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Abstract: Oxygen plasma treatment has been reported as an effective way of improving the response
of graphene gas sensors. In this work, a gas sensor based on a composite graphene channel with a
layer of pristine graphene (G) at the bottom and an oxygen plasma-treated graphene (OP-G) as a
covering layer was reported. The OP-G on top provided oxygen functional groups and serves as the
gas molecule grippers, while the as-grown graphene beneath serves as a fast carrier transport path.
Thus, the composite channel (OP-G/G) demonstrated significantly improved response in NH3 gas
sensing tests compared with the pristine G channel. Moreover, the OP-G/G channel showed faster
response and recovering process than the OP-G channel. Since this kind of composite channel is
fabricated from chemical vapor deposited graphene and patterned with standard photolithography,
the device dimension was much smaller than a gas sensor fabricated from reduced graphene oxide
and it is favorable for the integration of a large number of sensing units.

Keywords: graphene; oxygen plasma treatment; gas sensor; NH3

1. Introduction

Gas detection and recognition is very important in both industry and daily life applications.
Especially with the development of the Internet of things (IoT), the demand for miniaturized gas
sensors with low power consumption will increase dramatically. In addition to specific gas detection,
mixed gas component recognition will be required for many emerging IoT applications such as food
quality monitoring [1,2], daily chemical industry [3–5] and agricultural products [6–8]. One of the
basic mixed gas component recognition techniques is electronic nose (e-nose) [1,6,7], which is based on
an array of gas sensors with different gas sensing characteristics and data processing with a neural
network algorithm. An E-nose based solid state device has an advantage in miniaturization. However,
commercial solid state e-nose is normally based on metal oxide sensitive material and usually needs
to be heated up to over two hundred centigrade during sensing [1,6,7]. This demands huge power
consumption and limits the number of gas sensing elements in the e-nose. Nanomaterials provide

Sensors 2019, 19, 625; doi:10.3390/s19030625 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-5748-3021
http://www.mdpi.com/1424-8220/19/3/625?type=check_update&version=1
http://dx.doi.org/10.3390/s19030625
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 625 2 of 13

numerous opportunities to develop ultrasensitive gas sensors with room temperature operation and
low power consumption [9–11]. Graphene is one of the most promising nanomaterials for gas sensing
and attracts intense study due to its ultrahigh specific surface, ultrahigh carrier mobility and low
electrical noise [12–14]. More importantly, graphene gas sensors operate at room temperature and
graphene film is compatible with standard semiconductor fabrication processes [10,11,15]. These
two features render graphene an ideal candidate material towards an integrated gas sensor array for
e-nose applications.

Though pristine graphene (G) has demonstrated high sensitivity in several reports [13,16,17],
its self-closed super-pi bond limits the molecular adsorption on the surface and thus its sensitivity in
gas sensing [17]. Moreover, molecular adsorption on G is mainly based on Van der Waals interaction,
which provides poor specificity. To address this issue, nanoparticle decoration and chemical treatment
are widely explored to enhance both the sensitivity and specificity in gas sensing [10,11,18–21].
Those procedures introduce functional groups or defects on the graphene surface and provide effective
molecule adsorption sites. However, this is at the cost of carrier mobility degradation. The carrier
mobility degradation in turn reduces the sensitivity since the conductance of a channel is determined
by both the carrier concentration and the carrier mobility. Increasing the effective adsorption sites while
maintaining high carrier mobility is one of the major challenges, we are facing in the development of a
graphene gas sensor. To address this challenge, here we propose a gas sensing channel with composite
double layer graphene: a layer of pristine graphene at the bottom and a layer of functionalized
graphene on the top. The functionalized graphene on the top provides adsorption sites while the G
beneath serves as a fast carrier transport path.

