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Abstract

Osteogenic endothelial progenitor cells (EPCs) contribute to impaired endothelial repair and

promote coronary artery disease (CAD) and vascular calcification. Immature EPCs express-

ing osteocalcin (OCN) has been linked to unstable CAD; however, phenotypic regulation of

OCN-expressing EPCs is not understood. We hypothesized that gut-microbiome derived pro-

inflammatory substance, trimethylamine N-oxide (TMAO) might be associated with mobiliza-

tion of OCN-expressing EPCs. This study aimed to investigate the association between dys-

biosis, TMAO, and circulating mature and immature OCN-expressing EPCs levels in patients

with and without CAD. We included 202 patients (CAD N = 88; no CAD N = 114) who under-

went assessment of EPCs using flow cytometry and gut microbiome composition. Mature and

immature EPCs co-staining for OCN were identified using cell surface markers as CD34

+/CD133-/kinase insert domain receptor (KDR)+ and CD34-/CD133+/KDR+ cells, respec-

tively. The number of observed operational taxonomy units (OTU), index of microbial rich-

ness, was used to identify patients with dysbiosis. The number of immature OCN-expressing

EPCs were higher in patients with CAD or dysbiosis than patients without. TMAO levels were

not associated with circulating levels of OCN-expressing EPCs. The relative abundance of

Ruminococcus gnavus was moderately correlated with circulating levels of immature OCN-

expressing EPCs, especially in diabetic patients. Gut dysbiosis was associated with

increased levels of TMAO, immature OCN-expressing EPCs, and CAD. The relative abun-

dance of Ruminococcus gnavus was correlated with immature OCN-expressing EPCs, sug-

gesting that the harmful effects of immature OCN-expressing EPCs on CAD and potentially

vascular calcification might be mediated by gut microbiome-derived systemic inflammation.

Introduction

The endothelium is a primary site for the deleterious effects of cardiovascular risk factors [1].

Damaged endothelium can be repaired by peripherally mobilized endothelial progenitor cells
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(EPCs) from bone marrow to maintain endothelial homeostasis. Thus, quantification of circu-

lating EPCs levels may reflect the vascular reparative capacity [2]. The imbalance between vas-

cular damage and repair leads to endothelial dysfunction, an early manifestation of

atherosclerosis [1,3]. Not only decreased circulating levels but also dysfunction of EPCs may

promote endothelial dysregulation. We previously reported that retention of osteoblastic

marker, osteocalcin (OCN), expressing EPCs in the coronary circulation was associated with

coronary endothelial dysfunction [4]. CD34+ cells from subjects with high OCN expression

were able to form mineralized deposits with calcium, suggesting their involvement in vascular

calcification [5]. In addition, increased levels of circulating OCN-expressing EPCs were associ-

ated with coronary artery disease (CAD) and calcified aortic stenosis [5–8]. Interestingly, an

immature subset of OCN-expressing EPCs, defined as CD34-/CD133+/KDR+ cells, was more

strongly associated with unstable CAD than a mature subset, defined as CD34+/CD133-/KDR

+ cells, indicating its involvement in abnormal vascular repair [6]. However, the phenotypic

regulation of OCN-expressing EPCs is not understood.

Growing evidence revealed that the symbiotic relationship between gut microbiome and its

host shapes our health through multiple mechanisms; thus dysbiosis of gut microbiome has

been implicated to a variety of diseases and conditions such as inflammatory/immune diseases,

metabolic diseases, and malignancies [9–12]. Consistent with previous studies, we have also

reported the close association between compositional change of the gut microbiome, such as

an increase in the relative abundance of Ruminococcus gnavus, and CAD [13,14]. Ruminococ-
cus gnavus has also been linked to diabetes mellitus and inflammatory diseases (inflammatory

bowel disease, spondyloarthritis, and eczema) [15–19]. Another possible link between micro-

biome and CAD could be mediated through a pathway including trimethylamine-N-oxide

(TMAO), which is generated by oxidization of gut microbiome-produced trimethylamine

from carbon sources such as lecithin, choline, betaine, and carnitine [20]. Elevated plasma lev-

els of TMAO were associated with a higher risk of major adverse cardiovascular events

(MACE) potentially through phenotypic modulation of M1/M2 macrophage, inducing endo-

thelial dysfunction and platelet activation [21–24]. A recent study showed that TMAO levels

were negatively correlated with circulating plasma EPC numbers and endothelial function

evaluated by flow-mediated dilatation, and positively correlated with inflammatory markers

such as high-sensitivity C-reactive protein and interleukin-1β in patients with stable angina.

