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Abstract

Objective: We propose and develop a novel biclustering (N-BiC) approach for performing N-

way biclustering of neuroimaging data. Our approach is applicable to an arbitrary number of 

features from both imaging and behavioral data (e.g., symptoms). We applied it to structural MRI 

data from patients with schizophrenia.

Methods: It uses a source-based morphometry approach (i.e., independent component analysis 

(ICA) of gray matter segmentation maps) to decompose the data into a set of spatial maps, each of 

which includes regions that covary among individuals. Then the loading parameters for 

components of interest are entered to an exhaustive search, which incorporates a modified depth-

first search (DFS) technique to carry out the biclustering, with the goal of obtaining submatrices 

where the selected rows (individuals) show homogeneity in their expressions of selected columns 

(components) and vice versa.

Results: Findings demonstrate multiple biclusters have an evident association with distinct brain 

networks for the different types of symptoms in schizophrenia. The study identifies two 

components: inferior temporal gyrus (16) and brainstem (7), which are related to positive 

(distortion/excess of normal function) and negative (diminution/loss of normal function) 

symptoms in schizophrenia respectively.

Conclusion: N-BiC is a data-driven method of biclustering MRI data that can exhaustively 

explore relationships/substructures from a dataset without any prior information with a higher 

degree of robustness than earlier biclustering applications.

Significance: The use of such approaches is important to investigate the underlying biological 

substrates of mental illness by grouping patients into homogeneous subjects as the schizophrenia 

diagnosis is known to be relatively nonspecific and heterogeneous.

Index Terms—

multi-component and symptom biclustering; schizophrenia; structural MRI; N-BiC: N-way 
biclustering; SYMBiCs: Symptom bicluster; subtypes; independent component analysis
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I. Introduction

BICLUSTERING is a data mining technique that is a powerful tool for high dimensional 

biological data analysis. It has been successfully applied to bioinformatics, primarily in 

microarray gene expression data for discovering local patterns, yet it is a comparatively new 

approach as applied to magnetic resonance imaging (MRI) analysis. It has been applied to 

structural neuroimaging data, but only on a single pair of features. Biclustering is more 

generally a data mining technique that allows simultaneous clustering of the rows and 

columns of a matrix; thus, biclusters are a subset of rows that exhibit homogenous values 

across a subset of columns and vice-versa. In gene expression data, a bicluster is usually a 

subset of genes that exhibit compatible expression patterns over a subset of conditions [1]. 

For neuroimaging entities, a bicluster is a subset of subjects which show similar patterns 

across a subset of variables/features [2]. More specifically in our analysis, a bicluster is a 

subset of subjects who are relatively homogenous across a subset of imaging patterns. 

Previous neuroimaging studies of schizophrenia (SZ) have suggested that clustering could 

help identify schizophrenia subtyping/groupings and characterizing their neural correlates 

[3–6]. In an earlier study, we performed biclustering on two neuroimaging components 

selected based on prior information [3], and we identified groups of subjects with 

disjunctions of symptoms (e.g., severe in one dimension and not in the other vs severe in 

both).

A major challenge for clinical and biological research trying to elucidate causes of 

schizophrenia is the heterogeneity of the illness. The wide range of clinical and cognitive 

symptoms within this disease restricts the isolation of specific neural systems or functional 

neural markers of the disorder [7]. To resolve the issue of variability in SZ, researchers have 

attempted to define subtypes based on clinical characteristics. But such an approach has also 

been criticized [8, 9] because of a lack of strong theoretical background and the relative 

absence of neurobiological correlates [10–13], as well as the temporal instability of clinical 

symptoms and their corresponding subtypes [4]. Subtypes suggested by the diagnostic 

systems tend to be unstable and change over a short time period [4]. Hence, it has been 

suggested that the diverse clinical syndromes of schizophrenia should be subgrouped based 

on distinct symptom profiles of the disorder [14, 15]. As a result, researchers are focusing on 

reliable and stable genetic and neuroimaging data rather than clinical features in 

schizophrenia [16]. Two widely used approaches for analyzing structural MRI data include 

voxel-based morphometry (VBM) [17–19] and its multivariate extension, source-based 

morphometry (SBM) [20–22]. VBM is a univariate analysis that allows examination of brain 

changes in a voxel by voxel model, instead of focusing on spatial patterns across voxels [23]. 

SBM is a multivariate analysis implemented by applying independent component analysis 

(ICA) to gray matter maps and their associated loading parameters and identifying spatial 

regions that covary across individuals. Multivariate analysis such as SBM can increase 

sensitivity to distributed effects, providing a stronger prospect of automatically diagnosing 

an individual and their association with certain clinical subgroups [24]. While SBM has been 

applied to structural imaging more broadly, to our knowledge no MRI study has attempted to 

bicluster individuals based on multiple combinations of neuroimaging features and symptom 

scores.
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The fundamental goal of our study is to develop a novel biclustering method to identify 

biclusters that include subgroups of individuals or neuro features from MRI data as along 

with symptom data. This is the first application of biclustering to multiple neuroimaging and 

symptom features with no prior assumptions about the features, dataset or imposed external 

objective function. The proposed algorithm can be applied to any MRI dataset irrespective of 

size or dimension (given that the data set satisfies the minimum subjects and component 

requirements of the algorithm). It identifies homogeneous subsets of individuals similarly 

expressed across a neuroimaging feature vector or subsets of identical neuroimaging features 

that maintain homogeneity within a group of individuals. N-BiC groups subjects and their 

neural features simultaneously from a given collection of subjects and features by 

maximizing homogeneity across both dimensions. The algorithm creates a list of biclusters 

where each BiC consists of a subset of subjects and features. We apply biclustering to all 

possible subsets of imaging features using a depth-first search (DFS) technique [25]. First, 

we apply the method on simulation data and visualize the results to demonstrate the 

approach and justify the parameter choices. Next, we apply it to an aggregated MRI dataset 

of patients with schizophrenia.

