
Investigating biocomplexity through the
agent-based paradigm
Himanshu Kaul and Yiannis Ventikos
Submitted: 5th July 2013; Received (in revised form): 4th October 2013

Abstract
Capturing the dynamism that pervades biological systems requires a computational approach that can accommodate
both the continuous features of the system environment as well as the flexible and heterogeneous nature of compo-
nent interactions. This presents a serious challenge for the more traditional mathematical approaches that assume
component homogeneity to relate system observables using mathematical equations.While the homogeneity condi-
tion does not lead to loss of accuracy while simulating various continua, it fails to offer detailed solutions when
applied to systems with dynamically interacting heterogeneous components. As the functionality and architecture
of most biological systems is a product of multi-faceted individual interactions at the sub-system level, continuum
models rarely offer much beyond qualitative similarity. Agent-based modelling is a class of algorithmic computational
approaches that rely on interactions betweenTuring-complete finite-state machinesçor agentsçto simulate, from
the bottom-up, macroscopic properties of a system. In recognizing the heterogeneity condition, they offer suitable
ontologies to the system components being modelled, thereby succeeding where their continuum counterparts
tend to struggle. Furthermore, being inherently hierarchical, they are quite amenable to coupling with other compu-
tational paradigms. The integration of any agent-based framework with continuum models is arguably the most
elegant and precise way of representing biological systems. Although in its nascence, agent-based modelling has
been utilized to model biological complexity across a broad range of biological scales (from cells to societies). In
this article, we explore the reasons that make agent-based modelling the most precise approach to model biological
systems that tend to be non-linear and complex.
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INTRODUCTION
Quantifying, and even defining, the complexity

paradigm has been challenging due to differences

among systems that are considered complex in

terms of their information content, dimensionality

and basic functional units [1]. However, complex

systems are usually characterized by the presence of

numerous (sometimes) heterogeneous components

that can interact non-linearly to yield a large variety

of possible configurations [1], absence of rigid

boundaries [2], flexibility in terms of component

membership (components can have multiple mem-

berships) [2], and the ability to display emergent, self-

organizing and adaptive behaviour [3]. Although

complicated systems (such as the nerve network

found in sea slugs of the genus Aplysia [4])—rela-

tively straightforward to define in mathematical

terms—partially share the first characteristic of a

complex system (i.e. it may possess numerous inter-

acting components), they differ from complex sys-

tems in terms of connectivity among system

components.

A complicated system may have numerous com-

ponents, but it operates linearly. In other words, it

operates in order (elements are not connected, and

hence there is an absence of dynamics between them

[3]), as opposed to chaos where every element is

connected to every other element [3]. Complicated

systems are therefore predictable [4]. Complex sys-

tems on the other hand operate at an intermediate
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state between order and chaos [2–4]. Their out-

comes, therefore, are more difficult to predict. This

lack of predictability results from the diversity of

interactions that the heterogeneous components are

capable of engaging in. As a result, simulating the

spatiotemporal evolution of complex systems

requires identification of the nature of functional/

hierarchical relationship(s) between the interacting

components. A special case of the complex phenom-

enon, and the subject of this review, is

biocomplexity.

Biocomplexity, as proposed by the US National

Science Foundation [5], emerges from ‘dynamic

interactions among the biological, physical, and

social components of the Earth’s diverse environ-

mental systems’, and, as the term itself suggests, is a

property of biological systems. According to

Michener et al. [6], it arises when temporal, concep-

tual and spatial boundaries of a biological system are

breached. Appearance of emergent behaviour

(whether evolutionary, self-organizing or adaptive)

is the corresponding result. A philosophical [7] and

computational [8] discussion on emergence can be

found in the indicated references. Metabolic path-

ways, differentiation, tissue morphogenesis, embryo-

genesis and ecosystems are but a few examples of

complex biological processes, from the sub-molecu-

lar to the planetary.

Complexity in biological systems is a result of the

bi-directional cross-talk that exists among system

components, and between these components and

their (micro)environments, which is further aug-

mented by the heterogeneity of system components.

Furthermore, the macroscopic behaviour in biolo-

gical systems is underpinned by a vast range of inter-

actions between interconnected parts at a multitude

of scales in the absence of a central organizing struc-

ture [9,10]. Investigating the governing dynamics

that regulate such systems entails experimentation

of the trial-and-error flavour, but the, sometimes,

colossal gaps between system outputs under slightly

varying initial conditions have done little to decrypt

the black-box-like modus-operandi of such systems.