Higher TMAO levels were associated with lower MACE-free survival, whereas plasma EPC

numbers did not predict MACE in that study [25]. The same authors also reported that incu-

bation of cultured EPCs with TMAO promoted cellular inflammation, elevated oxidative

stress, and suppressed tube formation and migration of EPCs in vitro, indicating that pheno-

typic alteration of EPCs may provide prognostic value beyond the amount of EPCs [25].

We hypothesized that gut microbiome-derived substances might be linked to dysregulation

of EPCs with resultant increase in CAD. This study aimed to investigate the association

between dysbiosis, TMAO, and circulating levels of OCN-expressing EPCs with specific focus

on mature and immature subsets of OCN-expressing EPCs.

Materials and methods

Study population

We enrolled 202 consecutive patients who underwent assessment of gut microbiome composi-

tion and EPCs between December 2013 and November 2018. Of 202 patients, 133 were

referred to Mayo Clinic for clinically indicated coronary angiography for the assessment of

chest pain and/or dyspnea. The remaining 69 patients were patients who had abnormal

peripheral endothelial dysfunction assessed by reactive hyperemia peripheral arterial
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tonometry (RH-PAT) without known or suspected CAD based on clinical history, non-invasive

stress testing, and coronary computed tomography and/or coronary angiography. Subjects with

prior gastrointestinal surgery including colectomy, ileectomy, and gastrectomy, the current

administration of antibiotics or probiotics, or a known history of inflammatory bowel disease

or auto-immune diseases, were not eligible for the study. We applied the results of the previous

paper, demonstrating that 2–4 μmol/L increase in TMAO was associated with endothelial dys-

function and EPCs dysregulation with a resultant increase in MACE, to calculate the sample

size using PS: Power and Sample Size Calculation Program Version 3.1.6 [25]. We anticipated

that the samples of 31 cases in CAD group would be required to test our hypothesis at the prob-

ability of 80% and a two-sided 0.05 significance level. Thus, we ultimately underwent the cur-

rent analyses with 114 non-CAD patient and 88 CAD patients. The study was conducted in

accordance with the guidelines of the Declaration of Helsinki and was approved by the Mayo

Clinic Institutional Review Board. All participants provided written informed consent.

Clinical assessment

Clinical history, laboratory data, and current medications list were collected from detailed

chart reviews by an investigator blinded to the microbiome and EPC data. Data were collected

on the following parameters: 1) sex, age, body mass index, smoking status, and obesity, 2) dys-

lipidemia, defined by a documented history of hyperlipidemia, treatment with lipid-lowering

therapy, a low-density lipoprotein cholesterol above target (<130 mg/dL for low risk patients,

<100 mg/dL for moderate-high risk patients, <70 mg/dL for very high risk, and<55 mg/dL

for extreme high risk patients based on 10-year atherosclerotic cardiovascular disease risk),

high-density lipoprotein cholesterol <40 mg/dL in men or<50 mg/dL in women, or triglycer-

ide>150 mg/dL, 3) type 2 diabetes mellitus, defined as a documented history or treatment of

type 2 diabetes, 4) hypertension, defined as a documented history of or treatment for hyperten-

sion, and 5) CAD, defined as a documented history of percutaneous coronary intervention or

coronary artery bypass grafting for significant coronary artery stenosis, or more than 50% of

luminal stenosis in any coronary arteries diagnosed by coronary angiography or computed

tomography coronary angiography [14].

Assessment of peripheral endothelial function

The peripheral endothelial function was evaluated by RH-PAT, as previously described [26,27].

Briefly, the study protocol included a 5-minute baseline measurement, followed by 5-minute

inflation of a blood pressure cuff around the test arm with a pressure of 60 mm Hg above base-

line systolic blood pressure up to 200 mm Hg, followed by a 6-minute PAT measurement after

deflation of the cuff. Blood pressure cuff occlusion was not applied to the control arm (contra-

lateral arm). RH-PAT ratio was determined as the average pulse wave amplitude for a 1-min-

ute-period beginning 1 minute after pressure cuff deflation divided by the average pulse wave

amplitude during a 3.5-minute baseline period. The RH-PAT index was calculated automati-

cally through a computer algorithm by normalizing baseline signal and indexing the RH-PAT

ratio on the test arm to that of the control arm. A calculated RH- PAT index�2.0 was used as a

cut-off value for the diagnosis of peripheral endothelial dysfunction [26,27].

