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Abstract
Background: Designing trials to reduce treatment duration is important in several therapeutic areas, including tubercu-
losis and bacterial infections. We recently proposed a new randomised trial design to overcome some of the limitations
of standard two-arm non-inferiority trials. This DURATIONS design involves randomising patients to a number of dura-
tion arms and modelling the so-called ‘duration-response curve’. This article investigates the operating characteristics
(type-1 and type-2 errors) of different statistical methods of drawing inference from the estimated curve.
Methods: Our first estimation target is the shortest duration non-inferior to the control (maximum) duration within a
specific risk difference margin. We compare different methods of estimating this quantity, including using model confi-
dence bands, the delta method and bootstrap. We then explore the generalisability of results to estimation targets which
focus on absolute event rates, risk ratio and gradient of the curve.
Results: We show through simulations that, in most scenarios and for most of the estimation targets, using the boot-
strap to estimate variability around the target duration leads to good results for DURATIONS design-appropriate quan-
tities analogous to power and type-1 error. Using model confidence bands is not recommended, while the delta method
leads to inflated type-1 error in some scenarios, particularly when the optimal duration is very close to one of the ran-
domised durations.
Conclusions: Using the bootstrap to estimate the optimal duration in a DURATIONS design has good operating char-
acteristics in a wide range of scenarios and can be used with confidence by researchers wishing to design a
DURATIONS trial to reduce treatment duration. Uncertainty around several different targets can be estimated with this
bootstrap approach.
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Introduction

In several therapeutic areas, it is important to identify
the optimal duration of treatment, defined as the short-
est duration providing an acceptable efficacy. For
example, reducing antibiotic treatment duration has
been suggested as a way of combatting antimicrobial
resistance,1 but this has to be done while maintaining
high cure rates. Furthermore, shorter treatment dura-
tions often increase adherence, reduce side effects and
will be more cost-effective, provided they do not lead
to an increased risk of relapse.

We recently proposed the DURATIONS rando-
mised trial design2 as an improvement over standard
non-inferiority trials3 for identifying the shortest

acceptable treatment duration.4 Its main attraction is
that it does not involve selection of a single shorter
duration to test against a control, which is often chosen
based on very limited prior evidence; instead, patients
are randomised to multiple durations, enabling the rela-
tionship between duration and response to be directly
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estimated using pre-specified flexible regression models.
In a wide range of examples, randomising 500 patients
to 5–7 durations enables the underlying duration-
response curve to be estimated within 5% average abso-
lute error in 95% of simulations.2

The DURATIONS design moves away from a bin-
ary hypothesis testing paradigm so that the trial out-
come is not a treatment difference between two fixed
durations, but rather the whole estimated duration-
response curve. In applications, we wish to use this
curve to inform decision-making, and hence it is essen-
tial to understand the properties of various ways of
drawing inference from the curve. This article, there-
fore, first defines DURATION-design quantities analo-
gous to power and type-I error and then compares
different strategies of inference for these quantities
through extensive simulations.

Methods

Suppose there is a treatment that is known to be highly
effective compared to placebo, and that is usually pre-
scribed as standard-of-care to patients with a particular
disease or condition for a fixed course duration; exam-
ples include antibiotics for bacterial infections and
direct acting antivirals against Hepatitis C. In addition,
suppose the recommended treatment course is DMAX

days, although we believe that shorter durations might
be similarly effective so that we suspect the shortest
effective duration might be as small as DMIN .

Now, suppose we want to design a trial to identify
the shortest effective duration and assume that the pri-
mary outcome of the trial is cure, a binary variable
equal to 1 if the patient recovers from their condition
or 0 otherwise. Using a DURATIONS randomised trial
design,2 we randomise N, say 500, patients to multiple,
for example 7, duration arms, between and including
DMAX and DMIN . After observing the responses, we fit a
pre-specified fractional polynomial logistic model with
cure as outcome and duration as the only covariate,
with up to two polynomial terms. This gives us an esti-
mated duration-response curve, similar to the black
curve in Figure 1.

