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The thyroid system plays a major role in the regulation of several physiological processes.
The dysregulation of the thyroid system caused by the interference of xenobiotics and
contaminants may bring to pathologies like hyper- and hypothyroidism and it has been
recently correlated with adverse outcomes leading to cancer, obesity, diabetes and
neurodevelopmental disorders. Thyroid disruption can occur at several levels. For
example, the inhibition of thyroperoxidase (TPO) enzyme, which catalyses the
synthesis of thyroid hormones, may cause dysfunctions related to hypothyroidism. The
inhibition of the TPO enzyme can occur as a consequence of prolonged exposure to
chemical compounds, for this reason it is of utmost importance to identify alternative
methods to evaluate the large amount of pollutants and other chemicals that may pose a
potential hazard to the human health. In this work, quantitative structure-activity
relationship (QSAR) models to predict the TPO inhibitory potential of chemicals are
presented. Models are developed by means of several machine learning and data
selection approaches, and are based on data obtained in vitro with the Amplex
UltraRed-thyroperoxidase (AUR-TPO) assay. Balancing methods and feature selection
are applied during model development. Models are rigorously evaluated through internal
and external validation. Based on validation results, two models based on Balanced
Random Forest (BRF) and K-Nearest Neighbours (KNN) algorithms were selected for a
further validation phase, that leads predictive performance (BA � 0.76–0.78 on external
data) that is comparable with the reported experimental variability of the AUR-TPO assay
(BA ∼0.70). Finally, a consensus between the two models was proposed (BA � 0.82).
Based on the predictive performance, these models can be considered suitable for toxicity
screening of environmental chemicals.
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INTRODUCTION

The endocrine system is responsible within the human body for
the regulation of many processes such as metabolism, regulation
of the internal environment (temperature, water and ions
homeostasis), reproduction, growth, and development
(Silverthorn et al., 2013). The homeostasis of the endocrine
system is a complex mechanism that requires the correct
balance of different elements to work properly.

A part of the endocrine system is represented by the
hypothalamic-pituitary-thyroid (HPT) axis (Fekete and
Lechan, 2014), one of the major neuroendocrine systems of
vertebrate organisms, that modulates protein, carbohydrate
and fat metabolism (Silverthorn et al., 2013).

Interferences at any level of this system may lead to abnormal
functionalities and to adverse effects at various tissue and body
levels. In particular, in children, thyroid hormones (THs) are
essential for normal growth and development, especially of the
nervous system. Because of the importance of these hormones in
children, the United States and Canada test all new-borns for
thyroid deficiency. Moreover, there is evidence of deficiency in
neurodevelopment also in fetal stages linked to maternal
hypothyroxinemia (Williams, 2008). In adults, dysregulation of
THs brings to pathologies like hyper- and hypothyroidism that
have been correlated with adverse outcomes leading to cancer,
obesity and type II diabetes mellitus (Pearce, 2012; Wang, 2013).
Xenobiotics can interfere with the HPT axis mostly by binding to
receptors, enzymes and transporters, thus leading to adverse
outcomes such as impaired development, reproduction,
neurological function and immune system responses (Danzo,
1997). Given their spread in the contemporary society, endocrine
disrupting chemicals represent a major concern in the context of
human and environmental health and safety. Indeed, several
organizations and entities have developed specific programs
and guidelines in order to help countries to design
environmental policies and address chemical safety issues.
Example of these efforts are the Environmental Health and
Safety programme (EHS) of the Organization for Economic
Co-operation and Development (OECD) (OECD, 2018), the
guidelines provided by the European Food Safety Authority
(EFSA) with the technical support of the Joint Research
Center (JRC) (Andersson et al., 2018) and the Endocrine
Disruptor Screening Program (EDSP) of the United States
Environmental Protection Agency (EPA) (EPA, 2017).

Thyroid system disruption can be a consequence of different
events including: 1) interference with hypothalamic-pituitary
feedback mechanisms; 2) inhibition of thyroperoxidase (TPO);
3) inhibition of glandular iodide uptake by the sodium-iodide
symporter; 4) nuclear receptor-mediated increase in the
metabolic clearance rate of THs; 5) competitive binding to TH
serum binding proteins; 6) inhibition of peripheral iodothyronine
deiodinases; 7) interference with the TH receptor complex in
target tissues; and/or 8) inhibition of TH transporters in target
tissues (Capen, 1994; DeVito et al., 1999; Crofton et al., 2005;
Murk et al., 2013). The inhibition of the TPO enzyme, which
catalyses many steps of THs synthesis, leads to a reduced
synthesis of THs that may in turn lead to a series of

dysfunctions related to hypothyroidism, such as reduced basal
metabolism and alteration in the lipidic assets. The inhibition of
the TPO enzyme can occur as a consequence of prolonged
exposure to several chemical compounds and mixtures like
pesticides (such as thiocarbamate, thiourea, and triazole) and
industrial chemicals (resorcinol, phthalates) (Brucker-Davis,
1998).