Assessment of gut microbiome composition

16S rDNA of collected stool samples were analyzed to investigate the compositional change of

microbiome using the method described previously [14,28]. In brief, participants were pro-

vided with stool collection kits (Fisher Scientific Inc., Pittsburgh, PA, USA). If patients were

unable to give the stool samples during their stay at Mayo Clinic, they were instructed to

PLOS ONE Microbiome and EPCs

PLOS ONE | https://doi.org/10.1371/journal.pone.0249187 March 25, 2021 3 / 16

https://doi.org/10.1371/journal.pone.0249187


collect the sample at home and ship it through overnight mail delivery. Samples were frozen at

-70˚C within 24 hours of receipt. DNA extraction from stool, amplicon (V3-V5 region) gener-

ation, and sequencing was done by the University of Minnesota Genomics Center. 16S

sequencing data was run through the IM-TORNADO pipeline to form operational taxonomic

units (OTU) at a 97% similarity level [29]. Alpha-diversity measures were calculated based on

the rarefied OTU counts. The number of observed OTU and Chao-1 index indicates microbial

richness, which measures the number of taxa in each sample. Shannon index indicates micro-

bial evenness, which measures the relative number of taxa in samples accounting for the num-

ber of times each taxon was observed in a sample. Given that there were no predefined cut-off

values of alpha-diversity measures to diagnose dysbiosis, dysbiosis or symbiosis were defined

as observed OTU<median or�median in this study.

Assessment of circulating endothelial progenitor cells

Flow cytometry was performed to assess circulating endothelial progenitor cell counts as

previously described [4,5,30]. In brief, peripheral blood mononuclear cells were isolated from

fresh blood samples obtained in EDTA tubes using a Ficoll density gradient. Immunofluores-

cent cell staining was undertaken with the following fluorescent conjugated antibodies:

CD34-PerCP Cy 5.5 (Becton Dickinson), KDR allophycocyanin (R&D Systems), CD133/

2-phycoerythrin (Miltenyi Biotec GmbH), and the appropriate isotype controls. Osteocalcin

(OCN)-expressing cells were recognized using an anti-human OCN antibody (Santa Cruz Bio-

technology) with a fluorescein isothiocyanate secondary antibody (Jackson ImmunoResearch)

as previously described elsewhere [5]. Live cells were detected using propidium iodide exclu-

sion (Becton Dickinson). Cell fluorescence was measured after staining (FACSCalibur; Becton

Dickinson). Data were analyzed using CellQuest software (Becton Dickinson). We aimed to

capture 150,000 events, and final data were acquired in the lymphocyte gate with examples as

previously described [4,7]. Results were expressed as counts per 100,000 events and log trans-

formed (LN). Circulating cells expressing CD34 and KDR but not CD133 were considered

mature EPCs (CD34+/CD133-/KDR+ cells), and cells expressing CD133 and KDR but not

CD34 were classified as immature EPCs (CD34-/CD133+/KDR+ cells) [6].

TMAO measurement

TMAO concentrations were measured in plasma samples obtained on the same day of EPC

assessment and determined by liquid chromatography-mass spectrometry, as previously

described [31,32]. Briefly, a solution of D9-isotopes was spiked in plasma samples as an inter-

nal standard. The mixture was deproteinized with cold methanol. The supernatant was dried

down and resuspended in running buffer prior to injecting on a Sciex 6500 triple quadrupole

mass spectrometer (Framingham, MA) coupled with a Cohesive TX2 LC system (Franklin,

MA). Analytes were separated on a Grace Altima HP HILIC 150mm x 2.1 mm, 5 mm column

prior to analyzing on the mass spectrometer via positive electrospray ionization mode. The

analytes were separated on the analytical column using a gradient buffer system with buffer A

being 99% water, 1% methanol and 10 mM Ammonium formate; and B being 100% methanol,

0.5% formic acid, and 1 mM Ammonium formate. Data acquisition was made using selective

ion monitoring. The concentration of each analyte was calculated against an 8-point standard

curve for each perspective analyte.

