSj

ðtÞmSk
ðtÞ ð20Þ

) CovðSjðtÞ; SkðtÞÞ ¼ ðaXj
aXk
Þ

Z t

� 1

cj;kðvÞ�lðvÞe
ð� tXj � tXk

Þðt� vÞ=ðtXj tXk
Þ dv; ð21Þ

Cov(Sj(t), Sk(t)) equivalently satisfies the ODE:

tXj
tXk

dCovðSjðtÞ; SkðtÞÞ
dt

¼ � ðtXj
þ tXk

ÞCovðSjðtÞ; SkðtÞÞ þ ðtXj
tXk
Þ
�
aXj

aXk

�
cj;kðtÞ�lðtÞ; ð22Þ

The calculations for the dynamic (time-varying) synapse statistics are important for captur-

ing realistic statistics because a steady-state approximation can be very inaccurate, especially

when the time-varying correlation and ORN spiking rate change quickly relative to the time-

scales (τX). The quasi-steady-state approximation is:

mSðtÞ � tXaXlðtÞ ð23Þ

s2
SðtÞ �

tXðaXÞ
2
lðtÞ

2
ð24Þ

CovðSjðtÞ; SkðtÞÞ �
tXj
tXk

tXj
þ tXk

aXj
aXk

cj;kðtÞ�lðtÞ ð25Þ

S4 Fig shows several more examples demonstrating the accuracy of the calculations (Eqs (13),

(18) and (22)) and how inaccurate Eqs (23)–(25) can be.
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Linear-Nonlinear (LN) model: Numerical details

We use the above described ODEs (Eqs (13), (18), and (22)) to simplify the calculations of

ORN input statistics for use with the LN model framework. Previous work has implemented

LN-type models as an alternative to biophysical spiking models with various conditions (see

[39–41] and Discussion). Fig 4A illustrates a schematic of the LN model parameters, linear fil-

ter (k) and shift (b), that are used with the ORN input statistics (X 2 fmS; s
2
S; CovðS1; S2Þg) in

order to construct an approximation (Y) to the biophysical OB network model’s output MC

spike statistics (PSTH(t), s2
R, Cov(R1, R2)). The LN model is summarized as:

YðtÞ ¼ f
Z t

� 1

kðt � tÞXðtÞdtþ b
� �

ð26Þ

Where we define our function f as an exponential, and we can approximate the integral

numerically as follows:

Z t

� 1

kðt � tÞXðtÞdtþ b �
Xn� 1

l¼0

~kðlÞ~Xðj � lÞDtþ~b ð27Þ

Where n denotes the number of time points included in the linear filter, and j denotes the

points in time of input statistic ~X of size Lt. Then, we can rewrite Eq (27) in matrix vector

form A~w ¼~v where: A is the Toeplitz matrix of size (Lt − n + 1) × n of our input statistic (~X)

with an additional row of value one to account for shift; ~w is our linear filter (~k) and shift (~b);

and~v is our OB network MC spike statistic to which we fit our filter. Then, we solve for ~w
using Least Squares approximation by QR decomposition. The linear filter (~k) converges to 0

by construction, therefore we truncate the filter at −0.1 s and set k = 0 for the remaining time

−1� t< −0.1. Then, the LN output approximation (Y) of the MC spike statistic is calculated

as follows:

YðtÞ ¼ f
�
K � ~X þ~b

�
ð28Þ

Where K denotes the convolutional matrix constructed from the truncated linear filter k.

Electrophysiological recordings

We decided to use recordings from a single rat, with recordings from 3 sessions. We took this

conservative approach to control differences in nasal cavity structure that can vary across rats

[60, 61], which may shape differences in ortho versus retro activity [11, 62]. See provided

GitHub code for statistical summary of experimental data.