A focal aim of our study is to explore the relationship between symptom scores and the 

features directly by biclustering them together, rather than using that information just for 

post hoc analysis. The goal here is to extract biclusters that help establish subgroupings or 

endophenotypes. In this work, we focus on neuroimaging features and symptom scores. For 

neuroimaging features, we include the SBM loading parameters. For symptoms, we include 

positive and negative syndrome scale (PANSS) scores. We used our algorithm to identify 

biclusters from the resulting loading parameters and symptom scores and quantify the 

relationship between the subgroups (biclusters or BiCs) and the symptom scores. We applied 

the algorithm to a dataset consisting of 382 schizophrenic subjects to aim at identifying 

structurally distributed signatures that directly differentiate patients. The results identify 

submatrices (BiCs) of the given loading matrix with a group of subjects showing 

homogenous neurological signatures across a set of spatial components. Biclusters that 

included more than one symptom were labeled SYMBiC.

II. Methods

We described the analysis in two basic steps. In the first step, we create and sort the 

components using the method described herein. Then, we assign an arbitrary numeric ID to 

each of the sorted components (a subset of subjects) according to their order in the loading 

matrix. For example, if we have m components in the loading matrix [n (number of subjects) 

by m], then we also have m sorted components (SCOMPs) labeled 1 to m. In step 2, we 

create all possible permutations of the IDs of SCOMPs and send them to a Search_BIC 

function to determine the biclusters. By checking all SCOMP permutations, we are 

progressively looking at the different sequence of components to make our analysis invariant 

to the order in which we are evaluating the components. The Search_BiC function first 

evaluates all possible subsets of a given set of IDs using the selected parameters. At each 

iteration, Search_BiC evaluates the intersection among the SCOMPs within the subset and 

forms a submatrix of the intersecting SCOMPs and the subset of subjects after intersection 

(SUB) (each SCOMP is a subset of subjects); this submatrix is a Bicluster or BiC. If we are 
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intersecting SCOMP s1 s2, and s3, then the BiC consists of components s1, s2, s3 and 

subjects (number of subjects in SUB). Then, the BiC is sent to a local validator where it is 

checked for size constraint and a similarity index to compare the overlap between the 

biclusters from the same permutation. The process is performed for all subsets produced by 

a single permutation. The Search_BIC function on each permutation returns a temporary list 

of biclusters that has been passed through a global stability checker, which performs the 

validation of the temporary lists of biclusters and creates a final list of stable biclusters. (We 

provide more details on the stability checker in paragraph B.) A block diagram 

demonstrating the various steps of our methodology is shown in figure 1.

A. Image Processing

For data acquisition, scanning sites used 1.5 and 3 T scanners of various models, collecting 

T1-weighted images using sagittal or axial orientation and MPRAGE sequences. We 

followed the preprocessing pipelines used in Ref. [21, 22, 26]. We used preprocessed data 

from Ref. [3]. Images were spatially normalized to the 152 average T1 Montreal 

Neurological Institute template using a 12-parameter affine model followed by a nonlinear 

model; resliced to 2 × 2 × 2 mm; and segmented into gray, white, and CSF images using the 

unified segmentation algorithm from SPM5 [17, 21, 22]. Full width half maximum Gaussian 

kernel (FWHM) of 10 mm was used to smooth the images as suggested in Ref. [27]. Subject 

outlier detection was performed using a Pearson correlation, which compared the degree to 

which subjects are like the average smoothed GM map. If we found an outlier, we visually 

checked the subject, corrected and re-segmented if possible. In a few cases, we removed 

subjects where it was not possible to fix the problem. For details about the image processing, 

it is advised to check with the reference papers [3, 20, 28]. After preprocessing, spatial ICA 

was used on the gray matter images to estimate spatial components and their loading matrix, 

reflecting spatial patterns of gray matter covariation across individuals.

The number of components was set to 30 and we used ICASSO (30 runs followed by a 

selection of the most central run) to ensure the stability of the components. The dataset was 

decomposed into 30 SBM components resulting in a 382-by-30 loading matrix. We selected 

nine components from the 30 that showed a significant effect of diagnosis in a previous 

study by Gupta et al. [20]. The components are comprised of multiple cortical, subcortical, 

and cerebellar regions. Larger loading parameters for an individual or group indicate that the 

spatial pattern is more strongly weighted in the data for that individual or group [20]. The 

loading coefficients matrix and PANSS scores are provided as input into our algorithm.

B. Algorithm

The algorithm uses a modified DFS strategy [25] for exploring a data matrix by evaluating 

all possible subsets of a given set of numbers where each number could potentially represent 

a distinct column/row of that matrix depending on the problem definition. In our study, these 

numbers mostly indicate neural variables (i.e., components/features). The steps of our 

algorithm are depicted in figure 2 by a flowchart. The input parameters for the algorithm are 

as follows:

L: Data matrix to be biclustered
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N: Minimum number of subjects in a bicluster

K: Minimum number of components/features in a bicluster

O: Allowed percentage of overlap between the biclusters

M: Preferred method for sorting the components

OE: Allowed percentage of overlap between the biclusters from different 

permutations (optional)

If not specified, O is going to be used for both overlap thresholds.

C. Sorting the Components/Features

We proposed four methods for sorting the components. The basic idea of sorting is to select 

the subjects with higher loading values for a feature. In other words, we select only those 

subjects where the feature is highly expressed. The methods compare the subject’s 

contribution (loading) from a component with the average loading value of that feature to 

include this subject into the subset. The subjects are annotated with distinct numeric labels. 

For instance, if we have a loading matrix of n × m dimensions, then the subject labels are 1 

to n and the components labels are 1 to m consistent with their order. Sorting decomposes 

the matrix into m subsets of subjects where each subset represents a sorted component 

(SCOMP) and every SCOMP is a collection of integers ranging from 1 to n (number of 

subjects) with an arbitrary size. We created a simulated dataset to check the performance of 

those methods. Then, we analyzed the extracted results by these methods for two evaluation 

indices (mean square residue, consensus score) to determine the optimal method. The 

methods are as follows:

Method 1: Positive and Negative: Calculate means for subjects with positive and negative 

loading separately. Then, select subjects from the cohort that satisfy the following equations, 

loading ≥ positive mean, loading ≤ negative mean

Method 2: Positive and negative quartiles: Select individuals from the upper quartile of 

positive loading and the lower quartile of negative loading.