Statistical analysis

Continuous variables distributed normally were expressed as the mean ± standard deviation,

and those with a skewed distribution were expressed as the median with interquartile range.
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Categorical variables were expressed as frequency (percentage). For between-groups compari-

sons, unpaired t-test for normally distributed continuous variables, a Mann-Whitney U test

(or Kruskal-Wallis test with post hoc test using Dunn method) for non-normally distributed

variables, and χ2 test (or Fisher exact test) for categorical variables. Correlation between two

normally-distributed variables was assessed using Pearson’s correlation test. Relative abun-

dance of the microbe was log transformed to follow normal distribution. A 2-tailed P value

<0.05 was considered statistically significant. All statistical analyses were performed using

JMP Pro software 14.3.0 (SAS Institute, Inc., Cary, NC, USA) and GraphPad Prism 8.3.0

(GraphPad Software, La Jolla, California, USA).

Results

Baseline characteristics

Baseline characteristics are summarized in Table 1. The mean age was 55.7±16.1 years, 113

patients (56%) were males, and 197 (98%) were white. Patients with CAD (88 patients, 44%)

and dysbiosis (101 patients, 50%) were significantly older, more likely to be males and obese,

and had conventional cardiovascular risk factors (hypertension, dyslipidemia, and diabetes

mellitus) more than those without CAD or dysbiosis. Observed OTU was significantly lower

in patients with than those without CAD (626 [523, 743] vs. 752 [639, 912], P<0.0001) (Fig 1A

and Table 1). Dysbiosis was more prevalent in patients with CAD than those without (N = 58

[66%] vs. N = 43 [38%], P<0.0001) (Fig 1B) in line with higher plasma levels of TMAO (avail-

able in 88 patients with CAD and 112 patients without CAD) in patients with CAD than those

Table 1. Baseline characteristics comparing patients with and without CAD.

Total N = 202 No CAD N = 114 CAD N = 88 P value No dysbiosis N = 101 Dysbiosis N = 101 P value

Age, years 55.7±16.1 48.2±16.3 65.4±9.3 <0.0001 51.0±17.7 60.4±12.9 <0.0001

Male sex, N (%) 113 (56) 46 (40) 67 (76) <0.0001 48 (48) 65 (64) 0.02

White race, N (%) 197 (98) 109 (96) 88 (100) 0.05 97 (96) 100 (99) 0.17

Comorbidities, N (%)

Hypertension 78 (39) 29 (25) 49 (56) <0.0001 28 (28) 50 (50) 0.002

Diabetes Mellitus 25 (12) 2 (2) 23 (26) <0.0001 5 (5) 20 (20) 0.001

Dyslipidemia 88 (44) 26 (23) 62 (70) <0.0001 32 (32) 56 (56) 0.001

Smoking, N (%)

Current 112 (55) 75 (66) 37 (42) 0.003 61 (60) 51 (50) 0.06

Former 76 (38) 32 (28) 44 (50) 37 (37) 39 (39)

Never 14 (7) 7 (6) 7 (8) 3 (3) 11 (11)

Laboratory data

LDL-C, mg/dL 98 (76, 129) 103 (80, 136) 86 (70, 104) 0.002 99 (76, 130) 95 (77, 123) 0.58

HDL-C, mg/dL 53 (43, 67) 58 (49, 75) 43 (36, 53) <0.0001 55 (46, 70) 50 (42, 67) 0.21

Tryglyceride, mg/dL 100 (74, 142) 92 (66, 128) 117 (92, 178) 0.0002 95 (64, 136) 112 (84, 170) 0.01

FPG, mg/dL 95 (88, 107) 90 (84, 97) 110 (102, 142) <0.0001 90 (84, 102) 103 (92, 126) <0.0001

Creatinine, mg/dL 0.96±0.22 0.92±0.19 1.01±0.23 0.003 0.93±0.22 0.98±0.22 0.12

BMI, kg/m2 29.1±6.1 27.4±5.8 31.2±5.9 <0.0001 26.9±5.4 31.2±6.1 <0.0001

Chao-1 896 (744, 1020) 939 (818, 1116) 804 (676, 948) <0.0001 1020 (947, 1143) 744 (640, 821) <0.0001

Shannon index 6.1 (5.6, 6.4) 6.2 (5.8, 6.6) 5.9 (5.4, 6.3) <0.0001 6.4 (6.2, 6.6) 5.6 (5.2, 5.9) <0.0001