All procedures were carried out in accordance with the recommendations in the Guide for

the Care and Use of Laboratory Animals of the National Institutes of Health and approved by

University of Arkansas Institutional Animal Care and Use Committee (protocol #14049). Data

were collected from 11 adult male rats (240–427 g; Rattus Norvegicus, Sprague-Dawley out-

bred, Harlan Laboratories, TX, USA) housed in an environment of controlled humidity (60%)

and temperature (23˚C) with 12h light-dark cycles. The experiments were performed in the

light phase.

Surgical preparations. Anesthesia was induced with isoflurane inhalation and main-

tained with urethane (1.5 g/kg body weight (bw) dissolved in saline, intraperitoneal injection

(ip)). Dexamethasone (2 mg/kg bw, ip) and atropine sulphate (0.4 mg/kg bw, ip) were admin-

istered before performing surgical procedures. Throughout surgery and electrophysiological

recordings, core body temperature was maintained at 37˚C with a thermostatically controlled
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heating pad. To isolate the effects of olfactory stimulation from breath-related effects, we per-

formed a double tracheotomy surgery as described previously [11]. A Teflon tube (OD 2.1

mm, upper tracheotomy tube) was inserted 10mm into the nasopharynx through the rostral

end of the tracheal cut. Another Teflon tube (OD 2.3 mm, lower tracheotomy tube) was

inserted into the caudal end of the tracheal cut to allow breathing, with the breath bypassing

the nasal cavity. Both tubes were fixed and sealed to the tissues using surgical thread. Local

anesthetic (2% Lidocaine) was applied at all pressure points and incisions. Subsequently, a

craniotomy was performed on the dorsal surface of the skull over the right olfactory bulb (2

mm × 2 mm, centered 8.5 mm rostral to bregma and 1.5 mm lateral from midline).

Olfactory stimulation. A Teflon tube was inserted into the right nostril and the left nostril

was sealed by suturing. The upper tracheotomy tube inserted into the nasopharynx was used

to deliver odor stimuli retronasally. Odorized air was delivered for 1 s in duration at 1 minute

intervals, with a flow rate of 250 ml/min and 1% of saturated vapor. The odorant was Ethyl

Butyrate (EB). We note that the full experimental data set included additional odors, but here

we consider only EB.

Electrophysiology. A 32-channel microelectrode array (MEA, A4x2tet, NeuroNexus, MI,

USA) was inserted 400 μm deep from dorsal surface of OB targeting tufted and mitral cell pop-

ulations. The MEA probe consisted of 4 shanks (diameter: 15 μm, inter-shank spacing: 200

μm), each with eight iridium recording sites arranged in two tetrode groups near the shank tip

(inter-tetrode spacing: 150 μm, within tetrode spacing 25 μm). Simultaneous with the OB

recordings, we recorded from a second MEA placed in anterior piriform cortex. Voltage was

measured with respect to an AgCl ground pellet placed in the saline-soaked gel foams covering

the exposed brain surface around the inserted MEAs. Voltages were digitized with 30 kHz

sample rate (Cereplex + Cerebus, Blackrock Microsystems, UT, USA). Recordings were band-

pass filtered between 300 and 3000Hz and semiautomatic spike sorting was performed using

Klustakwik software, which is well suited to the type of electrode arrays used here [63].

Supporting information

S1 Fig. Statistically significant different spike count statistics. We performed two-sample t-

tests assuming unequal variances for each point in time to assess whether the spike count sta-

tistics are significantly different with ortho and retro stimulation. We find statistical signifi-

cance (α = 0.01) between ortho and retronasal firing rate (A) after and for the duration of odor

stimulation (0.3� t� 1 s with 100 ms time windows and 0.5� t� 1.1 s with 200 ms time win-

dows) as well as spike count covariance (C) for the entirety of the evoked state (0� t� 2 s

excluding t = 0 s with 200 ms time window). Spike count variance (B) is not found to have any

statistical significant differences between ortho and retro. For completeness, significance of

Fano Factor (D) and Pearson’s correlation (E) are also significantly different for ortho and

retro in the evoked state (0< t� 2 s for Fano Factor and 0� t� 2 s excluding t = 0 s with 100

ms time window for correlation).

