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ABSTRACT
Modern clinical practice requires the integration
and interpretation of ever-expanding volumes of
clinical data. There is, therefore, an imperative to
develop efficient ways to process and understand
these large amounts of data. Neurologists work
to understand the function of biological neural
networks, but artificial neural networks and
other forms of machine learning algorithm are
likely to be increasingly encountered in clinical
practice. As their use increases, clinicians will
need to understand the basic principles and
common types of algorithm. We aim to provide
a coherent introduction to this jargon-heavy
subject and equip neurologists with the tools to
understand, critically appraise and apply insights
from this burgeoning field.

INTRODUCTION
The complexity of data used in clinical
neurology is only likely to increase in the
coming years as health records are digita-
lised and ‘data heavy’ technologies such as
whole-genome sequencing become incor-
porated into routine clinical practice.
Recent advances in artificial intelligence
and the development of sophisticated
machine learning algorithms offer
a potential means to use these data more
efficiently and effectively. However, a basic
understanding of how thesemachine learn-
ing algorithms work is essential to help
interpret and critically appraise their out-
puts, and so know what to believe.

WHAT IS MACHINE LEARNING?
Machine learning algorithms process
data in order to build mathematical mod-
els that in turn can be used to help make
predictions and/or decisions. These algo-
rithms are not explicitly programmed
with instructions for how to solve
a problem. Instead, they improve auton-
omously (or ‘learn’) from experience.

The systems learn to generalise from
example data, with minimal human
intervention.
Machine learning is particularly useful

whenworking with very large datasets (eg,
EEG,MEG andmost forms of imaging). It
is well suited to tasks that require repeti-
tive routine activity (such as interpreting
scans) and, for some tasks, can perform
faster and more accurately than a human
interpreter.

HOW MACHINE LEARNING
ALGORITHMS WORK
There are many different types of machine
learning algorithm, and the most appro-
priate algorithm depends upon the speci-
fic nature of the task at hand. Here, we
briefly summarise three categories: super-
vised, unsupervised and reinforcement
learning algorithms.

Supervised learning
Supervised learning algorithms perform
a complex ‘connect-the-dots’ operation
between a given set of input data and an
associated output. They are trained with
multiple examples of a set of inputs and
a paired known output, learning how to
process the inputs in order to reproduce
the related output. The fully trained algo-
rithm can then be given novel sets of
inputs, for which the outcome may not
be known, and make a prediction as to
what the related output should be
(figure 1A). For example, an algorithm
may be trained to classify whether the
configuration of pixels in a picture (the
input) represents an image of an apple
(the output). Supervised algorithms are
used for two types of problem: classifica-
tion (to predict which ‘class’ an observa-
tion belongs to, eg, case vs control), and
regression (to predict a continuous value,
eg, time to diagnosis).
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Unsupervised learning
Unsupervised learning algorithms lack the ‘supervision’
of a known set of output information. They instead
process input information to identify consistent pat-
terns and associations between variables. The output
they produce is a grouping or summary of the input
data, rather than a targeted outcome (figure 1B).

Reinforcement learning
Reinforcement learning algorithms are concerned with
producing an action depending upon a given state. This
‘state’ refers to a configuration of inputs or observa-
tions from the environment the algorithm is operating
in. They process a given state, decide upon an appro-
priate action based upon the state, observe the conse-
quences of that action, and then ‘reinforce’ or penalise
the state–action pairing accordingly (figure 1C). This
makes the same action more or less likely for future
scenarios in which a similar state is encountered. With
multiple cycles of the same process, actions can be
produced that maximise a rewarding outcome and
minimise risk. The slow iterative nature of this process
makes it well suited to tasks where there may be incon-
sistent or limited outcome events. For example, rein-
forcement learning algorithms have been used to great
effect in optimising algorithms for playing chess and
other board or computer games, where the ‘reward’
signal is fairly sparse or delayed that is, actions even-
tually lead to winning or losing the game, rather than
receiving immediate feedback.

In summary, supervised learning algorithms are pro-
vided with a given set of results and have to sort data to
reproduce them. Unsupervised learning algorithms are
not provided with a set of results but still attempt to
find patterns and associations within data.
Reinforcement learning algorithms learn how best to
react to a given state.