Observed OTU 710 (579, 802) 752 (639, 912) 626 (523, 743) <0.0001 802 (750, 922) 579 (496, 641)

BMI, body mass index; CAD, coronary artery disease; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; FPG, fasting plasma

glucose; OTU, operational taxonomy units.

https://doi.org/10.1371/journal.pone.0249187.t001
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without (3.4 [1.9, 5.1] μM vs. 2.5 [1.6, 4.6] μM, P = 0.01) (Fig 1C). Similarly, patients with dys-

biosis had higher levels of TMAO than those without (3.3 [1.8, 5.2] μM vs. 2.5 [1.6, 4.2] μM,

P = 0.02) (Fig 2A). Detailed comparison of gut microbiome composition between patients

with and without CAD was shown in our previous report [14].

CAD and OCN-expressing EPCs

First, we investigated the association between CAD and OCN-expressing EPCs. Levels of cir-

culating “mature OCN-expressing EPCs” (CD34+/CD133-/KDR+/OCN+ cells) were not dif-

ferent between patients with and without CAD (1.89 [1.10, 2.65] vs. 2.08 [1.20, 2.86] LN cell

counts/100,000 counts, P = 0.63) (Fig 3A). In contrast, circulating “immature OCN-expressing

Fig 1. Comparison of gut microbiome composition, TMAO levels between patients with and without CAD. (A) Observed OTU was significantly

lower in patients with CAD (N = 88) than those without CAD (N = 114) (Mann-Whitney U test P<0.0001). (B) The prevalence of dysbiosis was

significantly higher in patients with CAD than those without CAD (58/88 [66%] vs. 43/114 [38%], χ2 test P<0.0001). (C) Plasma levels of TMAO were

significantly higher in patients with CAD (N = 88) than those without CAD (N = 112) (Mann-Whitney U test P = 0.01). CAD, coronary artery disease;

DB, dysbiosis; OTU, operational taxonomy unit; SB, symbiosis; TMAO, trimethylamine N-oxide.

https://doi.org/10.1371/journal.pone.0249187.g001
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EPC” (CD34-/CD133+/KDR+/OCN+ cell) levels were significantly higher in patients with

CAD than those without CAD (3.50 [2.42, 4.35] vs. 3.14 [1.00, 3.95] LN cell counts/100,000

counts, P = 0.04) (Fig 3A).

Dysbiosis and OCN-expressing EPCs

Next, we investigated the association between dysbiosis and OCN-expressing EPCs. Levels of

circulating CD34+/CD133-/KDR+/OCN+ cells were not different between patients with and

without dysbiosis (1.97 [1.27, 2.87] vs. 2.01 [1.10, 2.70] LN cell counts/100,000 counts,

P = 0.42) (Fig 3B). In contrast, circulating CD34-/CD133+/KDR+/OCN+ cell levels were sig-

nificantly higher in patients with than those without dysbiosis (3.63 [2.45, 4.30] vs. 3.04 [1.95,

3.94] LN cell counts/100,000 counts, P = 0.03) (Fig 3C). Levels of immature EPCs without

expression of OCN also tended to be higher in patients with than those without dysbiosis (4.91

[3.75, 5.64] vs. 4.58 [3.70, 5.33] LN cell counts/100,000 counts, P = 0.05), while levels of mature

EPCs without expression of OCN were not different between them (4.07 [3.13, 4.77] vs. 3.92

[3.33, 4.39] LN cell counts/100,000 counts, P = 0.70) (Fig 3B and 3C). Comparison of mature

and immature OCN-expressing EPC levels in CAD vs non-CAD patients with or without dys-

biosis revealed that immature OCN-expressing EPC levels were higher in CAD patients with

dysbiosis than those in non-CAD patients without dysbiosis (P = 0.01), while there was no sig-

nificant difference in mature OCN-expressing EPC levels among 4 groups (P = 0.55) (S1 and

S2 Figs).

TMAO and OCN-expressing EPCs

Patients with >median levels of TMAO (N = 100) had a higher prevalence of CAD than those

with<median levels of TMAO (N = 100) (N = 55 (55%) vs. N = 33 (33%), P = 0.002) (Fig 2B).