A straightforward way is using reduced graphene oxide (rGO) as the functionalized graphene on
the top since the high sensitivity of rGO in gas sensing is widely reported [10,11,15,20]. The residual
oxygen functional groups such as carboxyl, hydroxyl and epoxy in rGO provide effective adsorption
sites. However, rGO is not suitable for the fabrication of a micron-sized conductive channel, because the
flake size of rGO reduced from GO is normally around several microns. An rGO conductive channel
is layers of randomly stacked rGO flakes obtained on an interdigital electrode by a dip-and-dry
process [11,15,20]. The uniformity of such a conductive channel could be obtained only on the scale
much larger than the size of an individual rGO flake; for instance, hundreds of microns. Such a large
channel size causes large power consumption and limits the device integration. To obtain a proposed
composite double layer graphene channel of micron size, functionalization of large area graphene
for top–down patterning process is required. In situ oxidation of chemical vapor deposited (CVD)
graphene through a pure physical process such as thermal or plasma treatment is more appealing
for micro-sized channel fabrication [22–26]. In this work, the functionalization of CVD graphene by
using oxygen plasma is investigated. The oxygen plasma-treated graphene (OP-G) is used as the
functionalized graphene on the top of the composite channel. The ammonia gas sensing performance
of the developed composite channel (OP-G/G) is studied by comparing with a mono layer OP-G and a
mono layer G channel. The results of our work show the OP-G/G composite channel has significantly
improved sensitivity compared with pristine G and much faster response and recovering process
compared with a mono layer OP-G channel.

2. Materials and Methods

2.1. CVD Graphene Preparation and Oxygen Plasma Treatment

The graphene film used in this study was grown by CVD method using methane (CH4) as carbon
source and 25 µm thick copper foil (99.8% metals basis, purchased from Alfa Aesar Co., Ltd. Tianjing,
China) as substrate. The detailed graphene preparation process is as follows: The copper foil was first
ultrasonically cleaned in ethyl alcohol, then soaked into a diluted HCl solution to remove the surface
oxides and finally rinsed several times by deionized water and dried with blowing N2. The copper foil
was then mounted in the CVD furnace tube and annealed for 30 min at 1060 ◦C, under the flow of
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100 sccm Ar. After that, 10 sccm CH4 carried by constant flow of 100 sccm H2 was fed into the reaction
tube at the same temperature for the graphene growth. After 60 min, the furnace was shut down and
rapidly cooled to room temperature in 2 min. As-grown graphene on copper foil was then put in a
reactive ion etching (RIE) chamber for oxygen plasma treatment.

2.2. Sensor Fabrication

Figure 1 depicts the fabrication process of the OP-G/G composite channel based gas sensor. A Si
wafer with a 300 nm silicon dioxide (SiO2) layer was used as substrate. 10 nm Ti and 50 nm Pd layer
was deposited on the substrate using magnetron sputtering with a metal shadow mask to form a back
gate electrode. Then, a 150 nm Al2O3 layer was deposited to form a back gate dielectric, followed by
annealing at 800 ◦C to improve the quality of the dielectric layer. A 10 nm Ti layer and a 100 nm Pd
layer were deposited on the Al2O3 layer to form the source and drain electrodes. The second line of
the illustration in Figure 1 depicts the process of OP-G preparation and transfer. Both as-grown and
oxygen plasma-treated graphene were transferred with Polymethyl Methacrylate (PMMA) as transfer
vehicle and a (NH4)2S2O8 solution as copper foil etching agent. To remove the residual PMMA on the
surface of the graphene films, the device was annealed under the protection of the flow of Ar and H2

after each transfer process. Finally, the composite graphene channel was patterned into a channel of
50 µm in width and 60 µm in length using photolithography.
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Figure 1. Schematic of the sensor fabrication process.

2.3. Measurement Setup

Figure 2 displays the schematic of the gas sensing measurement setup. The sensor was placed
in a custom reaction chamber with a volume of 10 L. The inlet of the chamber was connected to gas
cylinders through mass flow controllers and the outlet was connected to a vacuum pump. The reaction
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chamber was first filled with dry air and then NH3 (99.99% purified) was fed into the chamber.
The concentration of NH3 was controlled by gas flow, which was controlled by mass flow meter and
feeding time. The feeding time was less than 16 s. After the gas sensing test, the chamber was opened
and purged with air. The response of the device was measured with a digital multimeter (Keithley
2000). All the tests were carried out at room temperature.
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Figure 2. Schematic of the measurement setup.