In the last decades, the field of toxicology has begun to make
use of integrated approaches, including alternative testing
methodologies to manage an incredibly large amount of
chemicals that could potentially affect environment and
human health. Whilst in vitro and in vivo methods are
intended to assess the effects of a substance by administering
it directly to a biological system, and are so referred as testing
methods, in silico approaches rely on the available knowledge
about known chemicals, starting from the hypothesis that similar
compounds behave in a similar way. Such approaches aim to
predict different properties of untested chemicals, such as
physico-chemical and structural properties, binding activity to
enzymes or receptors, toxicological profile, toxicokinetic
properties, and rely on mathematical and statistical methods.
They are therefore referred to as non-testing method (NTMs).
Examples of NTMs are grouping methods, like read-across and
chemical category formation, which are useful for data gap filling;
quantitative structure-activity relationship (QSAR) models, used
to quantitatively correlate measures of chemical structure to
either a physical property or a biological effect (e.g., toxic
outcome); physiologically based pharmacokinetic (PBPK)
models for predicting absorption, distribution, metabolism and
excretion of chemical substances in humans and other animal
species (Raunio, 2011).

Computational (in silico) methods play an essential role in
data generation, data gap filling and chemicals prioritization. In
this work, the development, optimization, and evaluation of
QSAR models for predicting the capability of xenobiotics to
inhibit the TPO enzyme are presented. Experimental TPO
in vitro inhibition activity data were retrieved from the
literature and measured through the Amplex UltraRed-
thyroperoxidase (AUR-TPO) assay. Data were curated through
various steps, and different classifiers were trained with
optimization procedures in order to extract the best predictive
models. Variable selection techniques were also considered to
improve prediction quality. Performance of the models was
evaluated through proper metrics, along with robustness
analysis. Models were validated on a completely external set of
compounds retrieved from Rosenberg et al. (2017).

MATERIALS AND METHODS

Dataset Preparation
TPO inhibition data were retrieved from Paul-Friedman et al.
(2016). Data are related to the Amplex UltraRed-thyroperoxidase
(AUR-TPO) assay. Amplex UltraRed (AUR) is a fluorogenic
substrate that is converted to Amplex UltrOxRed by
horseradish peroxidase in the presence of H2O2 and serves to
detect peroxidase (i.e., TPO) activity (Paul-Friedman et al., 2014).
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A selectivity (SEL) value was associated to positive hit-calls. AUR-
TPO SEL was calculated using the difference between the log
IC20 (i.e., the inhibitory concentration at 20%) for the AUR-TPO
assay and the log IC20 value of either 1) a luciferase inhibition or
2) a cytotoxicity assay. High IC20 values for either of the two
assays account for possible false positive among positive hit-calls.
The former assay (luciferase assays) flags for non-specific enzyme
inhibition, the latter for cytotoxicity. SEL values were used to
stratify active TPO inhibitors in non-selective (NSE) (SEL <0),
low selective (LSE) (0 ≤ SEL <1) and high selective (HSE) (SEL
≥1). High selective chemicals were characterized by a larger
separation of the AUR-TP assay log IC20 value from
confounding activities identified from luciferase and
cytotoxicity assays. SMILES were curated by means of a semi-
automated in-house procedure described by Gadaleta et al.
(2018a). This procedure addresses the identification and the
removal of inorganic and organometallic compounds and
mixtures, the neutralization of salts, the removal of duplicates
(also checking for tautomeric forms) and the standardization of
chemical structures. 14 records were removed because it was not
possible to identify a unique SMILES; eight inorganic chemicals
and 12 that included unusual chemical elements (i.e., those
different from H, C, N, O, F, Br, I, Cl, P, S) were removed
too. After structure normalization 122 chemicals were identified
to have duplicates. For them, a single instance was kept in the
dataset with the exception of six duplicates characterized by
contradictory experimental category assignment that were
removed. The final dataset for the AUR-TPO assay includes
1073 chemicals (751 inactive ones (INA), 105 NSE, 64 LSE
and 153 HSE). Three binary datasets were defined by varying
the assignment of NSE and LSE compounds to the active and
inactive category, while a fourth dataset was built considering
only HSE and INA chemicals, while LSE and NSE were discarded.
For each dataset, data were randomly split into a training (TrS)
and a testing set (TeS) with the train_test_split method of the
SciKit-learn’s model selection library [66]. TrS is the set of data
that “trains” a model to correctly relate variables (descriptors) to
output classes (active/inactive classes). The trained model is then
evaluated using it to predict TeS outcomes. In our case, the TrS
contained 80% of the data, while the TeS 20%. The inactive/active
ratio was kept in each dataset. The four partitioning schemes are
summarized in Table 1.

Additional AUR-TPO assay data were retrieved from
Rosenberg et al. (2017). The dataset includes only HSE and
INA compounds. Compounds already present in the TrS were

removed, then the same curation procedure described for the TrS
and the TeS was made. The final dataset includes 631 compounds
(538 INA, 93 HSE). The resulting set was used as external set (ES)
for the validation of the developed models. The ratio between
INA and HSE in the TrS and in the ES is analogous, being 83% in
both cases.