Method 3: Absolute value: Select individuals who have a loading parameter greater or equal 

to the mean loadings of that column (component) irrespective of their sign. Take subjects 

where |loading| ≥ |meanloadings|

Method 4: Positive or negative: Select subjects with only positive or only negative loading 

based on the overall mean loading of that column. That is, if the mean loading of the feature 

is positive, then we select individuals with extremely positive loading parameters; otherwise, 

select individuals with extremely negative loadings. The following equations define 

extremely positive and negative loadings,

Ex. positive, loading ≥ mean loadings,

Ex. negative, loading < mean loadings.
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D. Performance Comparison Sorting Methods (Simulation-1)

To determine the best method, a simulated dataset consisting of 400 subjects and 10 features 

was developed. We used a normal distribution with different means to generate simulated 

loading values within [−1,1]. These four methods were applied to the customized dataset to 

sort the features. We also developed a set of simulated biclusters with size constraints (35, 3) 

(minimum number of subjects, the minimum number of components) using ‘randn’ 

functions from MATLAB [Table I]. We selected ≥ 35 subjects ranging from 1–400 and 3 

random components ranging from 1–10 since we have 400 subjects and 10 features in our 

simulated loading matrix. Then, we embedded these into the data matrix. The embedding is 

straightforward; we increased the loading value of those cells of a data matrix that belong to 

any of the simulated biclusters. We adjusted the expression (loading) values in such a way 

that it always remains higher than the positive mean of that column (component), which 

increases the likelihood of that subject being included in the corresponding sorted 

component (SCOMP). Since the fundamental measure of these four methods is the mean 

loading of a feature, this remodeling of the data matrix assigns an equal likelihood of being 

included in corresponding sorted components to all the cells that belong to the list of 

simulated biclusters. As a result, these four blocks of cells (4 BiCs) behave like four intrinsic 

biclusters in the dataset. Finally, we implemented N-BiC on this customized data matrix for 

extracting biclusters (Table I).

The resulting set of biclusters was evaluated using different metrics to quantify the strength, 

stability, and coherence of biclusters. We computed the mean square residue (MSR), F1 

similarity index and a consensus score (cSCORE) to identify the best method [29, 30]. The 

MSR is a measure of coherence of a given bicluster. The lower the MSR, the stronger the 

coherence shown by the bicluster [30]. We calculated the MSR for each BiCs and then 

averaged all BiC MSR values for a method. Figure 3 depicts the average MSR and the 

standard deviation of MSR values of each pair of biclusters where one is taken from the 

estimated BiC and another from the set of ground truth BiCs for every method. As we show, 

the positive or negative method (method 4) was found to be the best approach (i.e., the one 

exhibiting the lowest MSR value). Since the embedding of the biclusters is consistent for all 

four methods, there is no clear bias of embedding on the biclustering results. Since we have 

the true set of biclusters, we also evaluated the consensus score (cSCORE) to assess 

consensus between the set of extracted biclusters and the set of true biclusters [29]. We also 

computed the FABIA (factor analysis for bicluster acquisition) to quantify the consensus 

score using the F1 index which is a combination of sensitivity and specificity of a pair of 

biclusters [31, 32]. Based on the consensus score calculation, we computed the F1 index for 

each pair of biclusters and compared each bicluster from the true set with each bicluster 

extracted by a specific method [29]. To assemble a set of biclusters into a combined set of 

BiCs, we evaluated the sensitivity of each true bicluster compared to the estimated BiCs. 

When the sensitivity between BiCs was high, then we merged two BiCs together, resulting 

in a single larger BiC. Since the consensus score is the sum of the F1 index divided by the 

number of biclusters in the combined set, a higher cSCORE is obtained if the number of 

BiCs in the combined set is lower; this means the two sets of biclusters are very similar [29]. 

The maximum consensus score is 1 for two identical sets of biclusters. We present the 

consensus score bar graph and F1 similarity index in figure 4(a) and 4(b) respectively; the 
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maximum cSCORE is associated with the positive or negative method (Method 4). Note that 

the value is not particularly large because we are comparing to two differently sized sets of 

biclusters (i.e., the size of the true set is four, whereas the extracted set contains at least 10 

BiCs). For a similarity index, a higher index indicates higher similarity and thus better 

estimation, and the positive and negative method best performed for all four biclusters.

E. Validator and Thresholds

For validating the biclustering results, we used a stability-based validation consisting of five 

consecutive steps. A high-level description of these five steps is given below:

Step 1. Obtain biclusters for the initial set of components

Step 2. Permute the given set

Step 3. Obtain biclusters for all permutations

Step 4. Compute the summary metrics on the bicluster solution using the F1 index

Step 5. Average the external indices.

Using the N, K, and O, the approach calculates two F1 similarity index thresholds (fTH1 and 

fTH2), which will be required by the local validator and global stability checker 

respectively. These thresholds control the similarity/overlap between the BiCs; fTH1 

controls the internal overlaps with the biclusters from the same permutations and fTH2 

restricts overlaps with biclusters from earlier permutations. For the similarity measure, we 

used the F1 index known as a dice index, a harmonic mean of precision and recall [31, 32]. 

The F1 index for two arbitrary biclusters A (estimated) and B (ground truth) is,

F1(A, B) = 2 A ∩ B / A + B

|A∩B| = Intersection between BiC A and B ; SA∩B * FA∩B

|A| = Size of A; i. e. the number of subjects × components

|B| = Size of B; i. e. the number of subjects × components

Precision = ratio of relevant subjects selected to a number of features selected, |A ∩ B| / |B|

Recall = ratio of relevant features selected to a number of relevant subjects available, |A ∩ 
B| / |A|

According to the F1 index equation, fTH1 and fTH2 are defined as,

fTH1 ≥
2 × O × N × K

100
N × K + N × K

After simplification, fTH1 ≥ O
100  Similarly,
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fTH2 ≥ Oor OE
100

These are the minimum values for the thresholds since these are calculated using a minimum 

number of subjects, components and allowed overlap. However, the user can calibrate 

according to their studies and expectations.