We hypothesized that TMAO might be the link between the dysbiosis and OCN-expressing

EPCs. However, levels of circulating CD34+/CD133-/KDR+/OCN+ cells and CD34-/CD133-/

KDR+/OCN+ cells were not different between patients with >median and <median levels of

TMAO (LN CD34+/CD133-/KDR+/OCN+ cell counts/100,000 counts, 1.89 [0.92, 2.85] vs.

Fig 2. Association between gut microbiome composition, TMAO levels, and CAD. (A) TMAO levels were higher in patients with dysbiosis (N = 100) than

those without (N = 100) (Mann-Whitney U test P = 0.02). (B) CAD was more prevalent in patients with>median levels of TMAO than those with<median

levels of TMAO (55/100 (55%) vs. 33/100 (33%), χ2 test P = 0.002). CAD, coronary artery disease; DB, dysbiosis; TMAO, trimethylamine N-oxide.

https://doi.org/10.1371/journal.pone.0249187.g002
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2.05 [1.35, 2.67], P = 0.61; LN CD34-/CD133+/KDR+/OCN+ cell counts/100,000 counts, 3.32

[2.36, 4.23] vs. 3.35 [2.07, 3.94], P = 0.53) (Fig 3D).

Ruminococcus gnavus and immature OCN-expressing EPCs

There was a weak, but positive correlation between relative abundance of Ruminococcus gna-
vus and immature OCN-expressing EPCs (r = 0.15, P = 0.047) (S3 Fig) and it became more

prominent in patients with diabetes mellitus (r = 0.45, P = 0.03) (Fig 4). Given that age is an

important determinant of microbiome composition, we tested this correlation in limited age

range between 30 and 69 for sensitivity analysis, yielding stronger correlation in 16 diabetic

patients (r = 0.54, P = 0.03). Diabetic patients had higher levels of immature OCN-expressing

EPCs than non-diabetic patients (4.08 [3.00, 4.54] vs. 3.27 [2.09, 4.02] LN cell counts/100,000

Fig 3. Association between CAD, dysbiosis, TMAO, and OCN-expressing EPCs. (A) Circulating CD34+/CD133-/KDR+/OCN+ cell levels were not

different between patients with (N = 88) and without CAD (N = 114) (unpaired t-test P = 0.63), whereas circulating CD34-/CD133+/KDR+/OCN+ cell

levels were higher in patients with CAD (N = 88) than those without CAD (N = 114) (unpaired t-test P = 0.04). (B) Circulating levels of CD34+/CD133-/

KDR+/OCN+ and CD34+/CD133-/KDR+/OCN- cells were not different between patients with (N = 101) and without dysbiosis (N = 101) (unpaired t-test

P = 0.42 and P = 0.70, respectively). whereas circulating CD34-/CD133+/KDR+/OCN+ cell levels were higher in patients with dysbiosis (N = 101) than

those without dysbiosis (N = 101) (unpaired t-test P = 0.03). (C) Circulating CD34-/CD133+/KDR+/OCN+ cell levels were significantly higher in patients

with dysbiosis than those without (P = 0.03). Circulating CD34-/CD133+/KDR+/OCN- cell levels tended to be higher in patients with dysbiosis than those

without (P = 0.05). (D) Circulating levels of CD34+/CD133-/KDR+/OCN+ cells and CD34-/CD133-/KDR+/OCN+ cells were not different between

patients with>median and<median levels of TMAO (P = 0.61 and P = 0.53, respectively). (E) Circulating CD34+/CD133-/KDR+/OCN+ cell levels were

not different between patients with and without DM (P = 0.39), whereas circulating CD34-/CD133+/KDR+/OCN+ cell levels were higher in patients with

DM than those without DM (P = 0.03). CAD, coronary artery disease; DB, dysbiosis; DM, diabetes mellitus; EPC, endothelial progenitor cell; OCN,

osteocalcin; SB, symbiosis.

https://doi.org/10.1371/journal.pone.0249187.g003

Fig 4. Correlation between the relative abundance of Ruminococcus gnavus and OCN-expressing immature EPCs.

There was a moderate positive correlation between relative abundance of Ruminococcus gnavus and circulating CD34-/

CD133+/KDR+/OCN+ cell levels in patients with diabetes mellitus (r = 0.45, P = 0.03).

https://doi.org/10.1371/journal.pone.0249187.g004
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counts, P = 0.03) (Fig 3E). There was no significant correlation between immature OCN-

expressing EPCs and relative abundance of Lachnospiraceae NK4B4 (r = 0.05, P = 0.54) or

Ruminococcus Gauvreauii (r = 0.003, P = 0.97), both of which were likely to be protective

against CAD in our previous report [14].