(TIF)

S2 Fig. Statistical measure of effect size using Cohen’s d. We calculated Cohen’s d value for

the nondirectional (two-tailed) case to measure effect size index for t-tests of means (see S1

Fig) in standard units. We find small (t = 0.3, 0.7� t� 0.9 s with 100 ms; 0.6< t�1 s with

200 ms) and medium (0.3 < t< 0.7 s, t = 1 s with 100 ms; 0.4� t�0.6 s with 200 ms) effect

size of statistical significance between ortho and retronasal firing rate (A) as well as small (0�

t� 2 s excluding t = 0 s with 200 ms time windows) effect size of spike count covariance (C).

Spike count variance (B) does not have a measure of effect size since it is not found to have

any statistical significant differences between ortho and retro. For completeness, effect size of
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Fano Factor (D) and Pearson’s correlation (E) are also found to be small (0 < t�0.2 s [ 0.4<

t�1 [ 1.4 < t�2 s for Fano Factor, and 0� t< 0.2 [ 0.5< t< 0.8 excluding t = 0 s with 100

ms time windows for correlation) and medium (0.2< t�0.4 [ 1< t�1.4 s for Fano Factor

and 0.2� t� 0.5 [ 0.8� t� 2 s for correlation).

(TIF)

S3 Fig. Details of various ORN input rates we surveyed (achieved via trial and error) λ(t).

A) Left: initial set of ORN inputs λ(t) (with evoked λ(t) = (t + 1)e−(t+1)/τ) we surveyed to better

understand the MC firing rate (right), calculated with 2,000 realizations. B) Fitting the ortho

firing rate well enough required considering many λO(t), and we even shifted the spontaneous

input rate up slightly at some point. However, the only 2 retro inputs we tried (pink and red)

were relatively accurate.

(TIF)

S4 Fig. ORN synapses statistic calculation is robust and accurate. Our theory for the ORN

synaptic input statistics (Eqs (13), (18) and (22)) is accurate for time-varying inhomogeneous

Poisson process rates and time-varying input correlation. A) Ortho-like input (fast rise and

decay of Poisson rate) with same amplitude as retro (high), but with low input correlation

used to capture data. Notice how the theory captures the fine structure of the covariance (dou-

ble-hump). B) Retro-like input (slow rise and decay) with same amplitude as ortho (high), but

with high input correlation used to capture data. C, D) Demonstrating accuracy of dynamic

theory with much slower (unrealistic) time-scales: τ1 = 50 ms and τ2 = 100 ms and faster rela-

tive change in Poisson rate (all with low input correlation). Showing the quasi-steady-state

approximation (Eqs (23)–(25)) in magenta. C) Sinusoidal input and time-varying amplitude:

evoked λ(t) = 0.2 + 0.8(1 − 0.8 sin(−15t))(1 − e−2t), with synapse jump sizes a1 = 2, a2 = 5. D)

Here the jump sizes have opposite signs to get negative covariances: a1 = 2, a2 = −1, with λ(t) =

2(t + 2.25)2 � (1 − 0.9 sin(10t))e−|t−1|/0.35. Gray curves (Monte Carlo) are much harder to see in

C,D than in A,B because of the much larger magnitudes.

(TIF)

S5 Fig. The LN fits to the OB model statistics are good overall. We consider 8 total different

combinations of ORN inputs varying: temporal profile, amplitude height, input correlation (2

ways each). Despite the simplistic LN model, the resulting fits to the OB model are generally

very good. The only exceptions are when the input correlation is relatively smaller, in which

case the LN model does not accurately capture the evoked spike count covariance after several

hundred milliseconds.

