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Abstract
The innate immune system serves as a first line of defense against microbial
pathogens. The host innate immune response can be triggered by recognition
of conserved non-self-microbial signature molecules by specific host receptor
proteins called Toll-like receptors. For bacteria, many of these molecular
triggers reside on or are embedded in the bacterial membrane, the interface
exposed to the host environment. Lipids are the most abundant component of
membranes, and bacteria possess a unique set of lipids that can initiate or
modify the host innate immune response. Bacterial lipoproteins, peptidoglycan,
and outer membrane molecules lipoteichoic acid and lipopolysaccharide are
key modulators of the host immune system. This review article will highlight
some of the research emerging at the crossroads of bacterial membranes and
innate immunity.

   Referee Status:

  Invited Referees

 version 1
published
07 Aug 2017

 1 2

, Research CenterKlaus Brandenburg

Borstel, Germany
1

, Université de Toulouse,Jérôme Nigou

France
2

 07 Aug 2017,  (F1000 Faculty Rev):1334 (doi: First published: 6
)10.12688/f1000research.11388.1

 07 Aug 2017,  (F1000 Faculty Rev):1334 (doi: Latest published: 6
)10.12688/f1000research.11388.1

v1

Page 1 of 11

F1000Research 2017, 6(F1000 Faculty Rev):1334 Last updated: 07 AUG 2017

http://f1000research.com/collections/f1000-faculty-reviews/about-this-collection
http://f1000.com/prime/thefaculty
http://f1000.com/prime/thefaculty
https://f1000research.com/articles/6-1334/v1
https://f1000research.com/articles/6-1334/v1
https://orcid.org/0000-0001-5016-8694
https://f1000research.com/articles/6-1334/v1
http://dx.doi.org/10.12688/f1000research.11388.1
http://dx.doi.org/10.12688/f1000research.11388.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.11388.1&domain=pdf&date_stamp=2017-08-07


 

 Robert K. Ernst ( )Corresponding author: rkernst@umaryland.edu

 Competing interests: The authors declare that they have no competing interests.

 Chandler CE and Ernst RK. How to cite this article: Bacterial lipids: powerful modifiers of the innate immune response [version 1;
   2017,  (F1000 Faculty Rev):1334 (doi:  )referees: 2 approved] F1000Research 6 10.12688/f1000research.11388.1

 © 2017 Chandler CE and Ernst RK. This is an open access article distributed under the terms of the Copyright: Creative Commons Attribution
, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Licence

 This work was supported by National Institutes of Health grants GM111066 and AI101685. Grant information:
 07 Aug 2017,  (F1000 Faculty Rev):1334 (doi:  ) First published: 6 10.12688/f1000research.11388.1

Page 2 of 11

F1000Research 2017, 6(F1000 Faculty Rev):1334 Last updated: 07 AUG 2017

http://dx.doi.org/10.12688/f1000research.11388.1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.12688/f1000research.11388.1


Introduction
The innate immune system serves as a first barrier protecting the 
host from microbial pathogens, including bacteria, viruses, para-
sites, and fungi. At the most basic level, the innate immune system 
is composed of a set of cells and molecules aimed at recogniz-
ing and responding to a wide range of microbial stimuli. Specifi-
cally, a series of germline-encoded receptors and secreted proteins 
have evolved to recognize common, conserved, and indispensable 
microbial features called pathogen-associated molecular patterns 
(PAMPs)1,2. PAMPs are molecules shared by and exclusive to 
microbes and are recognized by host immune cell receptors called 
pattern recognition receptors (PRRs). PRRs may be present on the 
external cell membrane or internally in endosomes of host innate 
immune cells such as leukocytes, macrophages, dendritic cells, and 
natural killer cells1.

The Toll-like receptors (TLRs) are the best characterized of the 
PRRs. Currently, 10 TLRs in humans and 13 in mice have been 
described, and each recognizes unique microbial PAMPs1,2  
(Table 1). Upon recognition of bacteria-specific extracellular  
features, specific combinations of TLRs will dimerize. Bacterial 
lipoproteins, lipoteichoic acid (LTA), and peptidoglycan (PGN), 
which signal through TLRs 1, 2, and 6, and lipopolysaccharide 
(LPS), which signals through TLR4, will be the focus of this  
mini-review3,4. TLRs can function as homo- or hetero-dimers; the 
exception is TLR5, which can also function as a monomer. TLR4 
forms a homo-dimer, whereas TLRs 1, 2, and 6 can form hetero-
dimers, thereby changing their PAMP specificity. TLR2 can dimer-
ize with TLR1 to recognize bacterial lipoproteins and parasitic 

surface molecules. When paired with TLR6, this hetero-dimer can 
recognize a more diverse group of microbial surface molecules such 
as PGN, yeast, and lipoproteins1–3. Upon binding of a microbial  
ligand, TLR molecules initiate a signaling cascade that converges 
on a group of molecular effectors, including pro-inflammatory  
transcription factors, which result in upregulation of genes and  
processes involved in the host immune response (Figure 1). TLR  