When provided with this curve, how should clini-
cians and policy-makers choose what is the ‘optimal’
duration to prescribe? A simple choice is to target the
duration leading to at most a fixed loss of efficacy (risk
difference d) compared to the control (maximum) dura-
tion, for example, 5% less. Hence, if the estimated con-
trol cure rate at DMAX was pDMAX

, our objective would
be to find the minimum duration D� corresponding to a
cure rate of at least pD� =pDMAX

� d. The rationale for
this choice closely corresponds to that for the choice of
margin in non-inferiority trials, that is, it answers the
question ‘what is the minimum treatment efficacy that
we would like to preserve, considering the ancillary

advantages of the active treatment (i.e. of reducing
treatment duration)’?

In this section, we propose different ways of estimat-
ing such a D� from the duration-response curve, and we
describe a simulation study to investigate their operat-
ing characteristics. Finally, we extend to different possi-
ble objectives.

Model confidence bands

The simplest approach is to extrapolate D� from the
duration-response curve, selecting the duration at which
pD� =pDMAX

� d. However, the fitted curve is just the
most likely estimated from the sample data. Thus, there
is a non-negligible probability that the true D� is below
this value. Instead, we will typically wish to keep type-1
error below 2.5%, so that we do not recommend a
duration that is not long enough more than 2.5% of the
times.

The first and most naı̈ve method of controlling type-1
error uses the lower bound of the pointwise confidence
bands around the curve, looking for the duration D�

satisfying pD� � 1:96 � SEpD� =pDMAX
� d. To avoid

recommending non-integer durations, which might make
little sense in applications, we round the selected duration
D�L up to the next whole number (i.e. using the ceiling
function); hence, we select the duration DI that satisfies

DI = min
Di

(Di.D�L)

With Di being the set of integer durations.

Figure 1. Example of estimated duration-response curve
(solid, black), drawn against three possible non-inferiority
margins or ‘acceptability frontiers’ (dotted, red = 10% fixed
risk difference; dashed, blue = 5% fixed risk difference; solid,
grey = duration-specific acceptability frontier).
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Delta method CI

To compare two specific points on the duration-
response curve, we need to estimate a confidence inter-
val around the difference in outcome between the two
points. In our application, we want to compare each
shorter duration Di against the longest duration DMAX ;
hence, we want to estimate the confidence intervals
around pDMAX

� pDi
for every Di (including any

integer duration randomised to or not randomised to
below DMAX ). Let us call these confidence intervals

CI1�a
DMAX�Di

= ðCIl
DMAX�Di

,CIu
DMAX�Di

Þ, with a being the

confidence level. These can be estimated using the
delta-method, which gives a good approximation based
on Taylor series expansions (details in Appendix A).
Inference can then be drawn by selecting the minimum
duration D� for which CIu

DMAX�D�\d.

Bootstrap CI

Alternatively, rather than relying on these approxima-
tions, given the observed dataset with N observations,
we can sample with replacement N observations M
times, generating M bootstrap samples. We then fit the
fractional polynomial model on each of the M datasets
and estimate in each bootstrap sample pDMAX

� pDi
for

every Di: We then calculate bootstrap confidence inter-
vals around these quantities and use these to choose
the optimal D�.

Bootstrap duration CI

Another way of using bootstrapping is to directly esti-
mate a confidence interval around D�. M bootstrap
samples are selected similarly to the previous section,
but instead of estimating pDMAX

� pDi
in each sample,

we estimate the corresponding D�, denoted D�m, with m
indexing the bootstrap sample. Then a bootstrap confi-
dence interval D�, l,D�, u

� �
can be constructed from the

bootstrap mean estimate cD� and its standard error,
and the recommended duration would be

DI = min
i

(Di.D�, u)

Theoretical comparison of methods

Table 1 provides an overview of the properties of differ-
ent methods. The attractiveness of the confidence bands
method comes from its simplicity, as it is probably the
method most researchers would naturally use to esti-
mate D� from the duration-response curve. However, it
has several limitations, the most important being that
the pointwise confidence bands for the curve are not
the same as the confidence interval for the difference
between two specific points on the curve.

