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Abstract: A large number of sensors work in the narrow bandpass circumstance. Meanwhile, some
of them hold fine details merely along one and two dimensions. In order to efficiently simulate these
sensors and devices, the one-step leapfrog hybrid implicit-explicit (HIE) algorithm with the complex
envelope (CE) method and absorbing boundary condition is proposed in the narrow bandpass
circumstance. To be more precise, absorbing boundary condition is implemented by the higher
order convolutional perfectly matched layer (CPML) formulation to further enhance the absorption
during the entire simulation. Numerical examples and their experiments are carried out to further
illustrate the effectiveness of the proposed algorithm. The results show considerable agreement
with the experiment and theory resolution. The relationship between the time step and mesh size
can break the Courant–Friedrichs–Levy condition which indicates the physical size/selection mesh
size. Such a condition indicates that the proposed algorithm behaviors are considerably accurate
due to the rational choice in discretized mesh. It also shows decrement in simulation duration and
memory consumption compared with the other algorithms. In addition, absorption performance can
be improved by employing the proposed higher order CPML algorithm during the whole simulation.

Keywords: finite-difference time-domain (FDTD); hybrid implicit-explicit (HIE); convolutional perfectly
matched layer (CPML); complex envelope (CE); bandpass sensors and components

1. Introduction

With the development of the electronic industry, sensors have become more important
than ever before. Large numbers of sensors work in narrow bandpass circumstances or
individual frequency [1,2]. Although the finite-difference time-domain (FDTD) algorithm
has been extensively employed in many applications, sensor simulation by the FDTD
algorithm is severely limited by the inefficient bandpass calculation. Such conditions
also restrict the development of the FDTD algorithm [3]. The reason is that the FDTD
algorithm is based on the lowpass-sampling-theorem which can achieve considerable
performance merely in broadband simulation [4]. The time step becomes small, resulting in
an unacceptable simulation duration in bandpass problems. In order to efficiently simulate
bandpass problems, investigation of the alternative FDTD algorithm has become urgent.
Complex envelope (CE) method which is based on the bandpass-sampling-theorem shows
considerable potential in bandpass problems [5]. In the CE method, the mesh size can
be chosen according to the bandwidth rather than the maximum frequency, resulting in
significantl improvement, both from the aspect of efficiency and accuracy. The CE method
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was firstly employed into the conventional FDTD algorithm [6]. Then, it was introduced
into the unconditionally stable algorithms [7–10]. Through results, it can be concluded that
these algorithms can receive better behavior compared with the lowpass-sampling-theorem
based algorithms in bandpass simulation.

With the development of sensors, structures have become more complex than ever
before. For the fine details simulation, mesh size must be fine enough to satisfy the
calculation accuracy. Due to the existence of the Courant–Friedrichs–Levy (CFL) condition,
the relationship between time step and mesh size is established [11]. Thus, time step
must also be fine enough to maintain the stability of the algorithm. Such conditions also
result in an extremely long simulation duration. In order to alleviate such conditions,
unconditionally stable algorithms are proposed including the alternating direction implicit
(ADI), locally one-dimension (LOD), split-step (SS) procedures and others [12–15]. It has
been testified that the unconditionally stable algorithms are merely efficient in fine details
with all directions. When simulating fine details along one and two dimensions, more
than six matrices should be calculated at each time step resulting in increments of memory
consumption and simulation duration. Although these algorithms can overcome the CFL
condition, the effectiveness of the algorithm decreases significantly. In order to alleviate
such conditions, a hybrid implicit-explicit (HIE) procedure is proposed [16]. Through
explicitly updating components in a single direction and implicitly updating the others, the
HIE procedure can obtain considerable performance in low-dimensions [17,18]. However,
the HIE procedure is still a split-field updating procedure which increases the memory
and simulation duration [19]. To alleviate such conditions, the one-step leapfrog scheme is
employed into the HIE procedure [20].

Because the computer cannot solve infinite computational domains, an adequate
boundary condition must be employed at the boundaries [11]. To simulate infinite com-
putational domain in finite space, perfectly matched layer (PML) is regarded as one of
the most powerful and efficient absorbing boundary conditions [21]. The original PML
formulation is a split-field scheme which shows limitations in absorption and resources [22].
Unsplit-field formulation is proposed to alleviate such conditions including convolutional
PML (CPML), stretched coordinate PML (SC-PML) and complex-frequency-shifted PML
(CFS-PML) schemes [23–25]. Although they hold advantages in reducing late-time reflec-
tions and absorbing low-frequency evanescent waves, reflection at the low frequency still
needs to be enhanced [26]. Higher order PML formulation is proposed to not only enhance
the absorption in the time domain but also absorb low-frequency propagation waves in
the frequency domain [27,28]. The original higher order PML formulation must introduce
six auxiliary variables during calculation which occupies large number of computational
resources [29]. To alleviate such conditions, the higher order PML formulation with four
auxiliary variables is proposed [30]. In addition, existing higher order formulation is mainly
based on the CFS-PML scheme which shows limitation in complex media. The higher order
CPML is proposed to overcome these drawbacks [31,32]. It has been testified that compared
with the other schemes, it can significantly decrease the computational complexity with
considerable absorption in complex structures and media.