Table 1. Toll-like receptors and their associated 
pathogen-associated molecular patterns.

Toll-like receptor Pathogen-associated 
molecular pattern recognized

TLR3, TLR7, 
TLR8, and TLR9

Nucleic acid

TLR1/2 Lipoproteins, lipoglycans, 
parasitic surface molecules, 
and peptidoglycan

TLR2/6 Lipoproteins

TLR4 Lipopolysaccharide

TLR5 Flagellin

TLR10 Parasitic proteins

The Toll-like receptors (TLRs) are pattern recognition receptors 
that recognize specific microbial features. In humans, 10 TLRs 
have evolved to recognize a variety of microbial molecules. 
TLR1/2, TLR2/6, and TLR4 are crucial for recognition of 
bacterial lipid molecules.

Figure 1. Toll-like receptor (TLR) stimulation, signaling, and immunological outcomes. Microbial pathogen-associated molecular 
patterns (PAMPs) recognized by TLRs lead to initiation of signaling cascades in a MyD88-dependent manner. TLR4 may also signal through 
an alternative TRIF/TRAM pathway. The signals from both pathways converge on specific transcription factors, which translocate to the 
nucleus and upregulate immune genes involved in responding to microbial stimuli. The canonical outcomes of TLR4 and TLR2 signaling are 
upregulation of inflammatory cytokines, which in turn can help recruit other immune cells and promote anti-microbial effectors.
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Figure 2. Structural variety of microbial lipid pathogen-associated molecular patterns. (A) Lipoproteins are anchored to the bacterial 
membrane by cysteine-linked acyl chains and have been described in both Gram-positive and Gram-negative bacteria. (B) Peptidoglycan 
(PGN) consists of a sugar polymer composed of β-(1,4)-linked N-acetylglucosamine (NAG) and N-acetyl muramic acid (NAM). Peptide 
chains of three to five amino acids are attached to the NAM residues and cross-linked to a chain from another sugar polymer strand, 
creating a mesh-like structure. (C) Lipoteichoic acid (LTA) is a Gram-positive surface polymer abundant in the bacterial envelope. The 
LTA structure can vary and is classified into categories by characteristics such as its backbone type and repetitive polymer composition  
(types I–V). Many LTAs contain a glycerophosphate (GroP) backbone structure attached to a glycolipid anchor. The repeating unit (marked 
with “n”) can also vary and may contain glycerol, glycose, galactose, ribitol, phosphate, and other related derivatives. Type I/II LTA backbone 
is represented here. (D) Lipopolysaccharide (LPS) is a major component of the outer leaflet of the outer membrane of Gram-negative 
bacteria. The hydrophobic membrane anchor, lipid A, can vary in acyl chain length and number and can be mono- or bis-phosphorylated. 
The lipid A molecule is responsible for innate immune recognition by TLR4. Lipid A is connected to a hydrophilic core polysaccharide chain, 
followed by a repeating (marked with “n”) oligosaccharide chain (the O-antigen), which is specific to the bacterial serotype.

signaling cascades ultimately result in the production of chem-
okines, cytokines, and host anti-microbial molecules1,2. TLR1/2,  
TLR2/6, and TLR4 use two specific cytosolic adaptor proteins—
MyD88 and TIRAP—to initiate intracellular signaling cascades 
upon stimulation. MyD88 recruits IRAK-4, which in turn acti-
vates downstream proteins, including transcription factor NF-κB 
and MAPKs JNK and p38 MAPK. Activated transcription factors  
translocate to the nucleus and initiate upregulation of immune  
effector genes. TLR4 can also signal through the alternative TRIF/
TRAM pathway, leading to induction of different immunological 
mediators (reviewed by De Nardo2 in 2015).