F. Searching the Biclusters

The first step is to sort components by a method specified by M from the loading matrix 

using the required variables and thresholds. As we mentioned earlier, the permuter computes 

all possible permutations of the IDs of sorted components (SCOMPs) within the component 

matrix. The permuter sends one permutation to the Search_BiC function in each iteration for 

all permutations in the permutation matrix. Initially, the function lists all possible subsets of 

the given permutation. In each iteration, it picks a subset and identifies the intersection 

among the SCOMPs (set of subjects) whose IDs are given in that subset. The intersection 

results in a set of subjects and we have the subset of SCOMP’s IDs and, after checking for 

size constraints (N, K), this forms the bicluster – a subset of subjects expressed 

homogenously across a subset of components. After that, the submatrix is sent to a local 

validator, which checks the overlap with biclusters from that permutation and uses fTH1 to 

verify the uniqueness. The processing is continued for all subsets produced from a given 

permutation. Then, the extracted biclusters are stored in a final list of biclusters. For the first 

permutation, there is no global stability checking since there are no biclusters from any 

earlier permutations. From the second permutation, the list of estimated biclusters from that 

permutation is checked for global stability by using fTH2 before being stored in the final list 

of BiCs. We will discuss these thresholds and the checker in the next paragraph. Depending 

on the decision from the global validator, the BiCs within the list is merged with an earlier 

BiC and increase the frequency or are introduced to the main list with a frequency 1.
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III. Results

A. Results of performance comparison Indices (Simulation-1)

Fig. 3. 
Mean MSR (red line on each bar) and standard deviation of the values for each method. In 

this case, lower values are better; again, the positive or negative approach showed the best 

performance. The gray area represents the standard error of the mean (mean ± SEM) and the 

blue area is 1 standard deviation (mean ± SD) from the mean.

Fig. 4(a). 
Consensus Score for all methods used for sorting the features, from one run, and thus does 

not include a confidence interval. A higher value indicates better performance.
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Fig. 4(b). 
F1 similarity index between estimated and ground truth biclusters. A higher value indicates 

more similarity and thus a better estimation. Positive or negative method (red dotted line) 

outperformed the other three methods at all BiCs.

B. Apply N-BiC On Toy Data (Simulation-2)

We ran our algorithms on both the simulated and real datasets. First, we developed a small 

simulated data set to demonstrate the basic functionality of N-BiC. The simulation data set 

consisted of 40 subjects and 10 components and three biclusters. The loading values and the 

biclusters are generated by the method we described in simulation-1. This time, we created a 

40 by 10 data matrix and the bicluster has more than 11 random subjects with an interval 1–

40 and at least 3 randomized features with an interval of 1–10 (Table II). Finally, we 

analyzed this data with the N-BiC algorithm.

Fig. 5 depicts the comparison between the ground truth and estimated biclusters by N-BiC 

methodology; subject and component bicluster identity are shown in different colors. 

Although in the ground truth there is no overlap in subjects, the estimated set shows a few 

that have overlapping subjects (e.g., component 1 and a small subset of subjects are common 

in both biclusters 1 and 2).

Generally, the estimated biclusters are largely similar pairwise to the ground truth, except for 

the overlapping subjects; one was wrongly assigned (subject 19 assigned to the blue cluster 

rather than the ground truth assignment of the yellow bicluster) and exchanging one 

component for another in the yellow bicluster.

C. Apply N-BiC On Real Dataset

Our study involved participants from three different studies FBIRN3 [33], TOP [20] and 

COBRE [34]. We formed an aggregated dataset consisting of 382 SZ subjects (mean age = 

36.4, SD = 11.65, range: 18–64, 274 males/108 females) from nine scanning sites, along 

with individual symptom scores. PANSS information captures positive and negative 
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symptoms and gauges their relationship to one another and to global psychopathology [35]. 

The SZ subjects were on antipsychotic medications (either typical, atypical or a 

combination) and were clinically stable at the time of scanning. The demographic and 

clinical information about the dataset is provided in Table III. All datasets used the 

structured clinical interview for diagnosis for DSM-IV or DSM-IV-TR to confirm a 

diagnosis of SZ or schizoaffective disorder. We have used the same preprocessing pipeline 

as our previous studies [3, 20]. More information about the datasets is available in the 

supplemental material (see Appendix 1) of a prior study [20]. We applied the method on all 

30 components extracted by ICA from the aggregated dataset. However, we focused on nine 

group differentiating components that are shown in figure 6. We also included three 

symptom scores (positive, negative and general) from the PANSS to potentially capture 

biclusters, including the symptom scores that resulted in a set of 12 distinct features.

Our algorithm performed biclustering for all permutations of the concatenated set of 12 

components and initially obtained more than 300 biclusters. After stabilization and 

validation, this was reduced to 77 informative and stable BiCs (biclusters) as shown in figure 

7. Next, we measured correlations between the symptom scores and summarize significantly 

correlated biclusters in figure 8.

Figure 7 shows the 77 biclusters estimated by N-BiC algorithm primarily. It has several high 

spikes which are denoted by black lobes. Those peaks represent the high correlation with 

corresponding symptom scores. The highly correlated biclusters are presented along with 

their statistical significance (p-values) in Table IV, V, and VI respectively after FDR (false 

discovery rate) corrections. The asterisk (*) sign with a correlation value is used to denote it 

as significant. We picked biclusters with a significant p-value and a higher correlation value 

(≥0.4) with at least one symptom score.

