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XPF–ERCC1: Linchpin of DNA crosslink repair
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A spectacularly toxic form of damage, the interstrand crosslink (ICL), arises when two strands

of duplex DNA become covalently linked [1]. The cellular response to ICLs is of great interest

because several antitumour drugs, including platinum agents and mitomycin C, kill cancer

cells by inducing ICLs [2, 3]. More recently it has become apparent that metabolites continu-

ally burden cells with ICLs, which must be removed for cells to maintain function and viability.

The importance of efficient ICL repair in development and health is illustrated by the clinical

features of a devastating inherited syndrome, Fanconi anemia (FA), which is thought to be the

result of defective ICL repair [4]. FA patients suffer from bone marrow failure, leukaemia, and

solid malignancies. While the endogenous DNA-crosslinking agent, or agents, responsible for

the damage that lies unrepaired in the cells of FA patients are unknown, suspects include the

common metabolites formaldehyde and acetaldehyde (including that derived from ingested

alcohol) and oxidised lipid species [5–7].

The machinery available to repair ICLs has expanded markedly through evolution. Both

Escherichia coli and yeasts almost exclusively rely on a modified form of nucleotide excision

repair (NER) [1, 8], a cut-and-paste pathway that is best known for its ability to remove UV-

light–induced DNA photodimers (whose defects result in another human syndrome, Xero-

derma pigmentosum [XP]). The details of how modified NER removes ICLs remain obscure

and merit further investigation. Metazoans, meanwhile, have developed additional pathways

for ICL repair—most significantly, an ‘FA pathway’ [4]. The functional characterization of

genes and factors defective in FA patients (22 genes to date) have revealed a repair pathway

that operates during DNA replication and possibly elsewhere in the cell cycle (although this

aspect has yet to be explored systematically). Although how the FA pathway coordinates ICL

repair is still subject to intense study, it appears to orchestrate initial responses to ICLs, some

steps of the nucleolytic processing of ICLs, and the subsequent resolution of the incised inter-

mediates through the sequential action of translesion-synthesis polymerases and homologous

recombination reactions [9]. For mammalian cells, it is not clear whether there is a genetic or

functional relationship between the NER and FA pathways in response to ICLs. Here, Mulder-

rig and Garaycoechea show that while both the FA and NER pathways both play important

roles in response to ICLs, additional pathways also contribute to their repair [10].

At the heart of this uncertainty about the contributions of the FA and NER pathways to ICL

repair is a dimeric endonuclease, XPF–ERCC1, required for both pathways and mutated in

both FA (complementation group Q, FANCQ) and XP (complementation group F) [11, 12].

XPF–ERCC1 has received much attention, since it was realised several decades ago that XPF–

ERCC1-deficient mammalian cells are exquisitely sensitive to ICL-inducing agents [13, 14],

showing a sensitivity that exceeds that observed in other NER-deficient and FA-deficient cells.

Moreover, there is a consensus from cellular and biochemical studies that XPF–ERCC1 is the

major activity responsible for making the endonucleolytic DNA incisions that initiate ICL
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repair [15–17]. Mulderrig sought to deduce whether the extreme ICL sensitivity of XPF–

ERCC1 defective cells is the result of the combined loss of the FA and NER pathways or

whether XPF–ERCC1 makes contributions to additional repair pathways.

Defining the division of labour between the NER and FA pathways is complicated by sev-

eral factors. First, the NER pathway can be divided into two subpathways: the transcription-

coupled NER component (TC-NER) required for the efficient repair of active genes, triggered

by RNA polymerase II arrest; and global genome NER (GG-NER) that operates throughout

the genome [18, 19]. Fortunately, these subpathways can be distinguished by the requirement

of a transcription-coupling factor for TC-NER (Cockayne syndrome B protein [CSB], mutated

in Cockayne syndrome complementation group B, a human condition associated with devel-

opmental defects and neurodegeneration), whereas GG-NER (but not TC-NER) requires the

XPC factor, while the XPA protein is required for both pathways. What is more difficult to

control is the nature of damage inflicted during genetic studies of ICL repair that rely on treat-

ment with exogenous agents. These inevitably induce an array of lesions including ICLs but

also monoadducts, intrastrand crosslinks, and DNA-protein crosslinks. Mulderrig and Garay-

coechea dealt with this issue by studying the effects of FA and NER pathway loss in mice not

exposed to damaging agents so that any observed spontaneous phenotypic consequences

reflect endogenous damage and normal physiology.

Mulderrig and Garaycoechea created mice lacking ERCC1 (and, therefore, its obligate part-

ner XPF) or XPA (eliminating all NER) or inactivated the FA pathway through disruption of

Fanca. While Ercc1-/- mice exhibited the expected hallmarks of liver damage and dysfunction,

along with impaired renal function, these organs developed normally in both the Xpa-/- and

Fanca-/- mice. Ercc1-/- mice also showed the expected hematopoietic stem cell defects, which

were more pronounced than in Fanca-/- mice and absent in (young) Xpa-/- mice. To test

whether the more severe phenotype of Ercc1-/- mice could be explained by dual inactivation of

NER and FA pathways, mice doubly disrupted for Xpa and Fanca were created. While postna-

tal growth of Ercc1-/- mice is drastically affected, Xpa-/- Fanca-/- mice were indistinguishable

from Fanca-/- single disruptants, exhibiting none of the liver or kidney abnormalities observed

in Ercc1-/- mice. Turning their attention to the hematopoietic system, disruption of Xpa in the

Fanca-/- background did not exacerbate FANCA-loss–associated hematopoietic stem cells

defects, but Ercc1-/- animals exhibited a more severe defect than any Xpa-/- Fanca-/- animals.