Microbes contain a number of characteristic lipids and lipopro-
teins. These molecules are crucial not only for membrane integrity 
of the bacteria but also for signaling, responding to environmental  
stresses, and propagation. The characteristics, structure, and  
specific mechanisms leading to immune activation of these bacte-
rial lipids represent long-standing research questions of interest, 
largely due to the immunological consequences of such activation. 
Better understanding of innate immune activation could improve 
therapeutic approaches to bacterial infections. Furthermore, this  
knowledge could help prevent out-of-control immunological  
signaling, as is present in conditions such as sepsis. This mini-
review aims to describe the most recent and emerging research in 
this field.

The TLR2 agonist: an unclear picture
Gram-positive bacteria possess a unique set of components 
that are involved in pathogenesis, including lipoproteins, PGN,  
poly-N-acetyl glucosamine, wall teichoic acid, and LTA5. These 
molecules are structurally unique. Lipoproteins are proteins 
anchored to the membrane by cysteine-linked fatty acids and 
are present in both Gram-positive and Gram-negative bacteria6,7  
(Figure 2A). Typically, lipoproteins are tri-acylated in Gram- 
negative bacteria and di-acylated in Gram-positive bacteria and 
Mycobacterium8,9. The canonical triacyl form is proposed to be 
recognized by TLR1/2, and the diacyl form by TLR2/610. PGN 
is a polymer of N-acetylglucoasmine and N-acetylmuramic acid  
sugars and amino acids, forms a thick mesh outside the  
membrane of Gram-positive bacteria, and is present between the 
dual membranes of Gram-negative bacteria11 (Figure 2B). LTA is 
an amphiphilic molecule specific to Gram-positive bacteria and  
commonly contains a glycerophosphate backbone and glycolipid 
membrane anchor12 (Figure 2C). Host immune recognition of these 
molecules has been shown to require TLR2 (paired with either TLR1 
or TLR6) for activation (Figure 3). Historically, it was thought that 
LTA and PGN were the primary stimulators of TLR2 upon bacterial 
colonization and infection. However, as targeted knockout bacteria 
mutant strains and improved purification procedures for the differ-
ent ligands are developed, a new dogma has emerged that suggests 
lipoproteins may be the main activators of TLR213,14.
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Figure 3. Key stimulatory molecules from Gram-positive bacteria. Lipoteichoic acid (LTA), wall teichoic acid (WTA), peptidoglycan (PGN), 
and tri-acylated lipoproteins are constituents of the Gram-positive bacterial cell wall and have been proposed to signal through TLR1/2 and 
TLR2/6. TLR, Toll-like receptor.

Recent studies using lipoprotein- or LTA-specific mutations and 
purified ligand preparations support the idea that lipoproteins are 
the dominant trigger of TLR2 signaling. Kim et al. concluded that 
Streptococcus gordonni lipoproteins were required for the induc-
tion of nitric oxide (NO) in a TLR2-dependent manner from mouse 
macrophages, as lipoprotein mutants were unable to induce NO 
in contrast to specific LTA mutants and heat-killed cells15. Studies 
using Staphylococcus aureus showed that lipoproteins are essential 
for interleukin-8 (IL-8) expression in human intestinal epithelial 
cells and LTA alone is unable to enhance dendritic cell macropi-
nocytosis, as compared with PGN16,17. Furthermore, using mutant 
strains of Enterococcus faecalis that showed a threefold higher 
lipoprotein content, Theilacker et al. observed that these strains 
were more potent activators of macrophages and that this potency 
was lost upon inactivation of lipoprotein biosynthesis18. The 
authors additionally showed that these strain types led to increased  
induction of key cytokines, such as tumor necrosis factor-alpha,  
IL-6, and macrophage inflammatory protein 2, and increased influx 
of leukocytes and mortality in mice. Martinez de Tejada et al. 
extended these studies to show that lipoproteins are the most potent 
stimulators of TLR2 in vitro and are capable of producing sepsis-
like pathology in mice19. Finally, evidence even suggests that LTA 
can serve to dampen lipoprotein-induced immune cell stimulation 
and IL-8 production in intestinal epithelial cells20. This research 
collectively reinforces the role of bacterial lipoproteins as immune 
stimulators.

Despite emerging evidence of lipoprotein-dependent TLR2 selec-
tivity, studies still support the classic view of LTA as an agonist 
of TLR2. Purified LTAs from Weissella cibaria and Bacillus  
subtilis were used to study the downstream immune effects 
after cell exposure. These studies describe an upregulation in  

TLR2-associated cytokine production and inflammatory markers,  
supporting the idea of LTA as a significant innate immune  
stimulatory molecule21,22. Furthermore, Wang et al. showed that 
LTA from Clostridium butyricum inhibited inflammatory response 
and apoptosis induced by S. aureus LTA in cells, suggesting a  
specific structure-activity relationship between LTA and TLR2  
activation23.