ARTIFICIAL NEURAL NETWORKS
Artificial neural networks refer to a structure of algorithm
that looselymimic their biological counterparts (figure 2).
They are constructed of three types of layers of ‘neuron’:
‘input’ layer (analogous to primary sensory neurons),
whose neurons ‘feed forward’ into any number of ‘hid-
den’ layers, which in turn feed forward to an ‘output’
layer. Neurons within a layer are not typically connected
with one another but have multiple connections with
neurons in the preceding or following layers. What
a neurologist would understand as a synapse is termed
a ‘weight’ between any two neurons. The structure of
neurons and their layers are fixed, but the networks
learn by adjusting these synaptic weights depending
upon outcomes. A method called ‘backpropogation’ is
a commonly used means for adjusting weights based
upon how much error there was between the artificial
neural network outcome layer’s prediction and the actual
outcome (the ‘prediction error’). Whether the true out-
come was unexpectedly rewarding or negative deter-
mines whether weights are either strengthened or
weakened. The size of prediction error—that is, the

Figure 1 (A) Supervised learning algorithm. In the training phase, training data with associated labels are used to create a predictive
model. In the testing phase, the predictive model is shown data that are not labelled, in this example to distinguish apples from other
items. (B) Unsupervised learning algorithm. Unlabelled input data are processed by the algorithm to see what patterns it identifies, in this
example to group red fruit. (C) Reinforcement learning algorithm. An agent performs an action in an environment. This is interpreted into
a reward signal and a representation of the state, which are both fed back to the agent. Diagram in (C) reproduced from Wikimedia
commons under public domain licence.
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mismatch between predicted output and ‘real’ output—
determines the amount that weights are changed (ie, large
prediction errors give rise to greater changes in weights).
Variations in the structure of an artificial neural net-

work can allow for slightly different operations to be
performed. Adding ‘self ’ connections to neurons
within a hidden layer (ie, a connection to and from
the same neuron) give rise to ‘recurrent neural net-
works’, which can capture sequences of information
to help in tasks such as speech or video analysis.
‘Convolutional neural networks’ are used to extract
relevant features from an input. The process is some-
what analogous to, and was inspired by, the organisa-
tion of animal visual cortex (eg, edge detection in
primary visual cortex). This helps filter and simplify
complex inputs into the most salient features, which
can allow for more efficient information processing.
So-called ‘deep learning’ algorithms are a form of

artificial neural network that have many hidden layers,
which allows them to perform more complex
operations.

LIMITATIONS OF MACHINE LEARNING
ALGORITHMS IN CLINICAL PRACTICE
‘Junk in, junk out’
The performance of an algorithm depends heavily
upon the quality of data available for it to learn from.
Without a sufficient volume of high-quality training
data, even the most state-of-the-art algorithms are
doomed to failure. This is particularly relevant in clin-
ical settings, where large volumes of high quality,
labelled data are particularly difficult to come by.
This reliance upon large volumes of data was demon-

strated by the reinforcement learning algorithm
‘AlphaGo’, which made the notable breakthrough of
being the first machine able to defeat human players
at the ancient board game ‘Go’. AlphaGo required

training from a database of 30 million moves played
by human experts followed by playing itself thousands
of times over.1 There are a limited number of clinical
questions amenable for providing datasets of
n=30 million to help answer them. Subsequent refine-
ments to AlphaGo relied purely upon simulated ‘self-
play’,2 and again this sort of analysis of simulated out-
comes to refine an algorithm’s performance would be
less amenable to clinical applications.

Bias and generalisability
An algorithm’s dependence upon the data available to it
can also affect generalisability, and can help to perpe-
tuate ingrained biases in health outcomes. For example,
if an algorithm’s training dataset did not include
a certain subcategory of a given disease, then there is
no guarantee that it will be able to identify it correctly
in future. This principle is illustrated with the example
of apples in figure 3. An algorithm trained to detect the
most subtle of subarachnoid haemorrhages on an MR
scan might be completely blind to a large glioblastoma.
Similarly, an algorithm trained to achieve high perfor-
mance identifying pathology in images collected from
a specific model of scanner may be blind to interpreting
data from another. A model trained in an emergency
department settingmay not have the same performance
characteristics in an outpatient clinic. Any deviation
from the training conditions can lead to unpredictable
behaviour from an algorithm.
If an algorithm is only ever exposed to cases of

pathology in a specific patient demographic, it will be
less likely to be able to identify similar pathology in
other demographics. Most large cohorts, such as UK
Biobank, will not fully represent the sampling popula-
tion and indeed tend to be overrepresented by White
and more socioeconomically advantaged groups.3 It is