The chemical space covered by the three datasets was further
inspected using Principal Component Analysis (PCA)
(Figure 1A) and t-distributed stochastic neighbor embedding
(t-SNE) (Figure 1B) (theta � 0.5, perplexity � 30) (Van der
Maaten and Hinton, 2008).

Figure 2 shows the number of chemicals distributed in a series
of chemical classes for the TrS, the TeS and the ES. Chemical
classes are based on 22 SMARTS codifying functional groups that
are included in the RDKit Functional Group Filter KNIME node
(https://www.rdkit.org/). Most of the top-represented classes (e.g.
, aromatic halogens, aromatic alcohols, aliphatic carboxylic acids)
likely refer to chemicals that mimic the activity of the natural
substrate of the TPO, i.e., the tyrosine residues of thyroglobulin
(and their partially iodinated intermediates) (Kessler et al., 2008).

Chemical space analyses confirmed that the TeS is very close to
the TrS, as the two datasets were obtained by the same original
source of data. Conversely, the external set sometimes covers a
chemical space that is slightly different from the one covered by
the TrS and the TeS, being a good example of real-life validation.

The complete list of chemicals used for models training and
validation are included in the Supporting Information
(Supplementary Table S1 for TrS and TeS, Supplementary
Table S2 for ES).

Descriptors Generation and Selection
Molecular descriptors were computed for each chemical in the
datasets with DRAGON v7.0.8 software (Kode, 2017).
Descriptors having missing values or constant/near-constant
variables (i.e., standard deviation <0.01) were removed along
with descriptors having an absolute pair correlation higher than
95% with other variables. The final dataset consisted of 619
descriptors. Descriptors values were scaled with a standard
normalization (i.e., mean equal to zero and standard deviation
equal to 1).

Models were based both on the entire pool of descriptors, and
on a reduced pool defined with two variable selection techniques
that ranked variables according to a score which indicates their
importance. The first variable selection method was based on the
relative importance of variables within a Random Forest (Genuer
et al., 2010). The importance of a variable is related to its ability to
perform a good split on the data, and it is quantified through the
Gini impurity score. In the second method, the importance of a
feature is evaluated as the decrease of the performance of a
classifier when that single feature value is randomly shuffled n
times. Then, a “baseline” score is compared with the average score
of the n permutations. The higher the difference between the two
scores, the more the feature is considered important (https://
scikit-learn.org/stable/modules/permutation_importance.
html#id2). In our case, the classifier used was a Random Forest
(or Balanced Random Forest) and the balanced accuracy (BA)
was used as score. From each of the two lists of ranked variables,

TABLE 1 | Partitioning schemes. For each dataset, the number of active and
inactive chemicals and the related class distribution is reported. For each
partitioning scheme, the total number of chemicals (#), the number of active (ACT)
and inactive (INA) chemicals, the number of chemicals in the training (TrS) and test
set (TeS) and the ratio between inactives and actives is reported.

Dataset (ACT/INA) INA ACT TrS TeS INA:ACT #

HSE/LSE + NSE + INA 920 153 858 215 6:1 1073
HSE + LSE/NSE + INA 866 217 858 215 4:1 1073
HSE + LSE + NSE/INA 751 322 858 215 2.3:1 1073
HSE/INA 751 153 723 181 5:1 904
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the first 20, 30, 50, 100, 120, 130, 150, 160, 170, 200, 250, 300
important features were used to train models and the results
obtained from the optimal subset of variables were reported for
each classification algorithm. Descriptor selection was performed
exclusively on TrS chemicals.

Modeling Approaches
For each of the partitioning schemes reported in Table 1 and each
of the subset of selected descriptors, four classification algorithms,
i.e., Balanced Random Forest (BRF) (Breiman, 2001; Dal Pozzolo
et al., 2015), Support Vector Machine (SVM) (Vapnik, 1963)
K-Nearest Neighbors (KNN) (Altman, 1992) and Random Forest
(RF) (Breiman, 2001) were used for modelling. Hyper-parameter
tuning was performed in internal validation (10-fold cross
validation) in order to identify the optimal set of parameters
for each model. The optimized models were then validated on the
TeS and performance was compared in order to select a model to
evaluate on the ES.

Preliminary modelling attempts performed on the original
unbalanced TrS gave poor results (data not shown). As a

consequence, in case of RF, SVM and KNN, the original TrS
was artificially altered in order to balance the number of active
and inactive samples. In particular, the Synthetic Minority
Oversampling Technique (SMOTE) was applied to create new
synthetic data points to assign to the minority class (Chawla et al.,
2002). The TeS was kept unbalanced, in order to evaluate the real
capability of classifiers to predict the real-life unbalanced
distribution of data. This artificial rebalancing of categories
was not applied in the case of BRF, as this algorithm is
specifically tailored to handle unbalanced distributions of data
through a different resampling (undersampling) within each tree
of the samples in majority class (Dal Pozzolo et al., 2015).