While the delta method addresses this problem, it is
affected by at least one other issue, at least when using
fractional polynomials5 as the flexible regression
method: specifically, that model selection variability
should be taken into account.6 The two bootstrap
methods are theoretically appealing strategies to solve
this problem, as repeating the fractional polynomial
selection step for each bootstrap sample is one
approach to address model selection variability.

With the delta method and the bootstrap CI method,
we estimate multiple confidence intervals around the
curve and compare each upper bound against the maxi-
mum tolerable risk difference. Hence, we may theoreti-
cally run into a multiplicity issue. However, our
repeated tests are performed to solve an equation,
rather than to formally compare different duration
arms, making this less problematic. Bauer et al.7 dis-
cussed a similar version of this serial gate-keeping strat-
egy, showing that it has strong control over type 1
error.

When the model used to estimate the duration-
response curve is correct, we expect the bootstrap dura-
tion CI method to estimate a confidence interval for D�

that covers the true value at the nominal level. The
assumption about model correctness is important; our
choice of fractional polynomials as the preferred analy-
sis method was originally driven by the fact that in
many situations, we are not confident what the true
underlying model is, and hence flexible models are pre-
ferred. While the standard fractional polynomial algo-
rithm was built as a parsimonious modelling
technique,8 in our application, with a single covariate
and a reasonable number of expected events, a modi-

Table 1. Properties of different methods to estimate confidence intervals.

Method Targets difference in
efficacy between
two points

Addresses model
selection uncertainty

Addresses
multiplicity
issue

Analysis method
used in simulations

Confidence bands No No No Fixed-2 fractional polynomials
(gamlss package in R)

Delta method Yes No No Fixed-2 fractional polynomials (gamlss)
Bootstrap CI Yes Yes No Fixed-2 fractional polynomials (gamlss)
Bootstrap duration CI Yes Yes Yes Both standard (mfp package) and

fixed-2 (gamlss) fractional polynomials
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fied algorithm selecting exactly two polynomial terms
rather than a maximum of two is likely to be preferable
and makes it easier to satisfy the assumption that the
model used is approximately correct. Henceforth, we
refer to this method as the fixed-2 fractional polyno-
mial analysis.

Alternative objectives

Thus far, we assumed that the trial objective was to find
the minimum duration D� such that pD�øpDMAX

� d.
This clearly corresponds with standard non-inferiority
trials designed with margin dNI on the risk difference
scale: in both, we assume that if the cure rate in the
intervention arm is poorer only within a certain limit,
then its secondary advantages make it preferable to the
control arm. Now we discuss different objectives. Some
are again in common with standard non-inferiority
trials, while others are specific to our design.

Fixed rate. Instead of considering a fixed difference in cure
rate compared to control, one might simply want to iden-
tify the duration D� leading to a specific cure rate p�

D�= min
Di

(pDi
øp�)

This may be reasonable when there is good prior infor-
mation on the expected cure rate pDMAX

at the control
duration DMAX , although one can never be sure that the
population recruited will reflect historical controls. The
bootstrap CI and bootstrap duration CI methods could
be used as analysis methods for this estimation target.

Fixed risk ratio. Analogously to a standard non-
inferiority trial, the margin d could also be defined on a
relative scale; for example, as the proportion of the
cure rate at DMAX that should be preserved to consider
the shorter duration preferable

min
Di

(pDi
ød � pDMAX

)

For example, if we wanted to preserve 90% of the effect
of treatment at DMAX , we would choose d= 0:9.