Figure 2 Artificial neural networks comprise neurons (circles) that are organised into an input (red), output (green) and any number of
hidden (grey) layers. Neurons are connected with different weights of feed-forward connection between them (blue lines). Training the
algorithm involves modifying the weights between neurons (represented above by the thickness of blue lines) so that connections
associated with a rewarding outcome are strengthened and negative outcomes weakened.
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difficult to accrue truly diverse datasets to resolve this
issue, giving a significant potential source of bias. Even
if a diverse dataset is successfully acquired, systematic
biases can also be reinforced by an overreliance upon an
algorithmic approach. For example, a widely used algo-
rithm in the USA that identifies people with complex
health needs based upon healthcare costs, systemati-
cally underestimated illnesses of Black versus White
people.4 This arose from pre-existing inequality in
money spent caring for Black people compared with
comparable White persons and led to a reinforced dis-
parity in the help people of different races received.
To ensure generalisability, it is also crucial that an algo-

rithm’s performance is validated on completely indepen-
dent, ideally external, datasets. Unless validated upon
independent data, it cannot be known whether an algo-
rithm may be overfitting or underfitting. Overfitting
refers to a scenario where the algorithm’s model fits too
closely to the training data; that is, it learns the noise in
the training data, to the detriment of its ability to estimate
a relevant trend in an independent dataset. Underfitting is
when the algorithm’s model does not capture the relevant
trend in enough detail. For example, if the trend in data is
best approximated by a non-linear curve (figure 4, centre

panel), an underfitted model might estimate just a linear
trend (figure 4, left panel), whereas an overfitted
model might draw a line incorporating every individual
datapoint rather than the smoothed best fitting curve
(figure 4, right panel). If an algorithm’s performance
drops significantly when tested on independent data, it
suggests an element of underfitting or overfitting.

Performance versus safety
Even if an algorithm can achieve commendable perfor-
mance in classifying data, this does not necessarily equate
to safety for its use in clinical practice. There needs to be
consideration of where errors are made, not just how
many are made on average. An algorithm that can classify
99% of stimuli correctly might on first appearances seem
preferable to humans classifying with 96% accuracy.
However, if the 1% incorrectly identified by an algorithm
prove fatal and the 4% by humans benign, there are
obvious implications for overall clinical safety. Clinicians
are hopefully aware of rare but severe outcomes that are
not to be missed; but with less exposure to rare but
important outcomes, algorithms may be more liable to
miss important results. The range of possible abnormal
results is extremely broad and varied, making it difficult

Figure 3 If a supervised learning algorithm has insufficiently diverse training data (eg, only apples which are red), then it is prone to
misclassifying items that deviate from those narrow training data (eg, not identifying green apples or incorrectly labelling other red fruit,
such as tomatoes, as apples). A more diverse training set, as in figure 1A, would be less prone to this sort of error.

Figure 4 Schematic plots showing underfit (left) and overfit (right) models compared with the best fit (centre). The same data points are
plotted (a quadratic function with random noise). The left panel shows a linear model, the right panel shows a high-order polynomial fitted to
the data, the centre panel shows the quadratic functionwhichwas used to derive the data points. Themodel on the right panel is highly tuned
to randomnoise in the data, and so is likely to perform poorly at predicting Y values fromX values in an independent dataset. The linearmodel
fits these data less ‘tightly’ (ie, there is a higher overall error), and so is less likely to predict Y values based on random noise but may be
underfitted in that it does not capture some important structure in the data. The centre panel shows a quadratic function which captures the
‘true’ underlying distribution of the data and so is likely to perform best in an independent dataset.
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for training data to cover it comprehensively. Standard
metrics of algorithm performance, such as accuracy, sen-
sitivity and specificity, must be carefully interpreted in the
clinical context and alone are not sufficient to ensure
clinical safety. Clinical prediction algorithms that misclas-
sify individuals could lead to dire consequences: healthy
individuals misclassified as having a disease could be con-
signed to unnecessary and risky interventions; diseased
individuals misclassified as healthy may be denied poten-
tially helpful treatments.
It is important that algorithms are judged on clinical

outcomes, in prospective trials rather than using simple
performance metrics on retrospective data. At the time
of writing, this has only so far been achieved in the
context of colonoscopic polyp and adenoma detection.5