All methods used for data analysis and model development
were implemented with Python 3 (van Rossum and Drake, 2003),
packages Pandas (McKinney, 2011) for data manipulation and
SciKit-learn (Pedregosa et al., 2011) and Imbalanced-learn
(Lemaître et al., 2017) for machine learning techniques. An
overview of the whole modelling workflow is shown in Figure 3.

In order to refine predictions provided by single models,
consensus modelling was applied. In particular, a compound is
assigned to a category only when concordant predictions are
generated by the top performing models among those developed.

Performance Evaluation
Cooper’s statistics were used to evaluate the performance of the
obtained classifiers (Coper et al., 1979). In particular, Sensitivity
(SEN), Specificity (SPE) and BA were calculated as below:

SEN � TP
TP + FN

SPE � TN
TN + FP

BA � SEN + SPE
2

with true positives (TP) and true negatives (TN) being
respectively the positive and negative samples correctly
classified by the models, while false negatives (FN) and false
positives (FP) are respectively the experimentally positive and
negative samples that are misclassified.

FIGURE 1 | Two components PCA (A) and t-SNE (B) plots of training, test and external sets including only the 20 selected variables of the KNNmodel. Yellow dots
are TrS chemicals, blue dots are TeS chemicals, and green dots are ES chemicals.

FIGURE 2 |Graphical overview of the number of compounds in the TrS,
TeS and ES among chemical classes. Red bars refer to aromatic chemical
classes, while blue bars refer to aliphatic classes.
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Matthew correlation coefficient (MCC) (Matthews, 1975) was
also calculated, being similarly to BA particularly suitable to
evaluate the performance of classifiers on unbalanced
distributions of data. MCC ranges from 1 (perfect
classification) to -1 (perfect misclassification).

MCC � TP TN − FP FN
���������(TP + TN)√ (TP + FN)(TN + FP)(TN + FN)

Y-scrambling (Kubinyi, 2004; Rücker et al., 2007) was used to
evaluate if each of the methods lead to a significant classification.
It consists of an iterative random shuffling the activity labels
(classes) and a re-training of the model based on shuffled
activities. Then, a p-value is computed as the percentage of
iterations for which the score obtained is greater than the

classification score obtained without activity reshuffling, as in
the equation below:

p − value � c + 1
n + 1

where c is the number of iterations giving a score greater than the
original, and n is the number of times the procedure is repeated.
In the present work, 100 permutations were made. For each
permutation, BA was computed in cross validation.

RESULTS

Tables 2–5 report performance on the TeS of the best models for each
type of classifier and each of the four partitioning schemes described in
paragraph 2.1. Figure 4 compares BAs on the TeS of the various
models. The comparison of the overall performance, i.e., BA
(Figure 4A) and MCC (Figure 4B) of the different classifiers
reveals that KNN and BRF were constantly the top performing
methods among those considered. BRF reaches BA values in the
range of 0.76–0.85 and MCCs in the range of 0.39–0.61 across the
various splitting schemes. KNN is quite similar, as it returns BAs in the
range of 0.75–0.86 and MCC in the range of 0.48–0.60. SVM are

FIGURE 3 | Modelling workflow. Colors of the blocks are related to
different phases of the modelling procedure. Light blue blocks: data
preparation. Light red block: machine learning. Yellow blocks: data selection
and optimization. Green blocks: models selection.

TABLE 2 | Performance of the best models developed on the HSE/LSE + NSE +
INA partitioning scheme on the TeS. For each model, the following statistics
are reported: Balanced Accuracy (BA), Sensitivity (SEN), Specificity (SPE),
Matthews Correlation Coefficient (MCC), number of True Negatives (TN), False
Positives (FP), True Positives (TP) and False Negatives (FNs).

Classifier BRF KNN SVM RF

#Descriptors 150 30 100 20
BA 0.76 0.75 0.66 0.69
SEN 0.74 0.71 0.81 0.81
SPE 0.77 0.79 0.52 0.57
MCC 0.39 0.39 0.23 0.26
TN 142 146 95 104
FP 42 38 89 80
TP 23 22 25 25
FN 8 9 6 6
# 215 215 215 215

TABLE 3 | Performance of the best models developed on the HSE + LSE/NSE +
INA partitioning scheme on the TeS. For each model, the following statistics
are reported: Balanced Accuracy (BA), Sensitivity (SEN), Specificity (SPE),
Matthews Correlation Coefficient (MCC), number of True Negatives (TN), False
Positives (FP), True Positives (TP) and False Negatives (FNs).

Classifier BRF KNN SVM RF

#Descriptors 170 30 30 130
BA 0.80 0.78 0.77 0.70
SEN 0.79 0.79 0.70 0.70
SPE 0.81 0.77 0.84 0.71
MCC 0.52 0.48 0.48 0.32
TN 140 133 144 122
FP 32 39 28 50
TP 34 34 30 30
FN 9 9 13 13
# 215 215 215 215

Frontiers in Pharmacology | www.frontiersin.org August 2021 | Volume 12 | Article 7130375

Gadaleta et al. QSAR to Predict TPO Activity

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


comparable with the former methods in some cases, but they are
characterized by a greatest difference between SEN and SPE (Tables
2–5); in particular SVM are characterized by a high false negative rate,
i.e., many toxic compounds predicted as safe, that is an issue for the
intended real-life use of the models. Conversely, BRF and KNN
showed more balanced statistics in the prediction of positive and
negative samples. SMOTE-RF is characterized by lower performance
with respect of other classifiers.