2.4. Characterization Techniques

Field emission scanning electron microscopy (FESEM, GeminiSEM 500, Zeiss, Germany) was used
to investigate the morphology of prepared samples. X-ray photoelectron spectroscopy (XPS, ESCALAB
Xi+, Thermo Fisher Scientific, Massachusetts, America) analysis was performed to investigate elemental
composition of the samples before and after oxygen plasma treatment. Raman spectra (Laser Raman
Spectrometer, HONG KONG, China) was recorded using a 532 nm exciting laser.

3. Results

3.1. Characterization of G and OP-G

The optical microscope image of the channel area of our device is displayed in Figure 3a. It shows
a graphene ribbon which connects the source and drain electrodes. The back gate electrode was
designed for a future gate voltage tunable gas sensing test. However, the sensor was only tested as a
resistor in this work. Figure 3b shows an FESEM image of the graphene channel. The surface of the
channel was very clean and flat excepting a few wrinkles and cracks [27].
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Figure 3. Material characterization. (a) Optical microscope image of the composite OP-G/G channel.
(b) The FESEM image of the channel at the red square highlighted area of (a). (c) Raman spectra of
pristine graphene (G) and oxygen plasma-treated graphene (OP-G) samples. (d) XPS survey spectra
and (e) zoom-in plot and fittings of C 1s peak in XPS spectra.

Raman spectra of graphene before and after oxygen plasma treatment are shown in Figure 3c.
Before oxygen plasma treatment, the negligible D peak indicated the high crystal quality of the
pristine graphene. The intensity ratio of I2D/IG was approximately 2.4, which confirmed that the
pristine graphene was monolayer [28]. However, after oxygen plasma treatment, a distinct D peak
at approximately 1351 cm−1 was observed and the amplitude of the 2D peak was significantly
reduced alone with a shift of the G peak from 1590 cm−1 to 1604 cm−1. These results indicated
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a significant increase of carbon vacancies in the graphene. Furthermore, a D’ peak was found at
approximately 1633 cm−1, which was related with more edges or defects in graphene film. The Raman
spectra confirmed a successful introduction of defects or edges in the graphene lattice after oxygen
plasma treatment.

XPS was further used to study the chemical status of graphene after oxygen plasma treatment.
The results are also shown in Figure 3. In Figure 3d, no obvious O 1s peak was found in pristine
graphene. To obtain detailed information of the bonds in graphene, the C 1s peak at 284.5 eV was
analyzed by XPSPEAK software and the results are shown in Figure 3e. C 1s peaks were split into four
peaks at binding energy of 284.42 eV, 285.21 eV, 286.52 eV and 288.95 eV, which correspond to C–C=C,
C–OH, C=O and COOH, respectively [29]. The percentages of different C bonds were calculated by
XPSPEAK software from C 1s peak. The results are shown in Table 1. The oxygen functional groups in
OP-G were significantly larger than that in G. This indicated that oxygen groups were successfully
introduced into graphene lattice by oxygen plasma treatment [22]. As shown in Table 1, the proportion
of C–C=C remarkably decreased from 93.05% to 58.04%, while the proportions of bonds between
carbon and oxygen in forms of C–OH, C=O and COOH are all increased. The proportion of C–OH
significantly increased from 4.41% to 22.02%. The proportion of C=O increased from 1.89% to 13.37%,
while the proportion of COOH increased from 0.65% to 6.58%. This result indicated an effective
graphene decoration with oxygen functional groups after oxygen plasma treatment.

Table 1. XPS analysis of C 1s peak of G and OP-G.

Bands G OP-G

C–C=C (284.42 eV) 93.05% 58.04%
C–OH (285.21 eV) 4.41% 22.02%
C=O (286.52 eV) 1.89% 13.37%

COOH (288.95 eV) 0.65% 6.58%

3.2. Gas Sensing Experiment

The respective responses of the sensors with G, OP-G and OP-G/G channels to NH3 are shown in
Figure 4a. The response of the sensor is defined as follows:

[(R − R0)/R0]× 100%,

where R0 is the original resistance of the channel before the introduction of NH3 gas. The response
of the sensor with the G channel was significantly lower than that of the sensor with the OP-G or
OP-G/G channels for all of the tested ammonia concentrations. At 100 and 200 ppm NH3, the sensor
with the OP-G channel and the sensor with the OP-G/G channel exhibited similar responses. However,
when NH3 concentration increased to 500 and 1000 ppm, the response of the sensor with the OP-G/G
channel was significantly better than the sensor with the OP-G channel. The responses of the three
sensors after exposure to ammonia for 20 min are plotted in Figure 4b. All three sensors showed good
linearity in response to NH3 within the concentration range from 100 to 1000 ppm. For 1000 ppm NH3,
the response of the sensors with G, OP-G and OP-G/G channels are 7.6, 17.3% and 29.3%, respectively.
The sensitivity of the three sensors was estimated from the linear curves in Figure 4b. The results
showed that the sensor with OP-G/G channels had 6 and 2.8 times the sensitivity of sensors with G
and OP-G channels, respectively. Thus, the sensor with the OP-G/G channel demonstrated the best
performance among the three tested devices in terms of response and sensitivity.
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The improved response of the sensors with the OP-G and OP-G/G channels may be attributed
to two reasons. First, the oxygen functional groups introduced on the graphene surface provided
more effective adsorption sites [30]. Second, the significantly enhanced p-doping level of OP-G and
OP-G/G [31,32] increased the average amount of charge transferred from an adsorbed ammonia
molecule to the channel. Therefore, the response of the sensors with OP-G and OP-G/G channels
are both higher than the sensor with the G channel [33]. More importantly, the sensor with the
composite OP-G/G channel showed significantly higher response than that with the mono OP-G
channel. This may be attributed to a faster carrier transfer path beneath.

The response and recovery times are two other important figures of merit for gas sensors.
The response and recovery time constants were extracted by exponential fitting of the response and
recovery curves. The results are plotted in Figure 4c,d. The sensor with the G channel demonstrated the
shortest response and recovery time, while the sensor with the mono OP-G channel showed the longest
response and recovery time. The improvement of the sensitivity of OP-G was at a cost of sacrificing the
response and recovery speed. However, the composite OP-G/G channel reported here demonstrated a
faster response and recovery process compared with the mono OP-G channel. These results suggest
that the sensor with the OP-G/G channel not only showed the highest sensitivity, but also partially
maintained the fast response and recovery characteristics of the sensor with the G channel.

However, it is notable that the response curves of the OP-G and OP-G/G based sensors showed
no stabilization within 20 min though the responses were already significantly larger than that of the G
based sensor, which had already shown clear stabilization. When the detection step was increased to
two hours, there was still no obvious stabilization for the OP-G and OP-G/G based sensors, as shown
in Figure S1 in the Supplementary Information. Only double exponential function gives good fitting of
the response curves of OP-G and OP-G/G based sensors. Double exponential function fitting is widely
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reported for the response of graphene and carbon nanotube based gas sensors [34–36]. It indicates
that the response comprises a fast process and a slow process. The results in this report indicate that
the slow process makes negligible contribution to the response of a G based sensor but significant
contribution to the response of OP-G and OP-G/G based sensors.

It is normally believed that the fast response is related with the adsorption on the graphene
surface, while the slow process is related with the adsorption beneath the graphene at the interface
with substrate [35]. However, this mechanism alone could hardly give a reasonable explanation for the
significantly different contribution of the slow process in the G based sensor and the other two sensors.
A possible understanding may find a different dynamic process for the adsorption on non-defective
sites and that via oxygen functional groups. The adsorption on non-defective sites is mainly through
Van der Waals force due to the self-closed super-pi bond of graphene [17]. It is a straightforward
process with lower activation energy. Such adsorption contributes to the fast process. The adsorption
via an oxygen functional group needs a surface transport before it reaches the oxygen functional group
on OP-G. Moreover, the adsorption is through much strong interaction such as H- bond [37] and the
activation energy for such absorption is larger than that of pure Van der Waals force. Such adsorption
contributes to the slow process. It is similar for the recovery process. However, why the composite
OP-G/G channel showed much faster recovery process compared with the mono OP-G channel is still
not clear.