In order to simulate complex sensors and components whose fine details merely exist
along one and two dimensions, several algorithms have been proposed which still have
their own limitations. The original HIE procedures with PML (NPML) and CFS-PML
are proposed in two dimensions which cannot be employed into the practical employ-
ment [33,34]. Recently, the HIE procedure and its leapfrog scheme with higher order
PML are proposed in three dimensions [35–37]. However, they can merely be employed
in vacuum and magnetized plasma. The formulation for dielectric material still needs
to be investigated. From another aspect, all of the existing absorbing boundary condi-
tions for the HIE procedure and leapfrog scheme are based on the NPML and CFS-PML
formulation [35–39]. These algorithms must be modified according to the different com-
putational domains due to the media-dependent formulation. Computation complexity
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increases significantly due to the employment of higher order formulation. The reduction
in computation complexity also needs to be further investigated.

In order to efficiently simulate sensors with fine details in narrow bandpass circum-
stances, the one-step leapfrog HIE procedure is proposed with the CE method and higher
order CPML formulation. The proposed algorithm takes advantages of leapfrog HIE pro-
cedure, CE method and higher order CPML formulation, in terms of the calculating of
fine details along one and two dimensions, simulating bandpass problems and enhancing
absorption. Numerical examples and experiments are carried out for the illustration of
effectiveness. It can be concluded that results simulated by employing the proposed algo-
rithm show considerable agreement with the experiments and theory resolution. Compared
to the other algorithms, the proposed algorithm also shows significant improvement in
accuracy, efficiency and absorption.

2. Formulation

Because massive components exist in Maxwell’s equations, assuming the fine details
merely locate along x-direction, Ey and Hz components are selected as examples for demon-
stration. The other components can be obtained by employing the similar approach. The
Maxwell’s equations inside the dielectric material can be given as follows:

jωε0Ey + σEy = S−1
z ∂zHx − S−1

x ∂x Hz (1a)

− jωµ0Hy = S−1
z ∂zEx − S−1

x ∂xEz (1b)

where Sη , η = x, y, z is the stretched coordinate variable side PML regions with higher
order formulation which can be defined as:

Sη =

(
κη1 +

ση1

αη1 + jωε0

)(
κη2 +

ση2

αη2 + jωε0

)
(1c)

where σηn, n = 1, 2 and αηn are supposed to be positive real, κηn is supposed to be real.
According to the CPML formulation, by employing the partial fraction expansion to the
stretched coordinate variables, results can be converted by employing the inverse Laplace
transform, one obtains:

Sη(t) =

(
δ(t)
κη1

+ ζη1(t)

)(
δ(t)
κη2

+ ζη2(t)
)

(2)

where the coefficients can be given as ζηn = −rηne−vηntu(t), rηn = −σηn/
(

κ2
ηnε0

)
,

vηn = αηn/ε0 + σηn/
(
κηnε0

)
. In addition, δ(t) and u(t) represent the unit speed func-

tion and unit impulse function. It can be observed that the original Maxwell’s equations
obey the lowpass sampling-theorem which shows performance decrement with the band-
pass simulation. In order to alleviate such conditions, the CE method is introduced into the
Maxwell’s equations [5]. According to the CE method, the original signal can be given as
the complex envelope form, one obtains:

Φ = Re
{

Φ̂ejvt
}

(3)

where Re{·} represents the real number in the complex signal, Φ and Φ̂ represent the
original signal and complex envelope signal, v is the center frequency of the modulated
signal. According to the CE method and CPML formulation, Maxwell’s equations can be
given as:

(jv + ∂t)Êy + σÊy = Sz(t) ∗ ∂z Ĥx − Sx(t) ∗ ∂x Ĥz (4a)

(jv + ∂t)Ĥz = Sx(t) ∗ ∂x Êz − Sz(t) ∗ ∂zÊx (4b)



Sensors 2022, 22, 4445 4 of 18

In order to update the equations, Equation (2) is substituted into Equation (4a,b),
one obtains:

(jv + ∂t)Êy + σÊy =

F̂yz12 + κ−1
z1 F̂yz1 + κ−1

z2 F̂yz2 + κ−1
z1 κ−1

z2 ∂z Ĥx − F̂yx12 − κ−1
x1 F̂yx1 − κ−1

x2 F̂yx2 + κ−1
x1 κ−1

x2 ∂x Ĥz
(5a)

(jv + ∂t)Ĥz =

Ĝzx12 + κ−1
x1 Ĝzx1 + κ−1

x2 Ĝzx2 + κ−1
x1 κ−1

x2 ∂x Êy − Ĝzy12 − κ−1
y1 Ĝzy1 − κ−1

y2 Ĝzy2 − κ−1
y1 κ−1

y2 ∂y Êx
(5b)

where F and G are the auxiliary variables. By rewriting the equations into the discretized
domain for updating, the results can be given according to the sub-step procedure as:

The First Time Step:

Ên+1/2
y − p3xδx Ĥn+1/2

z + p3zδz Ĥn+1/2
x =

k1c1Ên
y + p4z F̂n

yz12 + p1z F̂n
yz1 + p2z F̂n

yz2 − p4x F̂n
yx12 − p1x F̂n

yx1 − p2x F̂n
yx2

(6a)

Ĥn+1/2
z − p3xδx Ên+1/2

y =

c1Ĥn
z + p4xĜn

zx12 + p1xĜn
zx1 + p2xĜn

zx2 − p4yĜn
zy12 − p1yĜn

zy1 − p2yĜn
zy2 − p3yδy Ên

x
(6b)

The Second Time Step:

Ên+1
y = k1c1Ên+1/2

y + p4z F̂n+1/2
yz12 + p1z F̂n+1/2

yz1 + p2z F̂n+1/2
yz2

+p3zδz Ĥn+1/2
x − p4x F̂n+1/2

yx12 − p1x F̂n+1/2
yx1 − p2x F̂n+1/2

yx2 − p3xδx Ĥn+1/2
z

(6c)

Ĥn+1
z + p3yδyÊn+1

x = c1Ĥn+1/2
z + p4xĜn+1/2

zx12 + p1xĜn+1/2
zx1

+p2xĜn+1/2
zx2 − p3xδx Ên+1/2

y − p4yĜn+1/2
zy12 − p1yĜn+1/2

zy1 − p2yĜn+1/2
zy2

(6d)

where the coefficients can be given as follows:
k1 = ε0/(ε0 + σ∆t), c1 = (2− jv∆t)/(2 + jv∆t), c2 = 2∆t/(2 + jv∆t), c3 = κ−1

η1 κ−1
η2 +

aη2κ−1
η1 + aη1κ−1

η2 + aη1aη2, aηn =
[
σηn exp

(
−vηn∆t− 1

)]
/
(

σηnκηn + αηnκ2
ηn

)
, bηn = −vηn∆t,

p1η = c2k1c3κ−1
z2 , p2η = c2k1c3κ−1

z2 , p3η = c2k1c3κ−1
z1 κ−1

z2 /∆η and p4η = c2k1c3.
According to the leapfrog HIE procedure, the first time step can be given by substitut-

ing the magnetic components into electric components, one obtains:(
1− p2

3xδ2x
)
Ên+1/2

y =
(
k1c1 − p2

3zδ2z
)
Ên

y
+p4z F̂n

yz12 + p1z F̂n
yz1 + p2z F̂n

yz2 − p4x F̂n
yx12 − p1x F̂n

yx1 − p2x F̂n
yx2

+p1x p3xδxĜn
zx1 + p2x p3xδxĜn

zx2 − p4y p3xδxĜn
zy12 − p1y p3xδxĜn

zy1 − p2y p3xδxĜn
zy2

−p1z p3zδzĜn
xz1 − p2z p3zδzĜn

xz2 + p4y p3zδzĜn
xy12 + p1y p3zδzĜn

xy1 + p2y p3zδzĜn
xy2

+c1 p3xδx Ĥn
z + p4x p3xδxĜn

zx12 − p3y p3xδxδy Ên+1/2
x

− c1 p3zδz Ĥn
x − p4z p3zδzĜn

xz12 − p3y p3zδzδy Ên+1/2
z

(7)

By rewriting the second time step to the previous step of n − 1, substituting magnetic
components to electric components accordingly, one obtains:(

1− p2
3zδ2z

)
Ên

y =
(
k1c1 + p2

3xδ2x
)
Ên−1/2

y

+p4z F̂n−1/2
yz12 + p1z F̂n−1/2

yz1 + p2z F̂n−1/2
yz2 − p4x F̂n−1/2

yx12 − p1x F̂n−1/2
yx1 − p2x F̂n−1/2

yx2

+p1x p3xδxĜn−1/2
zx1 + p2x p3xδxĜn−1/2

zx2 − p4y p3xδxĜn−1/2
zy12 − p1y p3xδxĜn−1/2

zy1 − p2y p3xδxĜn−1/2
zy2

+p1x p3zδzĜn−1/2
zx1 + p2x p3zδzĜn−1/2

zx2 − p4y p3zδzĜn−1/2
zy12 − p1y p3zδzĜn−1/2

zy1 − p2y p3zδzĜn−1/2
zy2

+p4x p3xδxĜn−1/2
zx12 − c1 p3zδz Ĥn

x − p3y p3zδzδy Ên−1/2
x

+ p4x p3zδzĜn−1/2
zx12 + c1 p3xδx Ĥn

z − p3y p3zδzδy Ên−1/2
z

(8)
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According to the leapfrog scheme, by adding Equations (7) and (8) together into a
single equation, after some manipulations, one obtains:(