Although all classifiers provide satisfactory performance
scores for all the partitioning criteria, the inclusion of LSE
chemicals in the active category improved the results with
respect of the first partitioning scheme (HSE/LSE + NSE +
INA), likely due to the reduction of the imbalance between
the inactive and active categories. A further improvement of
performance is observed in the HSE/INA partitioning scheme
obtained after the complete exclusion of low selective positive hit-
calls (i.e., LSE and NSE), so the models improved if the dataset
contained only the most reliable experimental data.

Y-scrambling was also performed to assess the statistical
validity of predictions. In all cases, the average score over 100
permutation is 0.50, confirming that performance obtained is not
due to chance. p-value of 0.01 indicates that in none of the 100
iterations the “random” score exceeds the actual performance.

Given the results above, the top performing models that are
selected for additional validation are the KNN and the BRF
models based on the HSE/INA partitioning. The KNN model
is based on 20 variables that were selected with the variable
importance-based method based on RF, whilst the 160 variables
of the BRF model where selected with the permutation-based
method using a BRF as estimator.

Internal robustness of the two models was confirmed by
performance achieved in 10-fold internal cross validation, with

TABLE 4 | Performance of the best models developed on the HSE + LSE + NSE/
INA partitioning scheme on the TeS. For each model, the following statistics
are reported: Balanced Accuracy (BA), Sensitivity (SEN), Specificity (SPE),
Matthews Correlation Coefficient (MCC), number of True Negatives (TN), False
Positives (FP), True Positives (TP) and False Negatives (FNs).

Classifier BRF KNN SVM RF

#Descriptors 250 20 30 20
BA 0.79 0.78 0.78 0.74
SEN 0.77 0.77 0.72 0.63
SPE 0.82 0.79 0.83 0.86
MCC 0.56 0.52 0.49 0.45
TN 124 119 143 147
FP 27 32 29 25
TP 49 49 31 27
FN 15 15 12 16
# 215 215 215 215

TABLE 5 | Performance of the best models developed on the HSE vs INA
partitioning scheme on the TeS. For each model, the following statistics are
reported: Balanced Accuracy (BA), Sensitivity (SEN), Specificity (SPE), Matthews
Correlation Coefficient (MCC), number of True Negatives (TN), False Positives (FP),
True Positives (TP) and False Negatives (FNs).

Classifier BRF KNN SVM RF

#Descriptors 160 20 50 20
BA 0.85 0.86 0.79 0.78
SEN 0.84 0.87 0.68 0.65
SPE 0.87 0.85 0.91 0.92
MCC 0.61 0.60 0.56 0.56
TN 130 127 136 138
FP 20 23 14 12
TP 26 27 21 20
FN 5 4 10 11
# 181 181 181 181

FIGURE 4 | Comparison of (A) Balanced Accuracies (BA) and (B) Matthews Correlation Coefficients (MCC) values for the top performing TPO classifiers. White
bars refer to Random Forests, light grey bars refer to Support Vector Machines, dark grey bars refers to k-Nearest Neighbor while black bars refers to Balanced Random
Forests.

TABLE 6 | Comparison of the performance of the BRF and KNN, and ensemble
models based on the HSE/INA splitting schemes on the ES. For each model,
the following statistics are reported: Balanced Accuracy (BA), Sensitivity (SEN),
Specificity (SPE), Matthews Correlation Coefficient (MCC), number of True
Negatives (TN), False Positives (FP), True Positives (TP) and False
Negatives (FNs).

Classifier BRF KNN Consensus

#Descriptors 160 20 -
BA 0.76 0.78 0.82
SEN 0.72 0.68 0.75
SPE 0.79 0.88 0.89
MCC 0.40 0.49 0.56
TN 427 472 411
FP 111 66 50
TP 67 63 55
FN 26 30 18
# 631 631 534

Frontiers in Pharmacology | www.frontiersin.org August 2021 | Volume 12 | Article 7130376

Gadaleta et al. QSAR to Predict TPO Activity

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


the BRF reaching BA � 0.79 (SEN � 0.74, SPE � 0.83, MCC � 0.49,
AUC � 0.85) and the KNN reaching BA � 0.72 (SEN � 0.49, SPE
� 0.95, MCC � 0.49, AUC � 0.82).

Table 6 shows the performance of the BRF, KNN and the
consensus model on the ES. Performances of the models on the
ES confirm the overall good predictivity of the models, being the
KNN characterized by a higher SPE, while the BRF shows more
balanced statistics. Performances on the ES are in line with the
experimental variability reported for the AUR-TPO assay
(i.e., BA ∼0.70) (Paul-Friedman et al., 2016). In particular, the
BRF returns BA � 0.76 (BA � 0.85 on the TeS) while the KNN has
BA � 0.78 (BA � 0.86 on the TeS).