Discussion

In the present study, we demonstrated that patients with CAD had a higher prevalence of dys-

biosis characterized by lower microbial richness and higher levels of TMAO than those with-

out CAD. The circulating levels of immature but not mature OCN-expressing EPCs were

significantly higher in patients with either CAD or dysbiosis than those without them. The rel-

ative abundance of the inflammatory disease-related microbe, Ruminococcus gnavus, was posi-

tively correlated with immature OCN-expressing EPCs, especially in patients with diabetes

mellitus. The compositional alteration of the gut microbiome may affect the levels of osteo-

genic OCN-expressing EPCs and TMAO. The current study may further support the link

between the gut microbiome and coronary atherosclerosis and vascular calcification in

humans.

OCN-expressing EPCs and CAD

We demonstrated in this study that levels of immature OCN-expressing EPCs were higher in

patients with CAD than those without CAD. We previously reported that the number of

mature OCN-expressing EPCs were elevated in patients with significant CAD (>50% steno-

sis), and also in patients with endothelial dysfunction and non-obstructive CAD than normal

controls [5]. In this study, 69 (61%) out of 114 patients without CAD were patients with

peripheral endothelial dysfunction (RH-PAT�2.0). The remaining 45 (39%) patients were

not confirmed to have endothelial dysfunction by non-invasive or invasive testing; however,

given that these patients were referred for clinically indicated coronary angiography because of

dyspnea and/or chest pain, some of them might have endothelial dysfunction. Therefore, our

current data showing no difference in the levels of mature OCN-expressing EPCs between

patients with and without CAD was still consistent with our previous observation reporting no

difference in mature OCN-expressing EPCs between patients with significant CAD and

patients with endothelial dysfunction and no-obstructive CAD [5]. It extends our observations

showing that immature OCN-expressing EPCs were higher in CAD patients than patients

with cardiovascular risk factors and no-obstructive CAD [6]. More interestingly, immature

OCN-expressing EPCs were even higher in patients with a history of unstable CAD than those

with a stable CAD history, suggesting the aggressive contribution of this particular subset of

EPCs to atherogenesis [6]. In contrast, we also reported the higher retention of mature OCN-

expressing EPCs within the coronary circulation in patients with coronary endothelial dys-

function than those without coronary endothelial dysfunction [4]. Therefore, mature and

immature OCN-expressing EPCs might possibly be involved in different processes leading to

vascular dysfunction and calcification; the former might be involved in the vascular injury or

abnormal endothelial repair, and the latter in atherogenesis.

Dysbiosis and immature EPCs

Our current data showed that gut dysbiosis was associated with increased levels of immature

OCN-expressing EPCs. We previously reported a positive relationship between OCN-express-

ing EPCs and vascular inflammation marker, ICAM [6]. Because TMAO increased ICAM

expression in cultured endothelium, we tested our hypothesis that TMAO might be associated

with the mobilization of OCN-expressing EPCs in the peripheral circulation [33]. However,
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TMAO levels were not associated with levels of OCN-expressing EPCs. Another potential link

between dysbiosis, EPCs, and CAD is inflammation. Indeed, we found a positive correlation

between the relative abundance of Ruminococcus gnavus and OCN-expressing immature

EPCs, which was prominent in patients with diabetes mellitus. We have previously reported

that the relative abundance of Ruminococcus gnavus increased in patients with CAD than

those without CAD in the same population, possibly through production of an inflammatory

polysaccharide with a resultant increase in tumor necrosis factor-α (TNF-α) [14,34]. In addi-

tion, certain clades of Ruminococcus gnavus have been associated with Crohn’s disease, whose

inflammation is driven by TNF-α [34]. In vitro, TNF-α stimulation increased EPCs adhesion

to the endothelium [35]. Mature and immature EPCs showed different responses to TNF-α
stimulation; immature EPCs produced significantly higher levels of myeloperoxidase and tis-

sue factor, and tended to produce more RANTES (regulated upon activation normal T cell

expressed and secreted), a proinflammatory chemokine inducing leukocyte migration and pla-

que formation, than mature EPCs [36,37]. Interestingly, we observed a borderline significant

association between dysbiosis and increased levels of immature EPCs without OCN expres-

sion. One possible hypothesis is that dysbiosis might promote mobilization of immature EPCs

into the peripheral circulation, and microbiome-driven TNF-α and TMAO stimulation might

in turn augment the inflammatory response, thus increasing their pathogenic profile. The rea-

son for the stronger correlation between Ruminococcus gnavus and OCN-expressing immature