As such, there has been, until recently, an inconveni-

ent absence of computational models capable of

making accurate quantifiable predictions in the lit-

erature. To understand precisely the nature of bio-

logical systems, therefore, requires supplementing

the empirical with the quantifiable, and hence, a

synergistic collaboration of experimental and com-

putational methods.

Computational tools utilized to model bio-

logical phenomena can be categorized, broadly, as

continuum or discrete. Whereas the former describe

the numerical changes of the variables that represent

the system, the latter can indicate how and why the

dynamics involving system components operate [11].

Continuum approaches, such as those used to address

traditionally the governing laws of fluid or solid

dynamics, employ classical differential equation-

based models that may have numerical or approxi-

mate solutions. However, mathematical equations

representing either a collection of cells or organisms

or their (micro)environment do not lend themselves

as the most precise form of ontologies for biological

systems. While the continuum approach has been

applied successfully to predict macroscopic observ-

ables such as regional cell numbers, traction forces

and wound morphometry, to name a few, classic

continua are not dynamic—unlike biological systems

they do not change their material properties over time

[12] (although, of course, numerous continuum com-

putational methods that attempt to incorporate such

variations have been proposed). Their shortcoming is

even more pronounced when simulating emergent

behaviour that ‘arises through ‘‘self-organization’’

and that could not have otherwise been characterized

a priori’ [9]—an event that is probably beyond the

remit of the continuum approach.

Discrete approaches, such as cellular automata

[13,14] (CA)—which employ interacting finite-

state machines [15]—or the cellular Potts modelling

approach (CPM) [16]—which simulates systems by

mapping cells to domains on a lattice—can capture

(i) the non-homogeneous character of biological sys-

tems (which is also responsible for their complexity)

and (ii) the emergence of global patterns from under-

lying rules, in a manner more faithful to cellular

systems than their continuum counterparts. Agent-

based modelling (ABM) is one such discrete

approach. The rest of the article is devoted to,

among others, an introduction to ABM, definitions

of the term agent, discussion on the agent-based

philosophy and its ontological relevance to biological

systems, a brief discussion on the strengths and

weaknesses of the two computational approaches, a

generic template for creating models using the agent-

based paradigm and reviewing agent-based models,

of either standalone (purely discrete) or hybrid (con-

tinuum–discrete) variety, that have been employed

to simulate biological phenomena across a broad

range of biological scales.
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AGENT-BASEDMODELLING
To model biological behaviour, investigators have

applied a host of computational approaches, such as

casting laws in partial differential equations form, gas

kinetic theory, CA, Brownian agents, Bayesian net-

works, co-clustering latent variable models, etc.

[17–22], that have had their fair share of success in

predicting certain stem cell behaviour, given the

model assumptions and boundary conditions. Yet,

models of such flavour face challenges when

attempting to offer adequately comprehensive in-

sights into the processes that govern the behaviour

of biological systems [23]. Furthermore, global ob-

servations in continuum models represent averaged

values [24] and assume homogeneity of system com-

ponents. In doing so, the continuum models run the

risk of ignoring a system’s low-level details [14,25], a

feature quite central to biological function [26,27].

An agent-based approach is typically utilized when

(i) individuals to be modelled are locally interacting

discrete entities that display adaptive behaviour [28],

(ii) the population comprising the discrete entities is

heterogeneous [24], (iii) the topology of interactions

itself is heterogeneous [24], (iv) spatial considerations

are important because spatial localization of individ-

ual entities takes precedence [24,29], (v) emergent

phenomena are the primary interest [24,29] and

(vi) the number of individuals to be modelled is rela-

tively small (generally less than a billion [29]).

Biological systems therefore fall under the remit of

ABM. As such, assuming that the aforementioned

criteria are met, agent-based models can be em-

ployed to model any scale of interest (from cells to

societies). ABM ‘discretizes’ the system being mod-

elled into a collection of autonomous decision-

making entities that act at each of several discrete

time steps based on their local information and

rule-set attributed to them [9,24,30,31]. Agent-

based models are, therefore, typically composed of

agents (autonomous entities), rules (logic or math-

ematical), a simulation environment (source of local

information) and initial and boundary conditions

[14,32]. An advantage that ABM offers over other

computational approaches is its ability to model

global emergent phenomena through the rule-set

assigned at the agent level [19] alone [31].