Together, these observations indicate that, in the face of endogenous DNA damage, the devel-

opmental and degenerative features of Ercc1 disruption cannot be simply accounted for by

dual loss of the NER and FA pathways.

They then exposed a human leukaemic cell line (HAP1) to a variety of exogenous ICL-pro-

ducing agents. As expected, loss of XPA conferred sensitivity to the drugs cisplatin and mito-

mycin C. In contrast to XPA and CSB disruptants, cells defective in XPC (required for

GG-NER) displayed no increased sensitivity to these drugs, implying an important role for

TC-NER in helping cells survive crosslinks. Interestingly, XPA-/- FANCL-/- cells demonstrated

epistatic sensitivity to mitomycin C relative to the cognate single disruptants. This could imply

that FA and NER pathways cooperate in the repair of a subset of ICLs. For the two aldehydes

implicated in generating endogenous ICLs, formaldehyde and acetaldehyde, the data suggested

that these induce a distinct spectrum of lesions: NER (XPA-/-) and FA (FANCL-/-) defective

cells were both sensitive to formaldehyde in a nonepistatic manner, whereas NER defective

cells were not acetaldehyde sensitive, and NER loss did not enhance the sensitivity of acetalde-

hyde FA defective cells. Importantly, XPF-/- cells were more sensitive than the FANCL-/- and

XPA-/- single or double mutants in response to acetaldehyde, mitomycin C, and cisplatin,

underlining the existence of an additional role for XPF–ERCC1 in repairing the crosslinks

these induce. By contrast, FANCL-/- XPA-/- doubly deficient cells were similarly sensitive to
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XPF-/- when treated with formaldehyde, which could indicate that the lesions induced by

formaldehyde are removed by the NER and FA pathways.

What of the more dramatic phenotype of the XPF–ERCC1 null animals compared to those

inactivated for both FA and NER pathways? One interpretation of the mouse studies carried

out by Mulderrig and Garaycoechea is that that XPF–ERCC1 is controlling cell survival though

processes distinct from repair, such as regulation of gene expression [20]. However, a more

likely culprit is a yet-to-be identified endogenously generated DNA lesion. Moreover, CSB,

and a transcription-coupled repair pathway outside of NER might be involved, as mice jointly

defective for CSB and XPA have a shortened life span and dramatic progeroid features com-

pared to their cognate single disruptants [21, 22].

Fig 1. Multiple routes to the initiation of ICL repair require XPF–ERCC1. In mammalian cells, the FA pathway is the predominant activity

orchestrating ICL repair during S-phase, although a role for NER is not excluded. A role for NER in the repair of ICLs in G1-phase of the

mammalian cell cycle has been demonstrated, but it is unclear whether the FA pathway can contribute outside of S-phase. The work of Mulderring

and Garaycoechea underlines the important role for TC-NER in response to ICLs. The extreme sensitivity of XPF-ERCC1 deficient cells, outside of

its role in either NER and FA pathways, implies the existence of additional repair pathway(s) for counteracting ICLs. These could involve (in a

nonexclusive manner), MMR, FAN1, SNM1A, CSB, and HRR events initiated by alternative endonucleases. CSA, Cockayne Syndrome A protein;

CSB, Cockayne Syndrome B protein; FA, Fanconi anaemia; FAN1, Fanconi-associated nuclease 1; FANCD2-FANCI, Fanconi anaemia Group D2

and Fanconi anaemia Group I; G1-phase, Gap 1 phase; HRR, homologous recombination-based repair; ICL, interstrand crosslink; MMR, mismatch

repair; NER, nucleotide excision repair; SLX4, structure-specific endonuclease subunit SLX4; SNM1A, sensitive to nitrogen mustard 1A; S-phase,

synthesis phase; TC-NER, transcription-coupled NER.

https://doi.org/10.1371/journal.pgen.1008616.g001
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The extreme ICL sensitivity of XPF-/- human cell lines might be explained if the canonical

ICL-repair pathways (FA and NER) fail, and ‘last resort’ repair events are initiated (Fig 1).

These might involve alternative initiating endonucleases (MUS81 or SLX1, for example [23])

leading to homologous recombination steps requiring XPF–ERCC1 for their successful com-

pletion. Moreover, the FAN1 (Fanconi-associated nuclease 1) nuclease, mismatch repair sys-

tem, and the SNM1A (sensitive to nitrogen mustard 1A) exonuclease have all been implicated

in ICL recognition and processing [24–26] and are candidates for mediating any XPF–

ERCC1-dependent pathway, noting that the cell-cycle phase might be critical (the study of ICL

repair outside the synthesis phase [S-phase] has been relatively neglected). Fortunately, the last

decade has seen the development of elegant cell-free ICL-repair systems using Xenopus cell

extracts [26, 27] and structural- and biochemical-reconstitution approaches that will help

accelerate our mechanistic understanding of new pathways as they are revealed.
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