The acceptability frontier. While non-inferiority trials
naturally have a single non-inferiority margin dNI, in
DURATIONS trials it might instead be logical to have
different margins for each specific duration Di. For
example, for a duration that is a half of DMAX, we
might be happy to tolerate a slightly larger d than for a
duration equal to two-thirds of DMAX, assuming that
advantages of shorter durations generally increase as
the duration reduces. Hence, the objective of the trial
might be to find the duration D� such that

D�= min
Di

(pDi
øpDMAX

� d(Di))

where d(Di) is the function that indicates the acceptable
loss in cure rate for each duration Di We call this the
Acceptability Frontier, a possible example of which is
the grey line in Figure 1.

Maximum acceptable gradient. Instead of targeting a spe-
cific cure rate, or difference in cure rate, investigators
might be interested in the gradient of the duration-
response curve. If we expect the curve to asymptote
after a certain duration D*, then we might define such
D* as the point after which the gradient of the function
is always below a certain threshold d

D�= min
Di

(rp Dð Þł d, 8D.Di)

For example, in the scenarios above, we found that
d = 2% was a reasonable value for this threshold.

Simulations

We compared the methods presented above in a simula-
tion study designed using the recently proposed ‘Aims-
Data generating mechanisms-Estimands-Methods-
Performance measure’ framework.9

Aims. The main aim is to compare different strategies
of drawing inference from the duration-response curve.
Specific questions are: are bootstrap methods neces-
sary, or does the simpler delta-method suffice? Is the
fixed-2 fractional polynomial analysis preferable? How
problematic is the multiplicity issue with the bootstrap
CI method?

Data-generating mechanisms. The DURATIONS design
aims to be resilient to the true underlying duration-
response relationship. Consequently, we generate data
under sixteen different scenarios that are listed and
plotted in the additional material online, including the
eight scenarios in (Quartagno et al, 2018). These reflect
a wide range of possible duration-response relation-
ships, including both those generated by fractional
polynomials and those generated from sigmoid func-
tions (which are not strictly within the fractional poly-
nomial paradigm). Across scenarios, the optimal
duration’s proximity to the nearest integer varies, to
explore the effect this may have on results. For compar-
isons, we re-scale the x-axis so that the minimum dura-
tion considered (DMIN ) is 8 days, and the maximum
DMAX is 20 days, with seven randomised arms evenly
spread between them (8, 10, 12, 14, 16, 18 and 20). We
generate 1000 data sets from each scenario of N = 500
individuals. Using the same process, we additionally
generate 200 datasets of N = 750 and N = 1000 indi-
viduals, to explore the sensitivity of results to total sam-
ple size.
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Estimation targets. We initially assume the estimation
target of interest is the duration D� leading to a cure
rate that is d% less than at the longest (and currently
used) duration DMAX . This approximately corresponds
to the shortest duration non-inferior to standard-of-
care within a non-inferiority margin d on the risk dif-
ference scale. In our base case, we consider d= 10%, a
margin that has been recommended for example by the
US Food and Drug Administration (FDA) for non-
inferiority trials of antibiotics for adult bacterial
community-acquired pneumonia.10 However, as in
some applications, this may be considered too large a
margin, we additionally explore the sensitivity of results
using d= 5%. This risk difference-based estimation tar-
get might not be optimal in all applications, and hence
later we explore other estimation targets.

Methods. We compare the four different methods of
estimating cD� described above. For the bootstrap
methods, we use M = 500 replications. For the boot-
strap CI method, we build confidence intervals using
the BCa method,11 which is based on the percentiles of
the bootstrap distribution, but with adjustments to
account for both bias and skewness. For the bootstrap
duration CI method, we use the percentile confidence
interval instead, as BCa is not applicable in some sce-
narios where the bootstrap distribution is truncated at
8 days. In addition, we compare the standard (i.e.
selecting up to two polynomial terms) and fixed-2 (i.e.
selecting exactly two terms) fractional polynomial algo-
rithms for the bootstrap duration CI method.