The ability to identify PAMP structural characteristics specifi-
cally responsible for the initiation and perturbation of the innate 
immune response is the topic of much research. Insight into why 
and how particular features activate PRRs would provide a better 
understanding of innate immunity initiation and could highlight 
potential points for therapeutic intervention. Reports of crystal 
structures of TLR2/1 and TLR2/6 in complex with their ligands 
have allowed molecular-level detail regarding the receptor-ligand 
interaction24,25. With the goal to further define the minimal struc-
tural scaffolding required for TLR2 activation, Jiménez-Dalmaroni 
et al. recombinantly expressed the human TLR2 ectodomain and 
analyzed its ligand-binding properties. They showed that the dia-
cylglycerol component of microbial glycolipids and lipoproteins is 
the ligand that binds to the ectodomain of hTLR2. However, they 
did not complex TLR2 with either TLR1 or TLR6 or study it in a  
whole-cell environment26.

The current research supports both lipoproteins and LTA as TLR2 
signaling molecules, yet the ‘dominant’ TLR2 trigger remains an 
active area of study. The dual-associative nature of TLR2 when 
complexed with TLR1 or TLR6 compounds the issue of identifying 
a single dominant molecular trigger, although continued research 
will yield valuable insight into the roles of specific subclasses of 
membrane components in pathogenesis.
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Gram-negative lipoproteins and their rising roles in 
immune stimulation
Gram-negative bacterial lipoproteins have been shown to be 
involved in colonization, invasion, evasion of host immune 
defenses, and immunomodulation during infection7,27. It was 
generally believed that lipoproteins in Gram-negative bacteria 
reside in either the inner membrane or inner leaflet of the outer  
membrane. Recent research suggests that surface-exposed lipo-
proteins are more common than previously thought among Gram- 
negative bacteria27. Based on specific search algorithms, most  
bacteria are predicted to encode about 75 to 200 lipoproteins, many 
of which have yet to be characterized27. As our understanding of  
bacterial lipoproteins has evolved, it has prompted study of a 
number of less well-understood Gram-negative bacterial pathogens.  
Wang et al. used recombinantly expressed lipoproteins (predicted) 
from the obligate intracellular pathogen Chlamydia trachomatis  
to test for their ability to stimulate mouse and human macrophage 
cell lines. In addition to identifying stimulatory lipoproteins, they 
identified that the signaling pathways initiated after induction 
were mediated through TLR1/2 and TLR2/CD1428. Dennehy et al. 
described a specific PGN-associated lipoprotein important for host 
cell attachment and cytokine secretion in Burkholderia cepacia  
complex, which commonly colonizes the airways of patients 
with cystic fibrosis29. Fusobacterium nucleatum, an oral cavity  
commensal, possesses a characteristic cell wall–associated protein 
that has been shown to induce specific anti-microbial immunity by 
activating both TLR1/2 and TLR2/630. Despite increased interest in 
recent years, the field is just beginning to understand the multitude 
of ways in which Gram-negative lipoproteins play a role in innate 
immune initiation, evasion, and bacterial pathogenesis.

Lipopolysaccharide, the major immune mediator of 
Gram-negative bacteria
Gram-negative bacteria possess a characteristic lipoglycan  
molecule that composes the majority of the outer leaflet of their  
outer membrane. This molecule is called LPS, or endotoxin, 
and is composed of three distinct regions: a repetitive glycan  
polymer, oligosaccharide core, and membrane-anchor lipid 
A molecule31 (Figure 2D). Lipid A is the ligand for the TLR4  
complex. TLR4 acts in concert with the accessory protein  
MD-2 to initiate an immune response with MD-2 necessary for 
the physiological recognition of lipid A. Upstream of TLR4/ 
MD-2, a soluble protein called  LPS-binding protein (LBP) 
extracts lipid A from lipid micelles or the bacterial membrane 
and transfers it to the glycosylphosphatidylinositol-linked surface  
protein CD14, which in turn transfers lipid A to the TLR4/MD-2  
complex4,31  (Figure 4). The structural mechanism of lipid A  
binding was initially described by Park et al. following co- 
crystallization of different lipid A structures with components 
of the TLR4/MD-2 complex32,33. Recently, Kim and Kim fur-
ther revealed the dynamic transfer cascade of LPS from LBP 
and CD14 to the TLR4/MD-2 complex34. They identified 
that the interaction between LBP and CD14 is rapid and tran-
sient, on the millisecond time scale, and is mediated by electro-
static interactions between a basic amino acid patch on LBP and 
an acidic patch on CD14. After binding one molecule of LPS, 
CD14 rapidly dissociates from the LBP/LPS complex, mediated 
by electrostatic repulsion. CD14 then delivers a single LPS mol-
ecule to MD-2 within the TLR4 pocket and in a TLR4-dependent  
manner34. This work provided the finest level of detail to date about 
the binding and transfer of LPS to TLR4.