Figure 8 shows the 16 BiCs significantly correlated with symptoms. We used these 16 BiCs 

from a list of 77 to describe how the correlations change with different factors and visualized 

the results in a compact way that makes the interpretation easier. Each bicluster has a p-

value ≤ 0.05 with at least one of the symptom scores in the above figures. The set of 

biclusters are divided into two subgroups. As we mentioned earlier, nine (BiC 1 – 9) are 

feature biclusters and seven (BiC 10 – 16) are SYMBiCs. The feature biclusters consist of 

SBM components only and of these nine biclusters have a high correlation with positive 

symptoms are found for BiC 2, 4, and 5. These three biclusters are mostly dominated by 

components 1, 5 and 16 and include inferior semilunar lobule (ISL), superior temporal gyrus 

(STG) and inferior frontal gyrus (IFG), inferior temporal gyrus (ITG) and fusiform gyrus 

(FG) respectively. When the biclusters include component 7 (brainstem (BST)) instead of 1, 

5 or 16 it is not significantly correlated with positive symptoms (see BiC 6, 7, 8 and 9). 

Bicluster 9 has a higher correlation with negative symptoms only. The correlation between 

positive symptoms diminished when component 7 (BST) is included. From Table IV, we can 

see the statistical significance of those correlations with negative symptoms; most of the p-

values for those biclusters with negative symptoms are ≤ 0.05. This suggests component 7 

(brainstem) is associated with negative symptoms in schizophrenia. Bicluster 3, including 40 

subjects and three components, shows low correlation with positive and general symptoms 

but a higher correlation with negative symptoms (0.39, p = 0.0253). BiC 10, 11, and 13 are 

Rahaman et al. Page 11

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2021 February 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SYMBiCs since they include all three symptom scores. BiC 10 and 11 have a high 

correlation with three symptom scores. This includes components 1 and 5 respectively, 

which might be a potential biomarker for those symptoms. As mentioned earlier, biclusters 

2, 4, 5 have three dominating components: 1 (ISL), 5 (STG & IFG) and 16 (ITG). But 

SYMBiCs 10 (includes component 1) and 11 (includes component 5) show a higher 

correlation with negative symptom scores and SYMBiC 14 (includes component 16) shows 

comparatively higher inclination with positive symptom scores only (although these 

biclusters include all three symptom scores). The presence of component 16 (inferior 

temporal gyrus) appears to be the key reason for the biclusters 2, 4 and 5 association with 

positive symptoms.

Figure 9 depicts the mean and standard deviation of symptom scores of each bicluster. 

Biclusters 2, 4, 5 follow a similar pattern for three symptom scores. The mean and standard 

deviation for the positive symptom scores of these biclusters are very similar. All the 

SYMBiCs from BiC 10 to 16 have a higher average of general symptom scores. Those 

subjects can be identified as a probable subgroup of higher general symptom severity where 

general symptoms are more severe than the positive and negative.

We also extended the analysis to include all 30 components and observed consistent 

outcomes to the earlier results with additional findings. In this run, we set the minimum 

required subjects (minSub) and components (minComp) in a bicluster to 40 and 3 

respectively. The allowed overlap is 20%. In figure 10, we present 37 biclusters that are 

highly correlated with at least one symptom score (>=0.5, FDR corrected).

This run extracts two times more biclusters of diverse sizes than the earlier run. Since we set 

minComp = 3, it reports biclusters with the size 3/3+. We divided the set of biclusters into 

two subgroups, feature BiCs, and SYMBiCs, and here also we observed the domination of 

components 1, 5, 7, 16 along with newly added components 2, 8, 10, 12, etc. across all 

feature BiCs. Furthermore, we can see how the biclusters consist of components 1, 2, 5, 16 

roughly show a higher correlation with positive symptoms (BiC 3, 4, 5, 6, 7, 8, 9, 11 etc.). 

Consistently, the association of component 7 (brainstem) shows a higher correlation with 

negative symptom scores and a lower correlation with positive scores (BiC 12, 13). 

Additionally, we identified a set of biclusters comprised of components 2, 4, 5 and 8 that 

show a higher correlation with both positive and negative symptom scores. This subset of 

components is worth studying for characterizing schizophrenia in these subgroups of 

subjects. In SYMBiCs, we found a distinct individual association of SBM components with 

symptom scores. Moreover, this extended run also shows a similar set of insignificant 

components (e.g., 3, 6, 11, 18, and 24) with the symptom scores. Overall, running the 

analysis for all 30 components is consistent with but extends our initial into a more focused 

analysis.

IV. Discussion and Parameter selection

The study demonstrates a novel method for biclustering neuroimaging data. The algorithm is 

applicable to various MRI data (sMRI, fMRI, diffusion etc.) and suitable for smaller sample 

size (n = 20–30). It is a purely data-driven method for extracting homogenous patterns of an 

Rahaman et al. Page 12

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2021 February 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



individual’s expression level (i.e., loading value) to a subset of distinct SBM components. 

An SBM decomposition technique (i.e., ICA) evaluates a prespecified number of sources 

(components) by decomposing the subject’s MRI images and provides them to N-BiC, 

which eventually discovers the biclusters embedded in a given dataset disregarding their 

size. In other words, the algorithm is unbiased to the size of the dataset, but it requires 

careful tuning of size parameters to avoid observing insignificant biclusters. The results 

present two subgroups of biclusters; feature BiCs and SYMBiCs where BiC 1 to 9 are 

feature BiCs and BiC 10 to 16 are SYMBiCs. The SYMBiCs are a special type of bicluster 

with an evident strong association of specific SBM component with PANSS scores. These 

reports address several subgroups of subjects homogenous to certain SBM components 

clustered with 2/3 symptom scores; hence, cab = n may be used as the indicator for 

characterizing the different types of schizophrenia. In addition, the approach can potentially 

explore the variability of the dataset in a more granular manner than other methods in the 

literature [3, 36]. Arnedo et al. introduced a general factorization method (GFM) that uses 

non-negative matrix factorization (NMF) for creating the submatrices (clusters). It is a voxel 

level clustering that tries to identify a homogenous subgroup of subjects sharing similar 

patterns (a subset of voxels) by minimizing the objective function fractional anisotropy (FA) 

(maximizing homogeneity). Similarly, N-BiC clusters the SBM components maximizing 

similarity in loading parameters and extracts subgroup of subjects covary loading coefficient 

across a subset of components. Both methods handle overlap between biclusters and control 

redundancy in the results by using the similarity index (F-statistics, hypergeometric 

distribution etc.). However, FNMF requires a factorization parameter k (corresponds to a 

maximum number of biclusters) that determines how the data matrix will be decomposed, 

and it can hold a maximum value √n where n is the number of subjects. This restricts the 

capacity of the method in terms of a number of extractable biclusters [36]. In contrast, our 

method uses some minimum size/shape parameters to shift through the data without 

restricting the natural capacity of the algorithm. Moreover, the reference method constructs a 

brain region by clustering voxel by voxel depending on FA reduction across a subset of 

subjects and our method clusters networks (SBM maps) based on the loading coefficient of 

corresponding subjects towards generating a subset of networks. Both studies indicate 

distinct regions of the brain for characterizing schizophrenia within the reported subgroups. 