EPCs in diabetic than non-diabetic patients was unclear; however, a recent study indicated

that strain-specific differences in fucosidases in Ruminococcus gnavus might be contributory

to the pathogenesis of diabetes mellitus, suggesting that the potential difference in the inflam-

matory process is caused by the microbial difference between diabetic and non-diabetic

patients [38]. Interestingly Rumminoccus gnavus which added with Clostridium symbiosum
protected underfed mice from malnutrition induced by fecal transplant from malnourished

infants in Malawi, suggesting the metabolic effects of the microbe [39]; this beneficial effects

observed in malnourished mice could potentially be deleterious in a well fed western

population.

EPCs carrying the osteoblastic marker, OCN, indicate their osteogenic property and may

mediate vascular calcification. We have shown previously that mononuclear cells from the

patients with the highest levels of OCN-expressing cells were able to form mineralized deposits

in the presence of calcium in vitro [5]. Additionally, we reported the positive association

between OCN-expressing EPCs and the progression of aortic stenosis, and detected these cells

in the calcified aortic valves [7,8]. Gut dysbiosis is a putative link between bone demineraliza-

tion (osteoporosis) and vascular mineralization (calcification), known as bone-vascular axis, in

the elderly, postmenopausal women, and patients with chronic kidney disease [40–43]. TNF-α
is also an inhibitor of bone formation [44]. It could be postulated that increased levels of

OCN-expressing cells accompanied by dysbiosis-induced inflammation might mediate this

bone-vascular axis, requiring future investigation. A recent study also suggested that hypergly-

cemic condition might promote secretion of proinflammatory and osteogenic factors from

macrophages, which might be associated with increased levels of OCN-expressing EPCs in dia-

betic patients [45].

Limitations

This study has several limitations. First, the cross-sectional design makes it challenging to

derive causal associations, and the results should be considered as hypothesis-generating. The

study participants were selected from the patients referred for clinically indicated coronary

angiography or patients with peripheral endothelial dysfunction. Selection bias cannot be
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avoided, thus potentially affecting the generalizability of our current observation. Though our

analyses were performed based on the categorization by CAD, dysbiosis, and TMAO levels,

the lack of healthy controls limits our ability to assess the normal range of OCN-expressing

EPCs and normal variations of gut microbiome composition. Second, the difference in base-

line characteristics between patients with and without CAD or dysbiosis might have affected

the observed variation in the levels of immature OCN-expressing EPCs, since there was a pau-

city of data on how these potential confounders affect OCN-expressing EPCs. Age and sex are

the crucial determinants of the gut microbiome composition [46,47]. In contrast, dysbiosis has

also been linked to other comorbidities such as hypertension, obesity, and diabetes mellitus,

leading to CAD [48–50]. Potential confounding effects were not eliminated in this study,

requiring future studies to verify the current observations in other populations. Nevertheless,

we have reported that gut dysbiosis was associated with CAD even after taking these con-

founders into account by comparing gut microbial composition between CAD patients and

age-, sex-, race-, and BMI-matched non-CAD patients [14]. We also reported that increased

circulating levels of immature OCN-expressing EPCs were independently associated with

unstable CAD after adjusting for age, sex, and other cardiovascular risk factors [6]. Third,

given that TMAO was not associated with OCN-expressing EPCs in this study, inflammation

may be another potential link between dysbiosis and OCN-expressing EPCs. The lack of

inflammatory markers limited our ability to mechanistically support above mentioned hypoth-

esis, requiring future investigation.

Conclusions

Our findings demonstrate the association between the composition of the gut microbiome and

CAD may, in part, be mediated by mobilization of immature OCN-expressing EPCs. This

alteration in circulating levels of OCN-expressing EPCs, which may lead to vascular calcifica-

tion, may potentially be mediated by gut-microbiome-derived inflammation but not by

TMAO. Future studies to explore the mechanistic role of Ruminococcus gnavus on atherogene-

sis merits further investigation.
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