(TIF)
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7. Aimé P, Palouzier-Paulignan B, Salem R, Al Koborssy D, Garcia S, Duchamp C, et al. Modulation of

olfactory sensitivity and glucose-sensing by the feeding state in obese Zucker rats. Frontiers in Behav-

ioral Neuroscience. 2014; 8:326. https://doi.org/10.3389/fnbeh.2014.00326 PMID: 25278856

8. Thiebaud N, Johnson MC, Butler JL, Bell GA, Ferguson KL, Fadool AR, et al. Hyperlipidemic diet

causes loss of olfactory sensory neurons, reduces olfactory discrimination, and disrupts odor-reversal

learning. Journal of neuroscience. 2014; 34(20):6970–6984. https://doi.org/10.1523/JNEUROSCI.

3366-13.2014 PMID: 24828650

9. Small DM, Gerber JC, Mak YE, Hummel T. Differential neural responses evoked by orthonasal versus

retronasal odorant perception in humans. Neuron. 2005; 47(4):593–605. https://doi.org/10.1016/j.

neuron.2005.07.022 PMID: 16102541

10. Hannum M, Fryer J, Simons C. Non-food odors and the Duality of Smell: Impact of odorant delivery

pathway and labeling convention on olfactory perception. Physiology & Behavior. 2021; p. 113480–

113480. https://doi.org/10.1016/j.physbeh.2021.113480 PMID: 34058218

11. Gautam SH, Verhagen JV. Retronasal odor representations in the dorsal olfactory bulb of rats. The

Journal of Neuroscience. 2012; 32(23):7949–7959. https://doi.org/10.1523/JNEUROSCI.1413-12.2012

PMID: 22674270

12. Kohn A, Coen-Cagli R, Kanitscheider I, Pouget A. Correlations and Neuronal Population Information.

Annual review of neuroscience. 2016; 39(0). https://doi.org/10.1146/annurev-neuro-070815-013851

PMID: 27145916

13. Moreno-Bote R, Beck J, Kanitscheider I, Pitkow X, Latham P, Pouget A. Information-limiting correla-

tions. Nature neuroscience. 2014; 17(10):1410–1417. https://doi.org/10.1038/nn.3807 PMID:

25195105

14. Averbeck BB, Latham PE, Pouget A. Neural correlations, population coding and computation. Nature

Reviews Neuroscience. 2006; 7:358–366. https://doi.org/10.1038/nrn1888 PMID: 16760916

15. Dayan P, Abbott LF. Theoretical neuroscience: Computational and mathematical modeling of neural

systems. Taylor & Francis; 2001.

PLOS COMPUTATIONAL BIOLOGY Ortho- and retronasal olfactory bulb spiking differences

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009169 September 20, 2021 25 / 28

https://doi.org/10.1371/journal.pone.0013114
http://www.ncbi.nlm.nih.gov/pubmed/20927352
https://doi.org/10.1073/pnas.1318596110
http://www.ncbi.nlm.nih.gov/pubmed/24218586
https://doi.org/10.1093/chemse/bjq075
http://www.ncbi.nlm.nih.gov/pubmed/20702508
https://doi.org/10.1016/0031-9384(80)90257-7
http://www.ncbi.nlm.nih.gov/pubmed/7375580
http://www.ncbi.nlm.nih.gov/pubmed/887950
https://doi.org/10.1371/journal.pone.0024921
https://doi.org/10.1371/journal.pone.0024921
http://www.ncbi.nlm.nih.gov/pubmed/21966386
https://doi.org/10.3389/fnbeh.2014.00326
http://www.ncbi.nlm.nih.gov/pubmed/25278856
https://doi.org/10.1523/JNEUROSCI.3366-13.2014
https://doi.org/10.1523/JNEUROSCI.3366-13.2014
http://www.ncbi.nlm.nih.gov/pubmed/24828650
https://doi.org/10.1016/j.neuron.2005.07.022
https://doi.org/10.1016/j.neuron.2005.07.022
http://www.ncbi.nlm.nih.gov/pubmed/16102541
https://doi.org/10.1016/j.physbeh.2021.113480
http://www.ncbi.nlm.nih.gov/pubmed/34058218
https://doi.org/10.1523/JNEUROSCI.1413-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/22674270
https://doi.org/10.1146/annurev-neuro-070815-013851
http://www.ncbi.nlm.nih.gov/pubmed/27145916
https://doi.org/10.1038/nn.3807
http://www.ncbi.nlm.nih.gov/pubmed/25195105
https://doi.org/10.1038/nrn1888
http://www.ncbi.nlm.nih.gov/pubmed/16760916
https://doi.org/10.1371/journal.pcbi.1009169