1− p2
3xδ2x

)
Ên+1/2

y =
(
k2

1c2
1 + k1c1 p2

3xδ2x
)
Ên−1/2

y + c1 p3xδx Ĥn
z − c1 p3zδzĤn

x

+ k1c1 p4z
2

(
F̂n

yz12 + F̂n−1
yz12

)
+ k1c1 p1z

2

(
F̂n

yz1 + F̂n−1
yz1

)
+ k1c1 p2z

2

(
F̂n

yz2 + F̂n−1
yz2

)
− k1c1 p4x

2

(
F̂n

yx12 + F̂n−1
yx12

)
− k1c1 p1x

2

(
F̂n

yx1 + F̂n−1
yx1

)
− k1c1 p2x

2

(
F̂n

yx2 + F̂n−1
yx2

)
− k1c1 p3y p3zδzδy

(
Ên+1/2

x + Ên−1/2
x

)
− k1c1 p3y p3zδzδy

(
Ên+1/2

z + Ên−1/2
z

) (9)

The auxiliary variables can be given as, for example,

F̂n+1/2
xη1 = aη2

n−1

∑
m=0

e−vη2m∆t∂η Ĥn−m
η̃ (10a)

F̂n+1/2
xη2 = aη1

n−1

∑
m=0

e−vη1m∆t∂η Ĥn−m
η̃ (10b)

F̂n+1/2
xη12 = aη1aη2

n−1

∑
m=0

e−vη1m∆t
n−1

∑
m=0

e−vη2m∆t∂η Ĥn−m
η̃ (10c)

where η̃ denotes the complement of η, for example, η = y, and η̃ = z. In order to solve the
summation term in Equation (10a–c), the recursive convolution (RC) method is employed
during the calculation. According to the RC method, the results of auxiliary variables can
be given as:

F̂n+1/2
xη1 = bη2 F̂n−1/2

xη1 + aη2∂η Ĥn
η̃ (11a)

F̂n+1/2
xη2 = bη1 F̂n−1/2

xη2 + aη1∂η Ĥn
η̃ (11b)

F̂n+1/2
xη1 = bη1bη2 F̂n−1/2

xη1 + aη1aη2∂η Ĥn+1/2
η̃ (11c)

According to the convexity of Maxwell’s equations, the other auxiliary variables and
components can be solved by employing a similar approach. By employing the above-
mentioned equations, leapfrog HIE procedure with CPML formulation and CE method can
be implemented. The entire update procedure of the described is as follows:

(1) Explicitly update En+1/2
x , En+1/2

z , in the half-integer time step;
(2) Explicitly update Hn

x , Hn
z in the integer time step;

(3) Implicitly update En+1/2
y and Hn+1/2

y along the directions of fine details;
(4) Explicitly update auxiliary variables inside PML regions.

The block diagram of the entire update procedure is shown in Figure 1 which cor-
responds to the above-mentioned procedure. In order to demonstrate the simulation
duration and memory consumption of different PML algorithms, a number of operators are
employed during comparison. During the algorithm implementation, a calculation of multi-
plication/division and addition/subtraction determine the efficiency and memory in theory.
Multiplication/division operators and implicit equations occupy much more resources
compared with addition/subtraction operators and explicit equations, respectively. Thus,
it is important to analyze the influence of multiplication/division and addition/subtraction
numbers on efficiency and resources. The compare different PML algorithms, FDTD-PML
in [40], HIE-PML in [33], LHIE-CPML in [34], CE-HIE-HPML in [41], CE-LHIE-HPML and
FDTD-HPML in [42] with explicit and implicit equations are employed with results that
are shown in Table 1.

As can be concluded from Table 1, the explicit algorithms show the most considerable
performance is due to the non-calculation of matrices. Due to the introduction of the implicit
scheme, a number of multiplication/division and addition/subtraction operators show
significant improvement, resulting in increments of simulation duration and consumption
memory. Meanwhile, due to the employment of the higher order formulation, algorithms
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also show significant increments in efficiency and resources at the same time. To be more
precise, the leapfrog scheme and CPML formulation show a decrement in computational
complexity. Such conditions result in a memory and simulation duration decrement
by CPML and leapfrog schemes compared to the CFS-PML and its original schemes,
respectively. Due to the introduction of the CE method, several coefficients and operators
should be calculated at each time step resulting in the increment of memory. In conclusion,
the proposed algorithm can reduce the complexity of the algorithm compared with the
other PML formulations based on the HIE procedure. However, in the bandpass simulation,
the time step can be enlarged according to the percent bandwidth of the source. Owing to
such conditions, the CE method can significantly improve the entire performance during
the simulation.
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Figure 1. The block diagram of the entire update procedure. Figure 1. The block diagram of the entire update procedure.

Table 1. The multiplication/division and addition/subtraction operators with explicit and implicit
equations in different algorithms.