The probabilities associated to predictions were used to
identify predictions falling within the response domains of the
models (Gadaleta et al., 2016). Probabilities reflect how the
chemical space around the target is covered by the model, as
higher probabilities are associated to predictions when the model
has been adequately trained with training samples that are
structurally close to the target. Conversely, low probabilities
indicate that few compounds are in the TrS with structural
features similar to the target. These predictions are considered
less reliable and potentially outside of the model’s domain.
Figure 5 shows how the performance (BA) of the KNN and
the BRF models and the percentage of predicted compound
(coverage) of the ES vary when predictions with lower
probabilities are discarded. In both cases, the increase of the
probability threshold is associated to an increase of the overall
performance and to a decrease of the percentage of compounds
that are predicted, with a trend that is more marked for the KNN
model with respect of the BRF. The use of different thresholds
acknowledges the “fuzzy” nature of the applicability domain and
the need of defining confidence limits instead of a simple “in or
out” classification (Jaworska et al., 2005). Considering the need to
find a reasonable compromise between predictive performance
and coverage of the models, the authors suggest that, for the BRF,

external predictions with associated probabilities higher than
0.65–0.75 may be considered inside the applicability domain
of the model, while for the KNN model a threshold of
0.60–0.65 is suggested.

Consensus modelling was applied by integrating results of the
kNN and the BRF models. 534 out of 631 compounds (about
85%) have a concordant prediction while, of the 97 remaining
compounds, 69 are predicted correctly by the KNN and 28 by the
RBF model respectively. Overall, the consensus model improved
the performance of the single models (BA � 0.82) at the expense
of a slightly loss of predictions (about the 15% of the whole ES)
(Table 6).

DISCUSSION

In this work, the development and the validation of QSAR
models for predicting the inhibition activity of xenobiotics on
the TPO enzyme is presented. Various machine learning
techniques and schemes for data selection/partition were
proposed to develop models, that were systematically
optimized and evaluated for their statistical robustness and
predictivity through internal and external validation. Two
top-performing models based on KNN and BRF algorithms
were identified based on their external predictivity evaluated on
the TeS, then additional validations were made on the selected
models through the exploitation of a completely external
dataset. This additional validation was performed on data
that were independent from those used for model
development and testing. Validation results observed on the
ES, although cannot be generalized to the whole chemical
universe, are a good simulation of a real-life hazard
evaluation made on new chemicals, and confirmed the good
predictive performance observed for the TrS and the TeS.

Another important point solved by the external validation
is that it allows to check for the presence of overfitting within
the model. Indeed, one of the main pitfalls related to the use of
a single training-test split is that performance observed for the
test set may be biased and dependent on the seed used for the
split (i.e., different and possible worse validation performance
may be observed for a different training-test split). Conforting
performance observed on ES data (that have been retrieved
from a different and independent sources with respect of TrS
and TeS data) may allow to reduce the doubt of being in
presence of overfitting, as performance on external data
proved to be good and comparable with the experimental
variability.

In both cases, the top-predictive models were based on a
dataset that excludes NSE and LSE samples, and includes HSE
data as the only representative of the “active” category. This is not
unexpected; indeed these models are based on a dataset that
excludes the chemicals characterized by an ambiguous
categorization due to confounding activities (LSE and NSE hit-
calls) (see paragraph 2.1) and includes only the most reliable
experimental data.

At the best of our knowledge, this is one of the few attempts
available in the literature to model TPO inhibitory activity.

FIGURE 5 | Variation of performance of the KNN and the BRFmodels on
the ES based on probability threshold for prediction domain definition. Solid
lines refer to the overall BA while dotted lines refer to the percentage of
compounds included in the domain of the model (coverage) on the total
included in the ES.
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Another QSAR study was proposed by Rosemberg et al. (2017)
that applied partial logistic regression (PLR) implemented in
Ledscope® Predictive Data Miner (Leadscope, Inc, 2016) to
develop models for the prediction of AUR assay data. The
same categories of compounds (HSE/INA) were considered
for model development. The study reported an external BA
equal to 0.85 that is analogous to the accuracy values observed
on the TeS for the BRF and KNNmodels presented here, but the
performance of the PLR model is associated a much lower
prediction coverage (i.e., 54.5% for the PLR model). Recently
Garcia de Lomana et al. (2020), proposed a set of models
predicting the interference of small molecules with nine
targets involved in the thyroid hormone homeostasis
(deiodinase 1, 2 and 3, transtiretrin, TPO, thyroid releasing
hormone receptor and thyroid stimulating hormone receptor).
Models were developed using five machine learning algorithms
in combination with three data balancing approaches. In
addition, multi-task models were also explored. The best
model reported for TPO prediction was an oversampling-
based XGBoost (XGB) that was developed from a
combination of ToxCast data and data from Paul-Friedman
et al. (2016). The XGB showed the following performance in 10-
fold cross-validation: F1 � 0.83, MCC � 0.67, BA � 0.82,
AUC � 0.90.