‘Black box’
While we know the input to an algorithm and the out-
put it produces, there is often limited information
about how they arrive at a particular solution; the so-
called ‘black box’ problem of machine learning. This
particularly relevant for deep-learning algorithms
where there are a great many hidden layers that could
be processing any number of features to pair an input
and output. One notable example is an algorithm for
classifying skin lesions as malignant or not, which
picked up on the presence of rulers being situated
alongside a lesion as more indicative of a malignant
lesion.6 The ‘black box’ problem of machine learning
algorithms means that significant confounding from
any one of the many factors could easily be missed.

Accountability
The introduction of algorithms into clinical practice is also
fraught with potential ethico-legal implications.Who is to
be held accountable if an algorithm makes an error with
serious consequences—the person who wrote the code?
the engineer who incorporated it into a device? the scien-
tist who chose to apply it in a certain way? the regulator
who approved it? the clinician who oversaw its use?
There are clear pathways for regulatory approval of

novel drugs and devices, but algorithms pose potential
new challenges. Not knowing why an algorithm may
have made a particular decision (due to the ‘black box’
problem described above) complicates assessment of
their safety and suitability for use in clinical practice.
There is also the potential for machine learning algo-
rithms to update, adapt and retrain dynamically in the
face of new information. If an algorithm reaches
a necessary threshold of performance to receive regu-
latory approval, updates from new information may be
able to improve their safety even further, but the update
would be a fundamentally new model. Would the pre-
existing approval be able to apply to the new update?
Or should this sort of rapid innovation be curtailed
awaiting new regulatory approval? The pace of innova-
tion in this field is likely to be significantly greater than

rigorous regulation could ever be. Algorithms are cur-
rently regulated as medical devices, but dynamic soft-
ware of this nature would struggle to comply with
current change management processes. New models
for the regulation of software are likely to be needed.

APPLICATIONS IN NEUROLOGY
Image classification
There is great commercial value for search engines,
social media companies and automated vehicles to be
able to extractmeaningful semantic information from an
image. Most of the early development of algorithms by
commercial enterprises has focused on these sorts of task
and image classification algorithms are at a moremature
stage in their development than those used for most
other tasks. This has had beneficial knock-on effects
for algorithms looking to classify clinical images.
This has initially been explored in the triage of ima-

ging to allow for rapid automated detection of poten-
tial abnormalities from large volumes of images. There
are very large amounts of labelled imaging data avail-
able to help facilitate this (eg, CTscans of the head with
linked radiology reports); it involves the sort of classi-
fication task that supervised learning algorithms do
very well, and a role in triage minimises the overall
responsibility placed upon an algorithm. Rapidly flag-
ging potentially abnormal results to a human can pro-
vide genuine clinical benefit while maintaining
a clinician as the ultimate decision maker. However,
any benefit will need to be weighed with the potential
for large numbers of false positives creating more work
and distraction for already busy clinicians.
An area where a clear benefit of using machine learn-

ing algorithms is possible is the screening of optical
coherence tomography imaging to determine appropri-
ate onward referral. The widespread availability of this
technique to opticians and in other healthcare settings
has created a large volume of complex data that need
analysing. This expansion of data has not been matched
by a corresponding increased capacity of human exper-
tise to interpret it. A supervised deep-learning algorithm
has shown the potential to make referral recommenda-
tions matching those of experts for a range of sight-
threatening retinal diseases.7 A volume of scans that
would take humans days or weeks to get through could
be analysed in minutes or hours by a machine learning
algorithm (once it has been trained).
Analysis of retinal fundoscopic imaging has also been

explored to assist triaging forwhether referral for diabetic
retinopathymight be necessary.8 Similar progress has also
been made in analysing plain CTscans of the head9 10 to
detect acute emergencies (eg, acute ischaemic stroke, sub-
arachnoid haemorrhage, midline shift, mass effect or cal-
varial fractures).
Attempts have been made to use a semi-supervised