Performance measures. The choice of performance mea-
sures is not straightforward. Unlike most randomised
trial designs, our DURATIONS randomised design
does not define a null hypothesis to test. This is because
the longest treatment duration we randomise patients
to is already known to be (usually highly) effective, and
our aim is only to find the most appropriate shorter
duration. Under very simple assumptions, that is, that
the duration-response curve is continuous and mono-
tonic, we know that either there is an integer duration
DI in the interval ½DMIN ; DMAX � such that
pDI

=pDMAX
� d, or that even the shortest duration is

sufficiently effective, that is, pDI
=pDMIN

øpDMAX
� d.

Given this, and having defined our estimation target,
we define three main performance measures of interest:

1. Type-1 Error: in this context, we define type-1
error as the probability that our trial ends up
recommending a duration cDI that is insufficiently
effective.

Type1Error=P(p bDI

\pDMAX
� d)

2. Optimal Power: there are several ways to define
power compared to standard hypothesis testing. We
define optimal power as the probability that the trial
ends up recommending the actual optimal duration,
that is the minimum effective (integer) duration

OptimalPower=P(cDI = min
Di

(pDi
øpDMAX

� d))

3. Acceptable Power: designing a trial to reach high
levels of Optimal Power might be difficult, but one
might be interested in simply finding an effective
duration that is shorter than the recommended one,
even if it is not necessarily theminimum effective dura-
tion. We define the acceptable power as the probabil-
ity that our trial identifies one such duration

AcceptablePower=P(p bDI

øpDMAX
� d)

In addition, we measure performance by considering
the distribution of all the recommended durations cDI

as this allows us to quantify how far from the optimal
duration we are both when a type I error occurs or
when we recommend an acceptable (but not optimal)
duration.

Different estimation targets. We performed additional
simulations to explore the operating characteristics of
the bootstrap duration CI method with each of the dif-
ferent estimation targets. We analysed the same 1000
datasets generated for the 16 scenarios in our base case
simulations, with N = 500. As the target cure rate, we
chose in each scenario the value 10% less than the true
cure rate at the longest duration. For the fixed risk
ratio, we used d = 0.9. The acceptability frontier was a
linear function, such that the largest acceptable risk dif-
ference at DMIN was 10%, and at 18 days 5% (Figure
1). Finally, the maximum acceptable gradient was taken
to be 2%. For this last estimation target, we did not use
bootstrap to estimate uncertainty, but we simply con-
sidered the single point estimate in the data.

Results

Figure 2 compares type-1 error and acceptable power
across the different methods. It is immediately clear
that type-1 error is not adequately controlled under cer-
tain scenarios. These scenarios are mainly those where
the curvature at the optimal duration is positive, that is,
those for which steepness of the curve is increasing at
the optimal duration. These are arguably not the most
likely scenarios in our settings, as we expect to be inves-
tigating part of the duration-response curve where the
curve is asymptotic; nevertheless, it is preferable to use
bootstrap methods that provide better inference by
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taking into account model selection variability.
Differences between the two bootstrap methods are less
marked (Table 2, and Supplemental Figure b in addi-
tional online material), although type-1 error is gener-
ally slightly lower using the bootstrap duration CI
method.

In terms of the analysis model, the fixed-2 fractional
polynomial method, which is used in all analysis meth-
ods except for the last reported method in Figure 2 (and
Supplemental Table E in additional material), is prefer-
able with regards to type-1 error. This is because it
selects the best fitting model, while standard fractional
polynomials seek a parsimonious model. Similarly less
satisfactory results were reported using standard frac-
tional polynomials with the bootstrap CI method as
well (results not shown). There are only a few scenarios

under which the two bootstrap methods fail to control
the type-1 error within 2.5%, namely scenarios 7, 8, 13
and 14 (Figure 3). However, this figure shows that the
difference between the estimated minimum duration
and the actual minimum acceptable duration is small
(ł 1 day) in these scenarios and that the 2.5th percen-
tiles of recommended durations (and associated cure
rate) are very close to the optimal duration (and corre-
sponding cure rate).