Both of the KNN and the BRF models presented here are
developed with the aim of handling the unbalance towards
negative samples that is typical of the majority of the
distributions of biological data, such as the inhibition activity
on the TPO enzymes here. In the case of the KNN, this aspect is
handled by artificially rebalancing the initial distribution of data
through a SMOTE technique. In the case of the BRF, no data
pre-treatment is needed, as this method automatically addresses
the unbalance between categories that may exist in a training set,
through a balanced resampling of data used to train each
decision tree in the BRF. Results obtained here confirmed
our previous experiences on the suitability of this technique
to model unbalanced distributions of data (Gadaleta et al.,
2018b; 2019).

Another difference observed between the two models is that
KNN returns the best results when trained on a small subset of
optimal molecular descriptors (20) identified by means of
variable selection techniques. Conversely, a larger pool of
variables (160) are needed to optimise the performance of the
BRF model. In order to confirm the different relevance of the
feature selection procedure for the two methods, we made an
iterative random selection of 200 compounds from the ES that
were used to validate models based on different sets of variables.
100 iterations were made. Figure 6A compares the results
obtained in the iterations using the entire pool of variables or
the best selected subset for the specific technique (20 for KNN
and 160 for RBF). It shows that in case of BRF, the models
developed with and without variable selection have similar
performance (BA) when applied to the ES subsets. This
confirms one of the RF algorithm’s specific strengths, i.e., its
own implicit feature selection, as it is intrinsically able to identify
the most relevant variables and is less sensitive to noisy ones
(Anger et al., 2014). A different picture is shown for the KNN

model (Figure 6B), that presents increased performance when
associated to a reduced pool of selected variables. This means that
KNN method is more sensitive to noisy variables than BRF, and
that a previous feature selection can help in reaching higher
performance. In both cases, the use of a reduced pool of variables
may provide advantages in terms of simplicity and
interpretability. The validity of the feature selection method
(variable importance-based feature ranking) that returned the
20 optimal variables used for the KNN development was further
confirmed by comparing the performance of the KNN models
with a series of 100 models developed on random subsets of 20
variables selected among the entire pool of descriptors. As shown
in Figure 7, none of the iterations reached performance
comparable with the KNN model here considered, confirming
that the method used was able to identify and remove irrelevant
variables.

Table 7 reports the list of the top 20 high ranked variables of
the KNN model. Some of them refer to the presence of
chemical groups that resemble those included in the natural
substrates of TPO, i.e., the tyrosine residues present in the
thyroglobulin proteins that are subjected to a series of
iodination steps (Kessler et al., 2008). C-026 is an atom-
centred fragment codifying for the presence of the R--
CX—R group, where -- is an aromatic bond and X is an
heteroatom. Similarly to nArOH (number of aromatic
hydroxyls), it is likely to codify for the presence of aromatic
hydroxyls that mimic the structure of the tyrosine side chain.
Analogously, nCb- (number of substituted benzenes), nCbH
(number of unsubstituted benzenes) and Uc (unsaturation
count, that checks for the presence of double and triple
bonds), account for the presence of aromatic moieties
resembling the structure of the tyrosine. The number of
halogen atoms, checked by the nX descriptors, is also
relevant as partially iodinated intermediates (e.g., 3-
iodotyrosine) are natural substrates of the enzyme.
CATS_02_DL and CATS_03_DL account for the presence
of potential pharmacophore points at a given topological
distance. In both cases, the pharmacophore points are a
lipophilic feature (e.g., a halogen, or one of the carbons of
the aromatic residue) and a hydrogen-bond donor, that is
likely represented by the hydroxyl group of the tyrosine
natural substrate. MLOGP is a general estimation of the
lipophilicity of the molecule, and here is likely accounting
for hydrophobic non-binding interactions that are established
between the aromatic substrates and the residues present in the
active site of the TPO enzyme.

Integrated modeling was also applied in order to improve
predictions of single models. As showed here and previously in
the literature (Tropsha, 2010; Gadaleta et al., 2017; Benfenati
et al., 2019; Gadaleta et al., 2019) integratedmodeling often allows
to reach the highest external prediction power (BA � 0.82)
compared to any individual model used in the integrated
prediction (BA � 0.76–0.78), even with the application of a
straightforward strategy such as unanimity. This is particularly
true when the individual models have been developed using
different approaches and modeling techniques, such as in this
specific case. In this regard, the improved performance of the
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integrated method can be explained by the fact that it
compensates for and corrects the limitations of individual
techniques.