learning algorithm to predict conversion of mild cogni-
tive impairment to Alzheimer’s dementia.11 Using MR
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scans of people with mild cognitive impairment, the
learning algorithm achieved 89% sensitivity and 52%
specificity in predicting progression to Alzheimer’s dis-
ease based on images taken between 1 and 3 years before
clinical diagnosis. Combining this imaging-based model
with additional cognitive markers improved perfor-
mance to sensitivity 87% and specificity 74%.
Recent work exploring the use of a supervised,

deep-learning classification algorithm to detect papil-
loedema in ocular fundus photographs provides
a good example of how careful and rigorous experi-
mental design can minimise some of the limitations
referred to above.12 The high performance of the
algorithm for detecting papilloedema (96% sensitivity
and 85% specificity) was as much a testament to the
authors amassing an impressively large and diverse
dataset, as to the sophistication of the algorithm itself.
The dataset included 15 846 photographs from an
ethnically diverse sample across 19 sites and 11 coun-
tries. Performance was not only validated upon inde-
pendent data, but then also a completely separate
external set of photographs obtained from different
sites to those used for training the algorithm. Rather
than assessing a simple papilloedema versus not papil-
loedema distinction, a third ‘other abnormalities’ con-
dition limited the chance of the algorithm missing
other clinically relevant findings that lay outside of
the algorithm’s direct focus. As impressive as the per-
formance of the algorithm was, to ensure its safety in
routine clinical practice, ideally a prospective trial is
needed to examine its use with images acquired in
a non-specialist, non-trial setting (as would be its
intended use).

Electrophysiology interpretation
Interpretation of EEG recordings is another ‘data
heavy’ area where machine learning has been
employed. Extensive work has looked to develop algo-
rithms to detect evidence of seizure activity.13 14 There
is evidence that a combination of multiple deep-
learning algorithms could be used to analyse EEG
traces and identify personalised signatures of a pre-
ictal brain state up to an hour before a seizure.15 This
could have important implications for identifying and
mitigating a seizure before it produces symptoms.
Machine learning has been used in the diagnosis and

prognosis of coma. Supervised learning algorithms
working on EEG recordings have been used to discover
evidence of covert consciousness in unresponsive indi-
viduals following an acute brain injury.16 Among indi-
viduals who were not responsive to spoken commands,
up to 15% had detectable brain activity in response to
these commands. A deep-learning artificial neural net-
work analysing EEG data in comatose patients 12 h
following cardiac arrest was able to predict 6-month
functional outcome: good (48% accuracy and 0% false-
positive rate) versus bad (58% accuracy and 5% false-
positive rate).17

Work in this area has also begun to go beyond passive
recording and classification of inputs with the develop-
ment of brain–machine interfaces that offer the intriguing
potential to one day to communicate with people in a
coma.18

Treatment decisions
Other areas of neurology rely on the interpretation of
much more messy and imperfect data. In the near
future, machine learning realistically will be available
only as a tool to assist in diagnosis rather than to make
treatment decisions independently. However, work in
other fields has considered using reinforcement algo-
rithms to assist in areas such as heparin dosing19 and
radiotherapy planning.20

Future areas
Machine learning approaches will not replace neurol-
ogists but they may become an important aid in the
diagnosis, prognosis and management of neurological
disorders. Machine learning could enhance clinical
practice in several areas (Box 1):
The quality of available datasets is paramount in

order to take full advantage of advances in machine
learning technology. To benefit from the technology
properly, neurologists will have to create datasets that

provide a consistent standardised coding of relevant

Box 1

– Diagnosis.
◦ Video classification:

► Seizure classification: for example,
epileptic vs non-epileptic seizures,
phenotype in complex genetic epilepsies.

► Tremor classification.
◦ Image classification.

► Syndromic diagnosis (for rare genetic
disorders).

► Neuro-cutaneous syndrome diagnosis.
► Pathological diagnosis (biopsy or post-

mortem).
– Genetic applications.
◦ Prediction of novel disease-causing

variants in rare genetic disorders (eg,
from whole-genome or whole-exome
sequencing).

◦ Enhancing prediction of complex
polygenic disease (eg, Parkinson’s
disease, migraine, multiple sclerosis) by
modelling non-linear interactions
between many thousands of genetic
variants in polygenic risk scores.