Our approach is also more robust than the method described in Gupta et al. in term of size, 

variability, prior information about the dataset [3]. In this project, we applied our approach 

to structural MRI data of schizophrenia patients. Results reveal the existence of many 

biclusters, of which 77 were found to be stable and 16 showed a significant relationship with 

symptom scores. The behavioral relevance of these biclusters indicates the association of 

discrete brain regions toward a specific type of behavior in schizophrenia. We categorized 

the set of significant biclusters into two major subgroups. The first nine biclusters are 

featured BiCs (includes MRI features only) and the biclusters from 10 to 16 are SYMBiCs 

(includes symptom scores). Three biclusters (2, 4, and 5) were dominated by components 1 

(ISL), 5 (STG and IFG) and 16 (ITG), showing a significant relationship with the positive 

symptom scores. In other words, abnormalities in these three anatomical regions had 

distortion in those subgroups of SZ subjects. These components could be used as potential 

subgroups/subtypes or biomarkers for schizophrenia in the later study. We introduced the 

SYMBiC – bicluster, which includes three symptom scores and at least one brain 
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component. BiC 10, 12 and 14 are three important subgroups of subjects that have an 

important relationship with the PANSS score. The correlation with symptom scores has 

established component 16 (inferior temporal gyrus) as persistently associated with positive 

symptoms in schizophrenia. There also are biclusters that highly correlated with negative 

symptoms. Biclusters 3, 6, 7, 8, and 9 have a high correlation with negative symptoms, but a 

lower correlation with the other two symptom scores.

The common component among those listed biclusters is 7 (brainstem), suggesting it plays a 

key role in this relationship. These associations of components 16 (ITG) and 7 (BST) with 

two distinct sets of biclusters are compelling since each of the components are replicated 

across several distinct subgroups of subjects and potentially control the group’s behavior. 

These may suggest multiple complex relationships between the subgroups of subjects and 

the components. The biclusters which show meaningful relationships with any of the 

symptoms may also provide evidence of possible subgroups/subtypes. The N-BiC approach 

thus may serve as a way of identifying a possible biomarker of illness and provides an 

important link between symptom scores and biological features and should be replicated in 

future studies.

In our algorithm, there a few parameters and thresholds that need to be set before running 

the processing. The parameter setup of our algorithm is mostly data specific and partially 

dependent on user preferences. We have parameters for the size of the bicluster (N, K), the 

percentage of overlap between two biclusters (O) and the preference for the component 

sorting method selection (M). Since the method runs for all permutations of a set of given 

components, the thresholds fTH1 and fTH2 are used to check the similarity level between a 

newly discovered BiC and the biclusters that are already reported. By tuning the overlap 

percentage parameter O, we can easily calibrate through the number of biclusters as well as 

the replication in the results. The more overlap allowed the lower the thresholds values, so 

we will get more replicated/overlapped biclusters. By decomposing a dataset into more 

precise subgroupings, investigators can allow less overlap between two biclusters. We are 

basically suggesting an algorithm to treat a subgroup (which has a greater portion 

overlapped with an earlier bicluster) as a different bicluster, rather than merging it with the 

earlier one. Eventually, it spins up the number of biclusters and thus the overall number of 

duplicates in the results set. This comprehensive way of traversing the search space is 

obviously time-consuming. The driving function of this algorithm is DFS, which uses a 

backtracking policy for reporting all possible subsets of a given dataset. The maximum time 

complexity of this modified DFS step is O(2n) for a given set of length n. Apparently, the 

order in which DFS processes the set elements (components) does matter since it picks the 

first element with a probability 1 to evaluate intersection with others. We used a permutation 

step to generate all possible order of components and ran the processing for each one. 

Finally, we reported a convergent set of biclusters across all these permuted runs. For this 

robustness to be invariant to a starting point/seed, the approach accumulates the count of 

time complexity by O(n!) asymptotically. The cumulative time complexity of the algorithm 

is an exponential function of input size, O(n!). However, the algorithm ensures the traversal 

of every single combination of target variables (components) in the search space. This is the 

cost of robustness for performing an exhaustive search, though future optimizations are 

possible.
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This kind of selection might be necessary for any post hoc analysis of biclustering results. 

By selecting a lower value for the allowed overlap parameter, we are being aggressive about 

the overlap. There is a chance of losing some significant biclusters, but it would increase the 

overall quality of biclusters by removing the duplicated biclusters too. Here, duplicate means 

a bicluster that has common subjects and features with other already enlisted biclusters. 

There is a tradeoff between the quality of biclusters and the broadness of discovery. Hence, a 

balance should be identified for this parameter before running the algorithm. The minimum 

size parameter (S, K) is also important for extracting meaningful biclusters. If we allow 

smaller BICs, this might result in a larger number of biclusters that may have less meaning 

and be difficult to interpret. For example, if we are running correlation or regression or 

coherence on a set of resulting biclusters, we must have a moderate number of subjects and 

features in our biclusters to minimize correcting for multiple statistical tests. Moreover, if 

the parameters are too small, then the algorithm would extract lots of smaller biclusters 

containing significantly less information. On the other hand, if we use a large parameter, we 

might end up with no biclusters or very few biclusters. We ran our data for different 

combinations of parameters to come up with an optimal configuration. We ran data for (S, 

K, O) = (20, 2, 20), (20, 3, 20), (20, 3, 33) (30, 3, 20), (35, 3, 20), (35, 3, 35) etc. For the 

pairwise checking, K = 2 performed well at extracting significantly correlated (with 

symptoms) biclusters and a fair number of BiCs with interpretable size. Since in most cases 

we used a minimum number of components, ≤ 3, it is important to carefully select the 

overlap parameter. For example, if we are set K ≤ 3 and O ≤ 20, then we are allowing 20% 

of 3 which is ≤ 1. If we select a higher value for the minimum number of subject parameters, 

then this results in an insufficient number of components that directly affect the total number 

of extracted biclusters. By balancing these extremes, we determined that (3, 35, 35) is a 

convenient configuration for our dataset. This provides a moderate number of interpretable 

biclusters that offer satisfactory insights about the dataset.