Figure 4. Key stimulatory molecules from Gram-negative bacteria. The outer leaflet of the outer membrane of Gram-negative bacteria is 
largely composed of lipopolysaccharide (LPS) with intermittent lipoproteins and phospholipids. The membrane anchor lipid A portion of LPS 
is the key stimulatory molecule for TLR4 on the host cell membrane. Lipid A can be extracted from the bacterial membrane by LPS-binding 
protein (LBP), which transfers it to membrane-bound CD14. CD14 transfers lipid A to MD-2 within the TLR4 pocket, leading to intracellular 
stimulation. Tri-acylated Gram-negative lipoproteins are thought to be recognized by TLR1/2. TLR, Toll-like receptor.
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Figure 5. Immunological outcomes mediated by membrane vesicles (MVs). MVs can be generated from both Gram-positive and  
Gram-negative bacteria (representative Gram-negative MV shown here). MVs are proposed to contain many of the membrane-associated 
bacterial molecules with cargo that may contain both membrane- and cytosolic-derived proteins, lipids, and nucleic acid. MVs have been 
described to be involved with cell-cell communication (between both bacterial and host cells), immune cell stimulation, long-term adaptive 
immunity, and immune evasion mechanisms.

The initiation and intensity of the host immune response can be 
dependent on lipid A structure. Specifically, lipid A structural 
changes in regard to the terminal phosphate groups and attached 
acyl groups can alter immunological outcomes through altered 
TLR4 complex specificity35,36. Recent studies have further high-
lighted how closely linked lipid A structural modification is to 
immunological initiation and outcome. Studies of patients infected 
with Neisseria meningitidis have revealed that variable lipid A 
structure can have multifaceted effects on immune responses 
which in turn have a critical impact on the nature of meningococ-
cal infection. Hellum et al. observed that patients infected with  
N. meningitidis with penta-acylated lipid A, as compared with  
wild-type hepta-acylated lipid A, had less systemic inflammation 
and coagulopathy and that this was correlated with a weaker induc-
tion of monocytes37. John et al. observed that lipid A in clinical  
isolates of N. meningitidis had lower levels of terminal phos-
phorylation and that this correlated with septicemia38. They also 
observed that lipid A from all invasive strains was hexa-acylated 
but that carrier strains from colonized patients were penta- 
acylated, supporting the previous data by Hellum et al.

Using in vitro transcriptome analysis, Luan et al. expanded on the 
idea that LPS structural changes alter immunological outcome39. 
They investigated human leukocyte responses to stimulation with 
pro-inflammatory canonical LPS and compared them with those 
from stimulation with less-inflammatory mono-phosphorylated 
lipid A. Although both molecules induced transcriptome profiles 
that were largely similar, the canonical LPS structure was a more 
potent inducer of pro-inflammatory cytokine transcripts, further 
supporting the idea that structural modifications of LPS can be 
used to alter immunological outcome39. Malgorzata-Miller et al.  

highlighted the potential benefits of LPS-controlled immunomodu-
lation by using a novel lipooligosaccharide (LOS) from Bartonella 
quintana, the causative agent of trench fever40. The lipid A struc-
ture of this microbe is unusual in that it contains an unsaturated 
acyl chain and a long 26-carbon fatty acid. When isolated, this LOS 
performed as a TLR4 antagonist and anti-inflammatory mediator 
in the presence of highly inflammatory E. coli LPS40. This work 
adds to our understanding of the structural features associated with 
lipid A antagonism, which have been previously described41,42.  
Collectively, these studies highlight how important even subtle  
LPS structural changes are to immunological outcome, including 
TLR4 activation, the inflammatory response, and disease progres-
sion. Further work needs to be done to better define the downstream 
outcome of specific LPS modifications. A better understanding  
of the structure-activity relationship will allow for better thera-
peutic targeting to prevent immune dysregulation-related patient  
outcomes, such as sepsis.