– Epidemiology.
◦ Detecting ‘signatures’ of prodromal/

early disease in large population-
based datasets, for example,
Clinical Practice Research Datalink
(CPRD), UK Biobank.

– Management.
◦ Predicting response to

therapeutics.
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information from as diverse a range of clinical settings,
patient characteristics, disease phenotypes and out-
come measures as possible.
To date, development of machine learning algo-

rithms has mainly focused on training them to repro-
duce diagnoses that are made by humans or panels of
human experts. If they are to achieve a performance
surpassing that of humans then the data used to train
algorithms would have to change. If the ‘ground truth’
output used to train models consists of diagnoses made
by humans, there is a ceiling to the maximal perfor-
mance that a machine could achieve. Supra-human
performance would be only achievable if the inputs to
an algorithm are paired to an output that humans can-
not predict; for example, matching CT images or
a clinical phenotype to subsequent biopsy results or
long-term outcome data. This clearer matching of rou-
tine investigations and disease phenotypes with impor-
tant outcome data might also assist human decision
makers, not just their artificial counterparts.
In an unsupervised learning setting, machine learning

algorithms may be able to categorise distinct disease
phenotypes better than humans: this may become espe-
cially relevant in the diagnosis of neurodegenerative
disorders, in which there is often a poor correlation
between clinical features and post-mortem pathologi-
cal diagnosis. Just as biological neural systems have
informed the development of their artificial counter-
parts, artificial networks are now being used to try and
inform our understanding of natural processes.21 22

FURTHER READING/MEDIA
1 Milea D, Najjar RP, Jiang Z, et al. Artificial intelligence to

detect papilledema from ocular fundus photographs.
N Engl J Med 2020;382(18):1687–1695.
► an example of a rigourously designed trial which uses

a machine-learning algorithm in a clinical setting,
accounting for many of the technology’s limitations.

2 De Fauw J, Ledsam JR, Romera-Paredes B, et al. Clinically
applicable deep learning for diagnosis and referral in retinal
disease. Nat Med 2018;24(9):1342–1350.
► a study which demonstrates the powerful potential of

machine learning to create important efficiencies in
clinical data processing.

3 AlphaGo—The Movie—https://www.youtube.com/watch?
v=WXuK6gekU1Y
► A documentary which demonstrates the significance of

recent advances in machine learning technology out-
side of a clinical setting.
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Key points

► Machine learning algorithms can be classified broadly
into those performing supervised, unsupervised and
reinforcement learning.

► The recent development of ‘deep learning’ algorithms
allows for complex operations on very large datasets.

► There are many limitations that need careful
consideration when trying to apply machine learning
approaches in clinical practice.

► Image classification and triage are suitable initial
applications for machine learning approaches.

Box 2 Glossary

► Machine learning: the use of algorithms (models) to
make predictions or detect patterns in data, where the
algorithm or model uses features of the data to
enhance performance.

► Training set: the data used to refine the parameters
of the model.

► Test set: also called ‘validation set’. Ideally, a
completely independent dataset used to determine
whether the trained model can perform well on new
data it has not ‘seen’ before.

► Overfitting: a problem that arises when a model is
too highly attuned to granular variation in the training
set. Although it performs well in the training set, it
performs poorly on new data as its predictions are too
heavily influenced by noise in the training set, rather
than the ‘ground truth’ structure of the data.

► Supervised learning: the training set includes ‘ground
truth’ labels, that is, the outcome of interest is known
and can be used to quantify the accuracy of the
predictions.

► Unsupervised learning: rather than predicting
labelled outcomes, the algorithm is trained to detect
patterns or structures in the data.

► Observation: one ‘row’ of data, usually referring to
an individual person or reading.

► Variable: one ‘column’ of data. A property of an
individual observation.

► Feature: a property of data that can be used to
make predictions. Features can be individual
variables, transformed variables, derived variables, or
complex composites of individual variables. ‘Feature
extraction’ and ‘feature processing’ refer to steps
applied to the data prior to training of the model. Aims
of feature extraction/pre-processing are to maximise
the informativeness of the available data, minimise
random noise, and maximise computational efficiency
(high-dimensional data can be reduced to more
compact representations, using methods such as
principal component analysis).
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