Figure 8 depicts a comparison between predictions made
by the KNN and the BRF model to identify correct
predictions and misclassifications in common between the
two models and conflicts across the chemical categories
defined as in paragraph 3.1. Overall, common correct
predictions are generated for the 77% of ES compounds.
Common misclassifications represent the 11% of the ES,
while conflicts between the two models are the 15%. In the
latter cases, the relative abundance of HSE samples that are
misclassified (26% of the misclassifications) or that are
conflictual (21% of all the conflicts) is slightly higher than
the one observed for correct prediction (12% are HSE, the
88% are INA). This is likely due to the unbalance of the
training set towards INA samples, that make the models
slightly more accurate when predicting negative chemicals,
despite the use of methods to rebalance active and inactive
samples minimized this behaviour. The majority of the
chemical categories had similar behaviours with respect
of the whole dataset. Some categories have a higher
relative percentage of conflicts, e.g., aromatic carboxylic
acids (38%) and aromatic aldehydes (60%) that are likely
due to the low representativeness of the chemical classes in
the TrS of the models. Conversely, some classes have slightly
higher numbers of common misclassifications, e.g., aromatic
amines and aromatic alcohols (21% of the predictions for
both the classes). A curious behaviour was observed for the
aromatic alcohols. Common correct predictions represent
only the 49% of all the predictions made for chemicals in this
class, while a relatively high percentage of common
misclassifications (21%) and conflicts (30%) was observed.
Moreover, aromatic alcohols are nearly evenly distributed in
the ES (48% HSE, 52% INA), however common correct
predictions are nearly always HSE (84% of correct
predictions), while a big percentage of common
misclassifications (94%) and conflicts (83%) are
experimentally INA. This may indicate a tendency of the
model to overestimate the toxicity of aromatic alcohols.

FIGURE 6 | Comparison of performance of models developed on random subsets of chemicals extracted from the ES. Violet bars refer to the distribution of BA of
models based on the selected optimal features, while yellow bars are the distribution of BA of models based on the entire pool of descriptors.

FIGURE 7 | Comparison of performance of the KNN models based
on random subsets of features. Blue bars refer to the distribution of BA of
models based on random subsets of 20 features, the red dashed line
indicates the performance of the KNN model based on the 20
optimal features selected through the RF-based feature importance
ranking.

TABLE 7 | List of the top-20 high ranked variables that are included in the
KNN model.

GATS1e MATS1p
NArOH nCb-
CATS2D_02_DL NX
MATS1e Uc
MATS1s ’P_VSA_i_1’
C-026 ’SpMAD_B(v)
CATS2D_03_DL NCbH
B10 [C-C] GATS1s
MATS1m MLOGP
’SpMax2_Bh(s) Eta_C_A’
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CONCLUSION

Predictive toxicology is assuming a high relevance in chemical hazard
and risk assessment procedures thanks to the recent advances in
machine leaning methods and computational power. Encouraged by
these advancements, we proposed in the present study a procedure
that led to the development of two QSAR models based on AUR
assay data to predict the inhibitory potential of chemicals for TPO.
These twoQSARmodels, based on BRF and KNN respectively, show
good external predictivity (BA � 0.76–0.78 on the ES) that is in line
with reported variability of the in vitro AUR-TPO assay (BA ∼0.70)
(Paul-Friedman et al., 2016) and can be considered, for this reason,
useful as resources for hazard assessment of large quantities of
chemicals to which the population is exposed every day.

QSARs and, more in general, NTMs can be also useful to
reveal mechanistic properties not commonly investigated at the
whole organism level, to generate new hypothesis and to design
more refined testing strategies, also towards animal testing
reduction. On the other hand, testing strategies are essential in
order to validate newly produced data and hypothesis and of
course to generate, in turn, new data that can be used to refine
in silico predictive models.

The authors propose the models here as part of Integrated
Testing Strategies (ITS), with in silico methods acting as a

first tier to screen large quantitative of chemicals in a short
time and to give indication to higher tier testing methods
(e.g., in vitro) for a refinement of the preliminary results
returned by computational models. In particular, the
predictions of the models presented here can be used to
reduce the number of the chemicals needing confirmatory
in vitro testing only to those characterized by predictions
with low reliability, with a sensible save in terms of money
and time needed to perform the in vitro assays. Moreover, the
models show variabilities that are similar to the assay, and
consequently they may be used as a replacement of the AUR-
TPO in vitro test when this is technically impossible to
perform, e.g., for very large numbers of chemicals and/or
when laboratory resources are not available. When multiple
methods (e.g., in silico and in vitro) methods are available, a
weight of evidence approach is recommended, according to
which all data and information generated from all the
strategies should be taken into consideration when
assessing the desired property of a chemical, weighting
each evidence according to its relevance and reliability, as
proposed by the EFSA guidance on the matter (Hardy et al.,
2017).

The QSARs models presented here are freely available and
have been implemented in the freeware KNIME Analytics

FIGURE 8 | Graphical representation of the number of concordant predictions, misclassifications and conflicts between the KNN and the BRF models across the
various chemical classes of the ES. Blue slices of the pie charts indicate concordant correct predictions, Red slices indicate concordant misclassifications, while green
slices indicate conflicts between the two models. Light-colored slices refer to experimentally HSE compounds, while dark-colored slices refer to experimentally INA
compounds.
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Platform (v. 4.3.3) (Berthold et al., 2008), making them
immediately available for use for scientists and regulators.
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