In terms of power, differences are not as pro-
nounced, and all methods achieve very good acceptable
power (.90%) under most scenarios. Of note, the
simulated sample size (N = 500) was determined to
estimate the duration-response curve within a certain
average absolute error (5%), and not to achieve a spe-
cific power under any of our scenarios. As expected,

Table 2. Results from using the Bootstrap CI and Bootstrap duration CI methods, with the fixed-2 fractional polynomial analysis
method and base-case design parameters (estimation target = shortest duration non-inferior to 20 days within 10% risk difference).
In italics: scenarios for which the upper bound of the Monte-Carlo confidence interval for type-1 error was not strictly controlled
within 2.5%, with Monte-Carlo confidence interval. See additional material Supplemental Tables A-B for other methods.

Acceptable
power (%)

Optimal
power (%)

Type-1 error (%)
(target value: 2.5%)

True min
duration

Estimated
minimum
duration
recomm.

Estimated 2.5th
Perc duration recomm.

Estimated
median
duration
recomm.

Bootstrap CI:
Scenario 1 98.2 9.8 1.8 13.1 12 14 16
Scenario 2 99.2 16.5 0.8 14.5 14 15 16
Scenario 3 94.5 10 1.6 15.9 15 16 18
Scenario 4 100 82.7 0 8.0 8 8 8
Scenario 5 99.6 5.4 0.4 9.7 9 10 12
Scenario 6 99.7 3.2 0.3 10.8 10 11 14
Scenario 7 94.4 30.7 4.3 (3.0,5.6) 16.2 14 16 18
Scenario 8 87 12.9 10.1(8.2,12) 15.0 8 15 17
Scenario 9 100 2.6 0 12.6 13 13 14
Scenario 10 99.9 0.8 0 15.2 16 17 18
Scenario 11 79 8.6 0.1 16.8 16 17 18
Scenario 12 98.9 29.9 1.1 11.2 11 12 13
Scenario 13 95.5 26.6 4.5 (3.2,5.8) 8.1 8 8 10
Scenario 14 56.2 8.6 3.8 (2.6,5.0) 15.0 8 15 17
Scenario 15 99.3 4.8 0.7 12.5 12 13 15
Scenario 16 99.8 4.9 0.2 12.0 11 12 14
Bootstrap duration CI:
Scenario 1 97.7 9.9 2.3 13.1 11 14 16
Scenario 2 99.7 14.4 0.3 14.5 14 15 16
Scenario 3 99 5.3 1 15.9 14 16 18
Scenario 4 100 86.1 0 8.0 8 8 8
Scenario 5 99.9 5.4 0.1 9.7 9 10 12
Scenario 6 99.7 3.5 0.3 10.8 10 11 14
Scenario 7 95.2 46.8 4.8 (3.5,6.1) 16.2 15 16 17
Scenario 8 93.3 15.7 6.7 (5.2,8.2) 15.0 8 15 17
Scenario 9 100 2.3 0 12.6 13 14 14
Scenario 10 100 0.6 0 15.2 16 17 17
Scenario 11 99.9 9.8 0.1 16.8 16 17 18
Scenario 12 99 40.3 1 11.2 11 12 13
Scenario 13 96.3 29 3.7 (2.5,4.9) 8.1 8 8 10
Scenario 14 95.5 5.7 4.5 (3.2,5.8) 15.0 8 15 18
Scenario 15 99.3 5 0.7 12.5 12 13 15
Scenario 16 99.8 4.6 0.2 12.0 11 12 14
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optimal power is always substantially lower, particu-
larly in scenarios where the cure rate at the optimal
duration is very close to the minimum acceptable cure
rate. Again, differences between different methods are
not substantial.

The only scenario where optimal power exceeds 80%
is Scenario 4 (Table 2, Supplemental Tables A-D in
additional material), that is, constant cure rate at every
duration. In this scenario, optimal power can be broadly
interpreted as the power of a non-inferiority trial of
DMAX against DMIN with a d% non-inferiority margin,
where the two durations have the same true cure rate.

Finally, conclusions are similar using d= 5%
(Supplemental Figure a in additional material), although
power is lower in all scenarios. In particular, acceptable
power remains quite low for Scenario 14, only crossing
the 80% threshold for N = 1000. Optimal power remains
very low for all scenarios and sample sizes.