16. Sanganahalli BG, Baker KL, Thompson GJ, Herman P, Shepherd GM, Verhagen JV, et al. Orthonasal

versus retronasal glomerular activity in rat olfactory bulb by fMRI. NeuroImage. 2020; 212. https://doi.

org/10.1016/j.neuroimage.2020.116664 PMID: 32087375

17. Furudono Y, Cruz G, Lowe G. Glomerular input patterns in the mouse olfactory bulb evoked by retrona-

sal odor stimuli. BMC neuroscience. 2013; 14(1):45. https://doi.org/10.1186/1471-2202-14-45 PMID:

23565900

18. Spors H, Wachowiak M, Cohen LB, Friedrich RW. Temporal dynamics and latency patterns of receptor

neuron input to the olfactory bulb. Journal of Neuroscience. 2006; 26(4):1247–1259. https://doi.org/10.

1523/JNEUROSCI.3100-05.2006 PMID: 16436612

19. Scott JW, Acevedo HP, Sherrill L, Phan M. Responses of the rat olfactory epithelium to retronasal air

flow. Journal of neurophysiology. 2007; 97(3):1941–1950. https://doi.org/10.1152/jn.01305.2006 PMID:

17215498

20. Carey RM, Verhagen JV, Wesson DW, Pı́rez N, Wachowiak M. Temporal structure of receptor neuron

input to the olfactory bulb imaged in behaving rats. Journal of neurophysiology. 2009; 101(2):1073–

1088. https://doi.org/10.1152/jn.90902.2008 PMID: 19091924

21. Schulz DP, Sahani M, Carandini M. Five key factors determining pairwise correlations in visual cortex. Jour-

nal of neurophysiology. 2015; 114(2):1022–1033. https://doi.org/10.1152/jn.00094.2015 PMID: 26019310

22. Ostojic S, Brunel N, Hakim V. How connectivity, background activity, and synaptic properties shape the

cross-correlation between spike trains. The Journal of Neuroscience. 2009; 29:10234–10253. https://

doi.org/10.1523/JNEUROSCI.1275-09.2009 PMID: 19692598

23. Barreiro AK, Ly C. When do correlations increase with firing rates in recurrent networks? PLoS Compu-

tational Biology. 2017; 13:e1005506. https://doi.org/10.1371/journal.pcbi.1005506 PMID: 28448499

24. Barreiro A, Ly C. Investigating the correlation-firing rate relationship in heterogeneous recurrent net-

works. Journal of Mathematical Neuroscience. 2018; 8:8. https://doi.org/10.1186/s13408-018-0063-y

PMID: 29872932

25. Rall W, Shepherd GM, Reese TS, Brightman MW. Dendrodendritic synaptic pathway for inhibition in

the olfactory bulb. Experimental neurology. 1966; 14(1):44–56. https://doi.org/10.1016/0014-4886(66)

90023-9 PMID: 5900523

26. Schoppa NE, Urban NN. Dendritic processing within olfactory bulb circuits. Trends in neurosciences.

2003; 26(9):501–506. https://doi.org/10.1016/S0166-2236(03)00228-5 PMID: 12948662
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