V. Conclusion

The aim of this project was to develop a data-driven biclustering approach for neuroimaging 

data that can analyze multiple pairs of features (component loading parameters in our case). 

The approach can be applied to both patients and healthy controls data and is more robust 

than any other previously reported studies, especially considering that N-BiC is a fully 

exhaustive model for exploring all possible combinations of data variables without any prior 

information and a specified direction. Additionally, the algorithm can process an arbitrary 

number of subjects and features. Further, it can uncover intrinsic data substructures 

unbiasedly by not using any information about the expected number of biclusters as was 

addressed in previous biclustering studies in the literature [3, 36]. This two-dimensional 

subgrouping of individuals and covarying brain components provides substantial advantages 

over conventional clustering approaches by exploring homogeneity across a subset of 

features unlike all over the feature space in classical clustering [37, 38]. This identifies 

interesting patterns replicated among a subgroup of individuals. Using behavioral data as a 

neural feature (SYMBiC), the approach automatically clusters them with ICA components 

that are strongly evident in the association with a specific symptom in schizophrenia. The 

SYMBiCs suggest several discrete brain regions; irregularity in those areas can potentially 
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lead to distinct classes of schizophrenia. N-BiC also allows the user to calibrate various 

parameters to explore different aspects of a dataset.

In the future, we plan to run this approach on healthy control data for comparison with the 

current results and also for incorporation within a classification approach to see how it 

differentiates between a new dataset of patients and healthy controls. A potential direction 

would be to incorporate some prior information (such as clinical scores, probabilistic 

selection of parameters and thresholds) to evaluate their roles on the grouping in terms of 

improving the performance of the algorithm.
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Fig. 1. 
Block diagram demonstrating the methodology
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Fig. 2. 
Flowchart of the implemented N-BiC algorithm
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Fig. 5. 
Comparison between ground truth (left) and estimated biclusters (right) from the simulated 

dataset-2 by using the N-BiC algorithm. In each case, components are shown on the x-axis 

and subjects in each cluster on the y-axis. Color bar on the right side indicates assigned color 

for different biclusters label.
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Fig. 6. 
Nine SBM components whose loading parameters were included in the analysis. The 

components shown are those that are discriminative between patients and controls (higher 

Ct/SZ group effect) in Ref. [20]

Rahaman et al. Page 21

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2021 February 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Correlations between the symptom scores and biclusters (77) extracted by N-BiC. Three 

colors represent correlations with three different symptoms scores and the tall spikes 

indicate significant correlations which are the point of interest for reasoning the SZ 

symptoms. The black ellipsoid points are significant with FDR correction for multiple 

comparisons.
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Fig. 8. 
Biclusters significantly correlated with (at least one) symptom score (p-value ≤ 0.05). 

Included are the biclusters, which have tall spikes in figure 7, and classified the BiCs into 

two subgroups feature BiCs and SYMBiCs Feature BiCs that include only SBM components 

and SYMBiCs consist of three symptom scores and 1or 2 SBM components. Significant 

positive correlations are denoted by black circles; significant negatives are blue circles and 

the significant SYMBiCs are represented by ellipsoids. (Numbers in x-axis represent 

components and subjects within that bicluster. The number before the semicolon and 

separated by commas stand for components and the number after the semicolon represents 

the number of subjects included in that bicluster.)
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Fig. 9. 
Mean and standard deviation of symptom scores for each bicluster. Each bicluster has three 

bars representing positive (magenta color dots), negative (black) and general (blue) symptom 

scores. The dots represent the real data (subject-wise symptom score) and red line in the 

middle of all bars indicate mean of symptom score. The gray area indicates grouped raw 

data in mean ± SEM and pink area: mean ± SD.
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Fig. 10. 
The figure demonstrates results for an extended run of N-BiC for all 30 components and 

three symptom scores. The biclusters are significantly correlated with (at least one) 

symptom score (≥ 0.05, FDR corrected). It reports 34 BiCs from a vast set of more than a 

thousand biclusters primarily collected for an input parameter setup (minComp = 3, minSub 

= 40, overlap = 20 %). The BiCs are divided into two subgroups feature BiCs and 

SYMBiCs. Feature BiCs include only SBM components and SYMBiCs consist of three 

symptom scores and 1 – 2 SBM components. The numbers in xticklabel represent 

components and subjects included in the corresponding bicluster. (The number before the 

semicolon and separated by commas stands for components and the number after the 

semicolon represents the number of subjects included in that bicluster.) Here, P, N, and G 

stand for positive, negative, and general symptom scores respectively.