PML Algorithm
Addition/Subtraction Multiplication/Division Total Operators

Implicit Explicit Implicit Explicit

FDTD-PML 0 60 0 42 102

FDTD-HPML 0 90 0 78 168

HIE-PML 40 54 36 28 158

LHIE-CPML 36 54 32 28 150

CE-HIE-HPML 66 72 54 36 228

CE-LHIE-HPML 54 72 36 36 198

Proposed 48 66 40 36 190
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3. Numerical Results and Experiments

The effectiveness of the proposed scheme can be demonstrated through employing
the numerical example and experiment including a filter for the sensors system with
experiments and remote sensing problems with theory resolution. The computer for the
code holds the parameter of i7-11700k and DDR4 128 GB. The program is implemented
by Fortran under Visual Studio. The entire computation duration can be described as the
following procedure: (1) Import geometry structures with STL files; (2) Set condition for
calculation including time step, mesh size and more; (3) Start Calculation; (4) Export results
for TXT file.

3.1. Micro-Strip Filter for Sensors System

Within microwave components, micro-strip components can be regarded one of the
most powerful and widely spread. Among some of them, an extremely thin metal patch
is located on the surface of the device. Thus, by employing the unconditionally stable
algorithms and conventional explicit algorithms directly, uniform extremely fine mesh must
be employed within the entire computational domain which results in significant incre-
ments of memory and duration. In order to alleviate such conditions, the HIE procedure is
introduced for the fine details along one and two dimensions. Here, a micro-strip filter for
sensors system is employed for the illustration. The sketch picture of the structure is shown
as Figure 2. Through the establishment of a rectangular coordinate system, a complex and
oblique patch can be expressed and located by the specific coordinate location, as shown in
Table 2. Along the vertex coordinates of the patch, the entire structure can be established
in the CAD mechanical drawing. The coordinate origin is located at the middle of the left
bottom edge. In order to clarify the position of each point, Figure 2a shows each point of
the patch from xoy plane. The enlargement of the left side of the structure is shown in
Figure 2b. The right side of the structure can be obtained through the symmetry principle.
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Table 2. The specific coordinate location of each point in Figure 2a,b on the surface of the model
in (x, y, z) form (unit: mm).

Point in
Figure 2a,b

Specific Coordinate Location
(x, y, z)

Point in
Figure 2a,b

Specific Coordinate Location
(x, y, z)

1 (−9.7, −0.175, 0.005) 2 (−5.3, −0.175, 0.005)
3 (−3.4, 0.48, 0.005) 4 (−3.46, 0.59, 0.005)
5 (−4.4, 0.175, 0.005) 6 (−9.7, 0.175, 0.005)
7 (−4.7, −0.25, 0.005) 8 (−4.64, −0.25, 0.005)
9 (−3.3, 0.22, 0.005) 10 (−3.27, 0.18, 0.005)

11 (−1.9, 0.77, 0.005) 12 (−2.0, 0.93, 0.005)
13 (−3.1, −0.3, 0.005) 14 (−3, −0.45, 0.005)
15 (−1.64, 0.11, 0.005) 16 (−1.64, 0.11, 0.005)
17 (−3.1, 0.69, 0.005) 18 (−0.4, 0.88, 0.005)
19 (−3.07, −0.29, 0.005) 20 (−3, −0.45, 0.005)

The entire filter structure is composed of substrate and patch. The dielectric substrate
with the electrical parameter of εr = 9.4 holds the dimensions of 19.4× 4× 0.38 mm. The
gold patches whose parameters can be founded in [43] are located on the surface of the
devices. The entire model can be regarded as the center–symmetry model. The excitation
port 1 and port 2 with the width and length of 0.34 mm and 0.385 mm are located at the
left and bottom of the devices, respectively. The height of substrate and patch along the
z-direction are 0.38 mm and 5 mm, respectively. It can be observed from Figure 2c that
the entire structure holds the fine details along z-direction. By applying uniform mesh
sizes directly to the entire structure, large computational domains will occur resulting in an
unacceptable simulation.

The entire computational domain is shown in Figure 3. As can be observed, the entire
computational domain holds the parameters of 19.8× 4× 3.385 mm. At the boundaries of x-
directions and the top boundary of z-direction, the 10-cell-PML is employed for termination
to absorb outgoing waves. The other boundaries are terminated by the perfectly electronic
conductor (PEC). The source with the center frequency and bandwidth of 20 GHz and
5 GHz propagates at port 1, along the positive side along x-direction which corresponds
to the percent bandwidth of %B = 25. The observation point is located at the corner
of port 2 for observing the wave reflection. In order to obtain the best absorption, both
in the time domain and frequency domain, the parameters inside the PML regions are
chosen to achieve such conditions. The parameters of the higher order PML algorithms
are κη1 = 12, αη1 = 1.1, mη1 = 3, ση1max = 2.6ση1opt, κη2 = 11, αη2 = 0.001, mη2 = 4 and
ση2max = 3.0ση2opt, where