Membrane vesicles: an emerging field
Membrane vesicles (MVs) represent an active and evolving area of 
research. Gram-negative MVs (commonly called outer membrane 
vesicles) and Gram-positive MVs (commonly called extracellular 
vesicles) were initially thought to be a byproduct of bacterial growth. 
However, it is now widely accepted that MVs are produced by both 
Gram-negative and Gram-positive bacteria and can have roles in 
antigen delivery, cell-cell communication, immune responsiveness, 
and inflammation43,44 (Figure 5). MVs are composed of an array of 
molecules derived from the bacterium and can include PGN, LPS 
or LTA, DNA, RNA, enzymes, and proteins from membrane, peri-
plasm, and cytoplasm. The exact molecular cargo and size of the 
vesicle can vary between bacterial species and environments, and 
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cargo contents remain an active area of study45. Despite the many 
recent advances in MV research, the mechanisms underlying their 
biogenesis remain poorly understood for both Gram-negative and 
Gram-positive bacteria. It is thought that Gram-negative MVs are 
generated in a ‘pinching-off’ type of mechanism. Gram-positive 
bacteria are assumed to generate MVs by using a different mecha-
nism, as it is thought that a pinching-off mechanism is hindered by 
the large extracellular PGN layer in the bacterial membrane43,44.

Improved understanding of bacterial membranes and isolation 
techniques have led to a vast increase in information detailing the 
biological effects of both Gram-negative and Gram-positive MVs. 
Recent work by Jurkoshek et al. suggests that bacterial MVs 
can serve as a means for interspecies communication between  
pathogenic bacteria and host immune cells46. Vanaja et al. recently 
showed that internalization of Gram-negative MVs by host 
immune cells is responsible for cytosolic localization of LPS, 
which triggers specific immune responses, such as inflammasome  
activation47. It has also been recently shown that bacterial mem-
brane composition can influence MV production. Elhenawy et al. 
showed that deacylation of LPS altered the level of MV produc-
tion in Salmonella enterica serovar Typhimurium and that LPS  
deacylation may inversely correlate with other LPS modifications, 
suggesting a synergy of host evasion strategies48. The downstream 
immune effectors resulting from MV exposure provide further 
insight into the roles of MVs in immunity and infection. MVs  
isolated from species such as Legionella pneumophila, Clostridium 
difficile, Porphyromonas gingivalis, N. meningitidis, and S. aureus 
have displayed a range of downstream immunological outcomes, 
including those mediated by TLR2 and TLR449–53.

MVs contain not only bacterial lipids but also membrane proteins, 
receptors, and other molecules43,44. Owing to their antigenic varia-
bility and small size, MVs are actively being investigated as vaccine 
candidates, which has become an entire research field of its own. 
MVs from several bacterial species, including Bordetella pertussis, 
Streptococcus pneumoniae, N. meningitidis, S. aureus, Salmonella, 
and Klebsiella pneumoniae, have shown favorable immunological 
outcomes after vaccination studies54–59. The recent work on MVs 
is vast, and several review articles have highlighted the develop-
ing research on bacterial MVs, including the broadly encompassing 
article by Pathirana and Kaparakis-Liaskos43 from 2016.

Conclusions
Bacterial membranes have long been sources of study, especially in 
regard to immune stimulation and evasion. Recent research high-
lights how complex the interaction between the microbe membrane 
and host immunity can be. Even well-studied phenomena, such 
as TLR4 activation by LPS, still have many unknowns that war-
rant further research. The many structural variations of lipid A and 
LPS and their downstream effects on innate immune initiation and 
response will continue to be a question of interest despite recent 
research helping to better illuminate some structure-activity rela-
tionships in this arena. Research on lipoproteins and their roles in 
pathogenicity may help illuminate alternative targets for bacterial 
control and eradication. Additionally, this line of research will help 
better define overlooked players in pathogenicity. Perhaps the most 
rapidly expanding field of research is that of bacterial membranes, 
from both Gram-negative and Gram-positive bacteria. This research 
will help better define membrane processes critical to bacterial sur-
vival, inter-cell communication mechanisms, and immune evasion 
and modulation and may provide viable vaccine options for hard-
to-treat bacteria. The bacterial membrane is complex, and only by 
addressing all of the players will we be able to better understand the 
host-microbe interaction.
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