Rahaman et al. Page 25

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2021 February 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rahaman et al. Page 26

TABLE I

Ground truth biclusters embedded in the data matrix (created in simulation-1) for measuring the mean square 

residue and consensus score to check the performance of components sorting methods

BiC Subjects Components

1 [278, 342, 118, 261, 12, 378, 313, 331, 295, 318, 163, 53, 64, 327, 133, 218, 330, 380, 185, 28, 209, 79, 120, 391, 67, 
311, 137, 190, 41, 25, 345, 29, 354, 158, 177, 141, 13, 291]

[2,9,3]

2 [271, 195, 325, 31, 12, 174, 58, 324, 1, 39, 169, 95, 383, 149, 197, 108, 231, 209, 392, 265, 339, 35, 170, 17, 241, 293, 
274, 25, 27, 123, 140, 291, 43, 101, 176]

[1,4,5]

3 [125, 367, 264, 71, 259, 15, 314, 1, 154, 269, 16, 174, 70, 234, 77, 145, 353, 10, 273, 114, 329, 118, 157, 381, 335, 357, 
374, 52, 140, 286, 251, 334, 89, 128, 88, 12, 237]

[6,7,8]

4 [46, 29, 233, 5, 338, 27, 194, 65, 169, 346, 263, 385, 159, 165, 312, 361, 268, 69, 128, 109, 93, 281, 124, 390, 345, 248, 
352, 123, 251, 254, 121, 234, 44, 320, 351, 260, 23, 376, 24, 100]

[2,4,6]
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TABLE II

List of ground truth biclusters (simulation-2) for testing the N-BiC approach

Subjects Components

[1, 2, 3, 4, 6, 7, 21, 27, 29, 31, 35, 38, 40] [1,8, 3]

[5, 13, 17, 18, 19, 20, 23, 24, 26, 28, 30, 33, 34] [2, 4, 5]

[8, 9, 10, 11, 12, 14, 15, 16, 22, 25, 32, 36, 39] [6, 7, 9]
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TABLE III

Demographic and clinical information of aggregated dataset by study

Dataset Sample 
size

Male/
female

Age (mean ± 
SD)

Sites PANSS 
positive mean

PANSS negative 
mean ± SD

PANSS general 
mean ± SD

% Reporting 
Duration of 
illenss (DOI)

FBIRN3 179 136/43 39.22 ± 11.6 7 15.55 ± 5.11 14.44 ± 5.50 27.90 ± 7.26 98.30

TOP 128 76/52 31.80 ± 08.9 1 14.60 ± 5.23 15.0 ± 6.78 27.80 ± 8.15 97.54

COBRE 75 62/13 37.56 ± 13.5 1 15.42 ± 4.86 14.76 ± 4.94 27.90 ± 8.63 98.70
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TABLE IV

Biclusters correlation with positive symptom scores with their FDR adjusted p-values. The threshold used for 

significance is 0.05. The p-values presented here are after taking 4 decimal places only.

BiC Id Number of Subjects Components Positive symptom

Correlation P-Value Adjusted p-value for FDR

1 41 1, 5, 7 0.1242 0.4390 0.5225

2 42 1, 5, 28 0.5210* 0.0004 0.0017

3 40 1, 7, 16 0.1207 0.4579 0.5225

4 49 1, 14, 16 0.4483* 0.0012 0.0039

5 37 5, 14, 16 0.5123* 0.0011 0.0039

6 49 16, 7, 14 0.1788 0.2188 0.2763

7 45 7, 14, 28 0.0576 0.7068 0.7539

8 36 7, 17, 28 −0.1252 0.4665 0.5225

9 37 7, 28, 30 −0.2415 0.1497 0.2178

10 43 1, P, N, G 0.5380* 0.0001 0.0010

11 37 5, P, N, G 0.6448* 0.0000 0.0001

12 44 13, P, N 0.5281 0.0002 0.0011

13 60 14, P, N 0.4921 0.0000 0.0004

14 39 16, P, N, G 0.4929* 0.0014 0.0042

15 44 17, P, N 0.4145 0.0051 0.0123

16 39 30, P, N 0.3085 0.0559 0.0926
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TABLE V

Biclusters correlation with negative symptom scores with their FDR adjusted p-values. The threshold used for 

significance is 0.05. The p-values presented here are after taking 4 decimal places only.

BiC Id Number of Subjects Components Negative symptom

Correlation P-Value Adjusted p-value for FDR

1 41 1, 5, 7 −0.0147 0.9273 0.9470

2 42 1, 5, 28 0.1969 0.2112 0.2740

3 40 1, 7, 16 0.3886* 0.0131 0.0253

4 49 1, 14, 16 0.2014 0.1650 0.2263

5 37 5, 14, 16 0.1785 0.2902 0.3572

6 49 16, 7, 14 0.4048* 0.0039 0.0098

7 45 7, 14, 28 0.4050* 0.0057 0.0132

8 36 7, 17, 28 0.4108* 0.0128 0.0253

9 37 7, 28, 30 0.4300* 0.0078 0.0164

10 43 1, P, N, G 0.5512* 0.0001 0.0007

11 37 5, P, N, G 0.7030 0.0000 0.0000

12 44 13, P, N 0.5626* 0.0000 0.0004

13 60 14, P, N 0.1734 0.1851 0.2468

14 39 16, P, N, G 0.2568 0.1144 0.1771

15 44 17, P, N 0.7094* 0.0000 0.0000

16 39 30, P, N 0.7168* 0.0000 0.0000
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TABLE VI

Biclusters correlation with general symptom scores with their FDR adjusted p-values. The threshold used for 

significance is 0.05. The p-values presented here are after taking 4 decimal places only.

BiC Id Number of Subjects Components General symptom

Correlation P-Value Adjusted p-value for FDR

1 41 1, 5, 7 0.0184 0.9088 0.947

2 42 1, 5, 28 0.4513* 0.0026 0.0071

3 40 1, 7, 16 0.1180 0.4681 0.5225

4 49 1, 14, 16 0.2757 0.0551 0.0926

5 37 5, 14, 16 0.3511 0.0330 0.0610

6 49 16, 7, 14 0.2044 0.1587 0.2240

7 45 7, 14, 28 0.2799 0.0625 0.1000

8 36 7, 17, 28 −0.0025 0.9881 0.9881

9 37 7, 28, 30 0.1012 0.5510 0.6011

10 43 1, P, N, G 0.6215* 0.0000 0.0001

11 37 5, P, N, G 0.4986* 0.0016 0.0047

12 44 13, P, N 0.4852* 0.0008 0.0031

13 60 14, P, N 0.4275* 0.0006 0.0026

14 39 16, P, N, G 0.2390 0.1428 0.2142

15 44 17, P, N 0.4039* 0.0065 0.0142

16 39 30, P, N 0.3351 0.0370 0.0658
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