σηnopt =
(
mηn + 1

)
/(150 · π · ∆) (12)
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For comparison, parameters of CFS-PML regions are κη = 6, αη = 1.7, mη = 2 and
σηmax = 3.2σηopt. In order to maintain the accuracy of calculation, non-uniform mesh
sizes are employed in the HIE algorithm with the parameters of ∆x = ∆y = 0.2 mm and
∆z = 0.0025 mm. The uniform mesh sizes of the conventional FDTD algorithm are chosen
as ∆x = ∆y = ∆z = ∆ = 0.0025 mm. Thus, time step in the explicit and implicit algorithms
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are chosen as 0.48 fs and 4.32 fs, respectively. It can be concluded that the CE method
can significantly enlarge the time step in the bandpass simulation. The accuracy of the
algorithm in the time domain can be evaluated by the waveform obtained by a different
PML algorithm in the time domain at the observation point, shown as Figure 4.
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Waveforms obtained by explicit algorithms and implicit algorithms with CFLN = 1
are almost overlapped, as shown in Figure 4a. Due to the employment of bandpass-
sampling-theorem, the complex envelope method generates the envelope of waveform.
Meanwhile, waveforms obtained by the CE method also overlapped with the boundaries
of the waveform obtained by the explicit algorithms. Such conditions indicate that these
algorithms almost hold the same accuracy. The waveforms obtained by different PML
algorithms with large CFLNs are shown in Figure 4b. Compared with the waveform
with CFLN = 1, waveforms show significant shifting which indicates the degeneration of
calculation accuracy. Compared with the lowpass-sampling-theorem based algorithms,
bandpass-sampling-theorem based algorithms show less curves shifting which indicates a
better computational accuracy with the circumstance of larger CFLNs. The curve obtained
by the proposed scheme is overlapped with that obtained by the CE-LHIE-CPML scheme.
Such conditions indicates that these algorithms hold the same accuracy. Meanwhile, it
shows the least shifting compared to the other implicit algorithms with larger CFLNs.
Such conditions indicates that the proposed algorithm has the best accuracy among these
implicit algorithms.

The wave reflection at the boundaries of the domain also affects the accuracy of the
calculation. The wave reflection can be reflected by the relative reflection error in the time
domain which can be defined as:

RdB(t) = 20 log10

[∣∣∣Et(t)− Er(t)
∣∣∣/∣∣∣max

{
Er(t)

}∣∣∣] (13)

where Et(t) is the test solution which can be directly obtained at the observation point and
Er is the reference solution. The reference solution can be calculated by the 20 times enlarged
computational domain with 128-cell-PML regions. By employing such a circumstance,
reflection wave at the boundaries of the domain can be ignored during the evaluation.
Figure 5 shows the relative reflection error in the time domain obtained by different
PML algorithms.
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The relative reflection error obtained by different PML algorithms with CFLN = 1 is
shown in Figure 5a. It can be concluded that the absorption decreases slightly compared
with the conventional explicit algorithms due to the introduction of the matrix calculation.
Thus, LHIE-PML and LHIE-CPML schemes almost hold the same performance which is
inferior compared to the FDTD-PML. The performance can be significantly improved by
employing the higher order formulation from both the aspect of late-time reflections and
maximum relative reflection error (MRRE). In addition, by employing the CE method,
absorption can be significantly improved in the bandpass circumstance. Thus, bandpass-
sampling-theorem based algorithms can obtain better performance compared with the
FDTD-HPML. It can be concluded that the CE-LHIE-HPML and CE-LHIE-CPML algo-
rithms can obtain better performance compared to the CE-HIE-PML. The reason is that
the LHIE algorithm can obtain better numerical dispersion compared to the original HIE
algorithm, resulting in such a condition. Figure 5b shows the relative reflection error in the
time domain obtained by different PML algorithms with larger CFLNs. The absorption
decreases with the enlargement of CFLNs due to the increment of numerical dispersion
with the enlargement of time steps. It can also be concluded that LHIE algorithm can obtain
better performance compared with the HIE algorithm, which can be reflected by the LHIE-
CPML, CE-LHIE-HPML and CE-LHIE-CPML algorithms compared with the HIE-PML and
CE-HIE-HPML, respectively. The CE-LHIE-HPML can obtain almost the same, compared
with the proposed CE-LHIE-CPML. Most importantly, performance shows its significant
advantages with larger CFLNs, compared to the FDTD-PML in bandpass circumstance.

It can be concluded from Table 3 that the employment of higher order formulation and
CE method results in the increment of simulation duration and computational resources
due to the increment of many more coefficients, auxiliary variables, field components and
matrices. Thus, compared with the PML scheme and explicit schemes, time and memory
occupied by the HPML and HIE procedure increases significantly. Although the CE method
slightly increases the memory consumption during the simulation, iteration steps decrease
at the same time due to the enlargement of the time step. It should be noticed that CE
method alleviates the time increment problem of the implicit algorithm with lower CFLNs.
The proposed scheme can obtain a 13.7% time improvement compared to the FDTD-PML.
With the improvement of CFLNs, simulation duration can be decreased by enlarging the
time step resulting in an improvement of efficiency. With CFLN = 8, the CE method based
implicit algorithm shows more than an 80% time improvement compared with the FDTD-
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PML. In summary, through the time domain simulation, the proposed scheme can obtain
the same accuracy and absorption compared with the previous work which is based on the
bandpass-sampling-theorem. Meanwhile, the memory occupation and simulation duration
can be decreased significantly.