Different estimation targets. Results (Supplemental Tables
D-G and Figure c in the additional material) show rea-
sonable performance for the first three alternative esti-
mation targets. For the maximum gradient target, type-
1 errors are large, and further analysis refinements
would be necessary to use this.

Analysis example

Given the simulation results, here we sketch our
favoured three-step approach to analysing a

DURATIONS trial. First, an acceptability frontier
should be defined, answering the question ‘what would
the non-inferiority margin be for a trial comparing the
longest duration to each shorter one?’. In this example,
we assume a reasonable non-inferiority margin is 10%
cure rate difference compared to the control duration,
as in the base-case scenario of our simulations (Figure
4). Second, we run our fixed-2 fractional polynomial
algorithm to estimate the duration-response curve
(black solid line in Figure 4). Third, we use the boot-
strap (BCa method)11 to find the confidence interval
either around our estimated optimal duration cD� or the
differences in cure rate from the control at each dura-
tion (left and right panel of Figure 4 respectively). In
this example, both methods recommend cD�= 13 days
as optimal duration. Both methods are valid; the
Bootstrap Duration CI method (left panel) led to
slightly better results in our simulations, but the
Bootstrap CI method (right panel) has the advantage
that it can be compared against any non-inferiority
margin or acceptability frontier.

Discussion

In this article, we have compared different strategies for
drawing inference from a duration-response curve esti-
mated using a DURATIONS randomised trial design.
We defined quantities analogous to type-1 error and
power in this scenario and found a method based on
bootstrap re-sampling – to estimate the duration

Figure 2. Type-1 error and acceptable power (probability of recommending any sufficiently effective shorter duration) of the 5
analysis methods across the 16 simulation scenarios. Bootstrap MFP uses the Bootstrap duration CI method, but using the standard
fractional polynomial approach as the analysis method (as in R package mfp). Scenarios leading to type 1 error . 15% or Acceptable
Power \ 70% are indexed. In addition, scenarios where the curvature is positive at the optimal duration are in red.
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associated with a specific cure rate difference from con-
trol – has good inferential properties when combined
with a fixed-2 fractional polynomial analysis method.
This is therefore our recommended approach.

One issue with the standard non-inferiority design
for identifying optimal treatment duration is the poten-
tial for so-called ‘bio-creep’, that is, the erosion of effi-
cacy from sequentially testing for non-inferiority
shorter durations, iteratively updating the control dura-
tion to one previously shown to be non-inferior.12 One
advantage of the DURATIONS design is that it avoids
this problem, as long as all the durations are evaluated
in the same trial. Another advantage is its resilience; in

a standard non-inferiority trial, whenever a single
design parameter turns out to have been badly mis-
judged, the whole trial can quickly lose power or inter-
pretability. By contrast, the DURATIONS design has
been developed to be flexible enough to maintain good
properties against a wide range of duration-response
curves.

Extensions

Design and analysis of randomised trials often intersect,
and hence what is an analysis decision (how to analyse
and draw inference from the observed data) also has

Figure 3. Duration recommended and associated cure rate across the 16 simulation scenarios using the Bootstrap duration CI
method, with base-case design parameters (estimation target = shortest duration non-inferior to 20 days within 10% risk
difference). The vertical bar indicates the true minimum effective duration.
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design implications (how to best design a trial that we
aim to analyse in a particular way). Hence, future work
will investigate how to design a DURATIONS rando-
mised trial that we aim to analyse with methods pre-
sented here, particularly considering the key challenge
that the error rates depend on the true duration-
response curve, which is unknown at the point of
design.

We focused on binary outcomes, but similar meth-
ods could be easily used for continuous and survival
outcomes, with the only additional complication of
having to derive a suitable estimation target. When
developing the target based on the acceptability fron-
tier, we assumed that this frontier was subjectively
drawn by the analyst, based on assumptions about the
trade-offs between shortening duration and loss of
treatment efficacy. An alternative could be to derive
the acceptability frontier using available data on the
secondary advantages of shorter durations. For exam-
ple, if the goal was to design a DURATIONS trial in
Hepatitis C, the acceptability frontier could be built
using data on costs.