The OP-G/G based sensor was further tested with ammonia concentration down to 20 ppm.
The response versus NH3 concentration (from 20 to 100 ppm) is plotted and shown in Figure S2
in Supplementary Information. The limit of detection (LOD) calculated by Equation S-3 was about
0.76 ppm (corresponding to a signal-to-noise ratio equals three) [38–41]. The performance of the sensor
in this work was also compared with other types of NH3 sensors based on decorated graphene, RGO,
metal oxide (MOX), etc. in Table S1 in Supplementary Information [42–49]. As shown in Table S1,
our OP-G/G based sensor showed improved performance in response and recovery compared with
graphene based NH3 sensors in other reports. The sensor in this report is even comparable with some
MOX based NH3 sensors in terms of LOD, response and recovery time.

To further explore the effect of humidity in NH3 test, the G, OP-G and OP-G/G based sensors
were tested to 1000 ppm NH3 with different relative humidity (RH): 0%, 40% and 80%. The result is
shown in Figure S3 in the Supplementary Information. The humidity enhanced the response of all
three sensors. When the relative humidity increased from 0% to 80%, the response of G, OP-G and
OP-G/G based sensor was increased by 8.5%, 8.8% and 16.1%, respectively.

The reproducibility and stability of the sensor with the OP-G/G channel was tested and the
results are shown in Figure 5. As shown in Figure 5a, the sensor with the OP-G/G channel was
repeatedly exposed to 500 ppm NH3 for 20 min. The sensor demonstrated a pretty good reproducibility.
The relative standard deviation of the response in the six circles was within 1%. To further investigate
the stability of the sensor with the OP-G/G channel, it was exposed to 500 ppm NH3 for 20 min each
day within a month. The response was recorded and plotted in Figure 5b. The response of the sensor
degraded from 19.5% to 16.8% after 30 days.

Oxygen plasma treatment time is critical for the quality of OP-G. In order to obtain the optimal
oxygen plasma treatment time, a bunch of samples were treated for 10, 20, 40, 60 and 80 s, respectively.
The resistance of OP-G with different treatment time is plotted in Figure 6a. The resistance increased
with the increase of the treatment time. Especially, when the treatment time increased to 80 s,
the resistance soared to more than 20 times that of pristine graphene. When the treatment time
further increased to over 100 s, the resistance sharply increased to more than mega Ohm, which
indicated a completely breaking of the graphene conductive channel. Figure 6b demonstrates the
Raman spectra of the OP-G samples after different time of treatment. As the treatment time increases,
D peak increased considerably accompanied by the appearance of a noticeable D’ peak, while the 2D
peak decreased and broadened gradually with the increasing treatment time. The Raman spectrum
result indicated that the defect density increased with the treatment time [32,50,51]. This is consistent
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with the resistance change shown in Figure 6a. The gas sensing response of the sensor with the OP-G
channel with different treatment time is illustrated in Figure 6c. As the treatment time increased from 0
to 60 s, the response of the sensor increased in the whole range of NH3 concentration from 100 to 1000
ppm. However, as the treatment time further increased to 80 s, the response decreased. In conclusion,
the OP-G with a treatment time of 60 s showed the best gas sensing performance (22.1% to 1000 ppm
NH3). Thus, we chose 60 s as the treatment time for the preparation of the OP-G/G composite channel
in this study.Sensors 2019, 19 FOR PEER REVIEW  9 
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4. Conclusions

In conclusion, a composite channel with OP-G on top and pristine graphene beneath was prepared
from CVD graphene film and tested as a gas sensing material. In the NH3 gas sensing test, the sensor
with the OP-G/G channel demonstrated the best performance in terms of both response and sensitivity.
For instance, the NH3 response of the sensor with the OP-G/G channel was 4 times of the sensor
with the pristine graphene channel and 1.7 times of the sensor with the mono OP-G channel, when
the sensors were exposure to 1000 ppm NH3 at room temperature. The NH3 sensitivity of the sensor
with OP-G/G channel was 6 and 2.8 times more than that of sensors with the G and OP-G channels,
respectively. Moreover, the sensor with the OP-G/G channel also exhibited faster response and
recovery process compared with the sensor with the OP-G channel. The significantly improved gas
sensing performance is attributed to the cooperation effect between OP-G on top, which provides
plenty of adsorption sites, and pristine graphene beneath, which provides a fast carrier transfer path.
Finally, the optimal oxygen plasma treatment time is about 60 s in our experiment condition.
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