Table 3. The computational duration, consumption memory, iteration step, memory increment and
time reduction obtained by different PML algorithms.

PML Algorithm CFLN Steps Memory (GB) Memory
Increment (%) Time (min) Time

Reduction (%)

FDTD-PML 1 65,536 0.5 - 21.9 -

FDTD-HPML 1 65,536 0.9 80 38.4 −75.3

HIE-PML 1 65,536 0.9 80 41.7 −90.4

LHIE-CPML 1 65,536 0.8 60 38.3 −42.8

CE-HIE-HPML 1 7282 1.4 180 24.0 −9.5

CE-LHIE-HPML 1 7282 1.3 160 22.1 −9.0

CE-LHIE-CPML 1 7282 1.1 120 18.9 13.7

HIE-PML 8 8192 0.9 80 12.6 42.5

LHIE-CPML 8 8192 0.8 60 10.3 53.0

CE-HIE-HPML 8 911 1.4 180 4.6 79.0

CE-LHIE-HPML 8 911 1.3 160 3.5 84.0

CE-LHIE-CPML 8 911 1.1 120 2.9 86.8

The above-mentioned discussion verifies the effectiveness of the algorithm in the time
domain. In order to further testify the algorithm in the frequency domain, a filter for the
sensors system is simulated and manufactured. The scattering parameter is one of the most
important parameters in the evaluation. Here, return loss (S11) and transmission loss (S21)
are considered in the frequency domain. The photograph of the filter and its sketch size is
shown in Figure 6 which is compared with the coin with radius of 25 mm.
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In order to demonstrate the performance of the filter in the frequency domain, results
are measured through the following system, shown as Figure 7. Due to the fact the excitation
ports hold extremely fine details, the excitation source with a probe is employed to excite
the filter structure. The probe at each port is also employed to collect the reflection wave
and transmission wave. At the other end of the cable, a spectrum analyzer is employed
for the evaluation of performance. The return loss and transmission loss can be measured
from such a system.
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Figure 8 shows S11 and S21 obtained by different PML algorithms and its experiments,
respectively. Through Figure 8a,c, it can be observed that these curves obtained by different
PML algorithms are almost overlapped. Such conditions indicate that these algorithms
almost hold the same computational accuracy during the calculation in the entire frequency
band. Through Figure 8b,d, it can be observed that the curves show shifting compared to
the lower CFLNs. Such conditions indicate that the accuracy of algorithms decrease with
the enlargement of CFLNs. The reason is that the numerical dispersion increases with the
enlargement of the time step which results in the degeneration of accuracy. The curves
obtained by the proposed scheme and CE-LHIE-HPML hold the least shifting, indicating
the best accuracy. It can also be concluded that compared with the lowpass-sampling-
theorem based algorithms, algorithms that are based on the CE method hold better accuracy
in the entire frequency band. In summary, simulation and measurement shows the same
conclusion with that obtained in the time domain simulation. In addition, all of these
algorithms show considerable agreement with the experiment. Such a condition indicate
that the proposed algorithm can be extensively employed in practical engineering.

However, there is still error between simulation and experiment. The reason can be
described from the following aspects: (1) The manufacturing process tolerance results in
disagreement compared to the size in the simulation. The generation of shifting is caused
by such a condition. Thus, the manufacturing process tolerance overcoming the technique
becomes increasingly important; (2) The measurement of the filter system is a precision-type
instrument, especially for the probe. The pollution of the devices also leads to shifting in
the experiment; (3) Due to the existence of the complex and oblique patch, the conventional
conformal method in the Yee’s grid becomes inaccurate. Conformal error causes occur at
the oblique and complex part. Such conditions also result in the curves shifting. Thus,
improvement on the conformal method for the HIE algorithm is also worth investigating.

3.2. Remote Sensing Problem with Theory Resolution

The performance of the proposed algorithm has been demonstrated by employing
the above-mentioned numerical example and its corresponding experiment. Through
results, its behaviors show considerable performance during the whole simulation. In order
to further demonstrate the efficiency in much more complex problems, a metal sphere
model is considered. The normal vector of the sphere model ranges from −180 degree to
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180 degree which holds the most complexity among all of the structures. Because the metal
sphere model in the sensing problem holds theory resolution, calculation accuracy can be
demonstrated through the comparison. Figure 9 demonstrates the sketch picture of the
remote sensing problem with the metal sphere.
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The entire computational domain holds dimensions of 250× 250× 250 in each di-
rection. The metal sphere model with the radius of 50 mm can be regarded as the PEC,
located at the center of the domain. The modulated Gaussian pulse with the center fre-
quency and maximum frequency of 1.5 GHz and 2.0 GHz propagates along the negative
side along x-direction, whose percent bandwidth can be obtained as %B = 50. At the
boundaries of the domain, all of the boundaries are terminated by 10-cell-PML for wave re-
flection. The parameters of higher order PML algorithms are κη1 = 100, αη1 = 2.5, mη1 = 2,
ση1max = 0.5ση1opt, κη2 = 3, αη2 = 1.3, mη2 = 1 and ση2max = 0.01ση2opt. For comparison,
parameters of CFS-PML regions are κη = 170, αη = 2.1, mη = 3 and σηmax = 0.8σηopt.
In order to make a comparison of computational accuracy between different algorithms,
uniform mesh size is employed as ∆x = ∆y = ∆z = ∆ = 2.5 mm. Thus, the entire
computational domain can be discretized as 100∆x× 100∆y× 100∆z. The time step of the
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lowpass-sampling-theorem based and bandpass-sampling-theorem based algorithms are
14.4 fs and 57.6 fs, respectively.
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Figure 9. The sketch picture of the metal sphere model inside the entire computational domain.