Although the methods presented here were moti-
vated by trials whose aim was to optimise treatment
duration in large Phase III-type trials, the same meth-
ods could be used to optimise treatment dose in smaller
Phase II-type trials. There is a large literature on

methods for these smaller dose-finding trials, and some
of the methods introduced in those settings could be
adapted to our design. For example, several papers
have investigated dose selection using gatekeeping stra-
tegies.7,13,14 One important difference is that in our
application, there is generally already an accepted maxi-
mum duration, DMAX , which the aim is to reduce. Of
note, our approach uses a ceiling function to round the
optimal duration estimated, a conservative choice to
control type 1 error, possibly at the cost of losing some
optimal power. In phase II settings, more liberal choices
(e.g. standard rounding) could be made.

Future work could include investigating the effect of
including additional covariates in the fractional polyno-
mial model, for example age or sex, if there was evi-
dence that the optimal duration might vary depending
on these factors. It could also investigate using an adap-
tive design, to allow for closure of poorly performing
arms (i.e. those at the lowest durations).4

For tuberculosis and related settings, where the opti-
mal duration might be investigated for a new drug or
new regimen, it is important to investigate the best way
to include a formal comparison with an independent
control treatment of fixed duration, for example with
the standard 6-month tuberculosis treatment course
with rifampicin, isoniazid, pyrazinamide and
ethambutol.

Figure 4. Analysis example for a hypothetical trial. On the left panel, the duration-response curve is estimated and then a
bootstrap CI is built around the point where it crosses the acceptability frontier. On the right panel, bootstrap CIs are built around
the difference in efficacy (cure rate) between each arm and the longest (d = 20).
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Conclusion

We recently proposed the DURATIONS randomised
trial design as an alternative to the standard two-arm
non-inferiority design when the goal is to optimise
treatment duration. In this article, we have investigated
the operating characteristics of various methods of
drawing inference from the duration-response curve
and found that a method based on bootstrap to esti-
mate a duration associated with a specific cure rate has
good properties and is an appealing choice. Using this
analysis method, DURATIONS randomised trials
could help identify better treatment durations in an
optimal way across many illnesses.4

Code

The code used for the simulations will be made available on
the GitHub page of the first author.
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7. Bauer P, Röhmel J, Maurer W, et al. Testing strategies in

multi-dose experiments including active control. Stat

Med 1998; 17: 2133–2148.
8. Royston P and Altman DG. Regression using fractional

polynomials of continuous covariates: parsimonious para-

metric modelling. J R Stat Soc Ser C 1994; 43: 429–467.
9. Morris TP, White IR and Crowther MJ. Using simula-

tion studies to evaluate statistical methods. Stat Med

2019; 39: 2074–2102.
10. Fleming TR and Powers JH. Issues in noninferiority

trials: the evidence in community-acquired pneumonia.

Clin Infect Dis 2008; 47: 108–120.
11. Carpenter J and Bithell J. Bootstrap confidence intervals:

when, which, what? A practical guide for medical statisti-

cians. Stat Med 2000; 19: 1141–1164.
12. Macfadden DR and Hanage WP. Potential for erosion of

efficacy in non-inferiority trials of decreasing duration of

antibiotic therapy. Clin Infect Dis 2019; 69(7): 1262.
13. Bretz F, Maurer W, Brannath W, et al. A graphical

approach to sequentially rejective multiple test proce-

dures. Stat Med 2009; 28(4): 586–604.
14. Dmitrienko A, Millen B, Brechenmacher T, et al. Devel-

opment of gatekeeping strategies in confirmatory clinical

trials. Biom J 2011; 53(6): 875–893.

Quartagno et al. 653

https://orcid.org/0000-0003-4446-0730