The accuracy of the algorithm can be reflected by the radar cross section (RCS) pa-
rameter in the frequency domain. Figure 10 shows the RCS obtained by different PML
algorithms and CFLNs in the frequency domain and its theory resolution. As can be ob-
tained from Figure 10a, all of the curves are overlapped. Such conditions indicate that all of
the algorithms hold the same accuracy with CFLN = 1. However, the curves show shifting
compared to the theory resolution. The reason is that numerical dispersion and reflection
waves increase at the same time with the enlargement of CFLNs. It can be concluded that
the proposed algorithm shows the least shifting. Such conditions indicate that it holds
the best accuracy in the frequency domain with larger CFLNs. The effectiveness of the
algorithm can also be reflected by the computational duration, consumption memory, itera-
tion step, memory increment and time reduction obtained by different PML algorithms, as
shown in Table 4.
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Table 4. The computational duration, consumption memory, iteration step, memory increment and
time reduction obtained by different PML algorithms in the sphere model.

PML Algorithm CFLN Steps Memory (GB) Memory
Increment (%) Time (min) Time

Reduction (%)

FDTD-PML 1 65,536 0.4 - 4.6 -

FDTD-HPML 1 65,536 0.8 −100 10.2 −152.4

HIE-PML 1 65,536 0.8 −100 13.7 −197.8

LHIE-CPML 1 65,536 0.7 −75 10.9 −137.0

CE-HIE-HPML 1 7282 1.1 −175 4.9 −6.5

CE-LHIE-HPML 1 7282 1.0 −150 4.7 −2.2

CE-LHIE-CPML 1 7282 0.8 −100 4.4 4.3

HIE-PML 8 8192 0.8 −100 2.7 45.7

LHIE-CPML 8 8192 0.7 −75 2.3 50.0

CE-HIE-HPML 8 911 1.1 −175 0.7 84.8

CE-LHIE-HPML 8 911 1.0 −150 0.6 87.0

CE-LHIE-CPML 8 911 0.8 −100 0.4 91.3

It can be concluded from Table 4 that the bandpass-sampling-theorem can significantly
improve the calculation efficiency due to the enlargement of time steps and decrement
of iteration steps. Compared with the original HIE procedure, the one-step leapfrog
scheme can update the components at the half-integer and integer steps, respectively. Such
conditions also improve the performance of the entire algorithm. In summary, it can obtain
the same conclusion as the previous example, that the proposed scheme holds the best
accuracy, efficiency and resources compared to the existed algorithms.

Due to the existence of a massive absorbing boundary condition, the choice of ab-
sorbing boundary condition according to different simulation problems has raised much
attention. There are several widely-spread absorbing boundary conditions including per-
fectly matched layer and transparent boundary conditions (TBC) [44]. It can be concluded
from the simulation that higher order PML formulation can significantly enhance the ab-
sorption at low-frequency band due to the absorption of the low-frequency propagation
waves. The employment of higher order PML formulation is available for problems with
large amounts of low-frequency waves. For the simulation without much low-frequency
waves, the unsplit CFS-PML formulation shows its advantages in late-time reflections and
low-frequency evanescent waves. For the higher frequency range applications, due to the
non-absorption of plasmonic waves in optical waveguide devices, TBC formulation shows
its significant advantages with great potential.

4. Conclusions

In order to efficiently simulate devices for a sensors system in narrow bandpass
circumstances, the one-step leapfrog HIE algorithm with the complex envelope method
and higher order CPML formulation is proposed. Through the implementation, dielectric
material with fine details along one and two dimensions can be solved. The numerical
example and its experiment are carried out for the demonstration of effectiveness. It can be
concluded from the results that the proposed algorithm shows its advantages in accuracy,
efficiency, absorption and computational resources, both in the time domain and frequency
domain. Meanwhile, the CFL condition can be broken in the proposed scheme which also
indicates the efficiency improvement in the entire simulation. Compared with the previous
work, it can maintain considerable performance with decrement of computational resources
and simulation duration.
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In future work, the method to reduce memory consumption and simulation duration
increment caused by matrix solution in the HIE procedure can be further investigated.
Meanwhile, numerical dispersion increases with the enlargement of the time step, which
affects the calculation accuracy significantly. The method to decrease numerical dispersion
with a larger time step is worth investigating. Finally, conformal errors still exist in the
complex and oblique structures. Improvements on the conformal method for the HIE
algorithm is also worth investigating.
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