Based on the set of rules, local information and

boundary conditions, agents interact with each other

and their environment, thereby transitioning, asyn-

chronously, between a finite number of states. The

states can be recorded, monitored and accessed at any

moment to exhibit the evolution of an agent or a set

of agents over the duration of the simulation [32].

Furthermore, repetitive-competitive interactions be-

tween agents are a feature of ABM [24]. While both

ABM and CA employ interacting finite-state ma-

chines and are, therefore, quite similar in terms of

their implementation, there are differences that make

the agent-based approach a more convenient option.

ABM relies on agents that are mobile, as opposed

to the static grids in ‘classical’ CA [9]. ABM is

characterized by asynchronous agent behaviour,

which means that agents can update their states in-

dependent of one another [9,14]. Furthermore,

ABM allows incorporation of stochastic elements in

the rule-set attributed to the agents [14]. More im-

portantly, CA lacks—in most implementations—in-

ternal memory, a feature of agents (discussed in the

next section). This leads to a combinatorial explosion

of states when considering even simple communica-

tion using CA [14]. As a result, when it comes down

to representing non-trivial complex systems, the CA

approach performs sub-optimally [14]. And, finally,

the ease with which stochastic elements can be intro-

duced in the agent-based rule-sets [33] makes it more

consistent with the operation of biological systems

compared with the deterministic rule-sets [34] of

the classic CA.

DEFININGANAGENT
Introduced by Laycock [35], an agent (or a stream

X-machine [35]) is a Turing-complete finite-state

machine [29] (computational system that can simu-

late any single-taped Turing Machine [36]) that con-

tains a finite set of internal states, a set of transition

functions operating between states, an internal

memory set and a language for interacting with

other agents (XMML) [37]. According to Jennings

[38], agents are the new theoretical model of com-

putation, which reflect current reality more closely

than Turing machines [36].

From a qualitative perspective, as defined by

Wooldridge [39], ‘an agent is an encapsulated com-

puter system that is situated in some environment

and that is capable of flexible, autonomous action

in that environment in order to meet its design ob-

jectives’. Therefore, by definition, an agent possesses

well-defined boundaries and interfaces, has the abil-

ity to sense its environment (and act on its

environment), can control its internal state as well

as behaviour, has particular goals to achieve, can
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act in the anticipation of future goals and responds in

timely fashion to changes that affect its environment

[38].

An agent X can be represented quantitatively as

[13]:

X ¼ ðs, g, S,M, f, F, s0, m0Þ

where s is the set of input, g is the set of output,

S denotes the set of states, m denotes the variables in

the memory, � denotes the set of partial functions ’
that map an input and memory variable to an output

and a change on the memory variable (’: s�M!
g�M), F is the next state transition function: F:

S� ’, s0 is the initial state and m0 is the initial

memory. A common message board to (and from)

which messages are posted (and read) assists the

agents in communicating with each other. Figure 1

shows an X-Machine agent and Figure 2 represents

communication between two X-machines.

The state transition functions (’) respond to events

considering both the environmental input s as well

as the current internal state. For example, a commu-

nicating X-machine with an initial state i and an

initial memory m on receiving input s, depending

on s and m, will/may(/will not) change its state

producing an output g and updating the memory

to m’. This modelling mechanism provides a sensible

way of dealing with problems associated with state

explosion, which afflict many efforts at modelling

complex biological systems [9,29]. Also, being inher-

ently hierarchical, an X-machine is able to link

different modelling paradigms [29].

THE AGENT-BASED PARADIGM
ANDBIOLOGICALCOMPLEXITY
What makes ABM a well-suited approach to study

complex systems? Booch [38,41] identifies three

tools that are required to analyse complexity: de-

composition, the ability to break down a complex

system into smaller, more manageable, chunks that

can be dealt with in relative isolation; abstraction, the

process of defining a simplified model that can ex-

plain the salient features of a system (at the expense

of less relevant detail) and organization, the process

of managing and identifying the interrelationships

between the problem-solving parts [38]. ABM satis-

fies all three requirements completely.

A natural way of representing a biological system

is (as discussed later) to decentralize the control or

introduce multiple loci of control [24,38]. This is an

intuitive way of representing biological systems, as

decision-making is limited to the agent’s local situ-

ation rather than some external entity’s perception of

the situation [38]. ABM achieves that by decompos-

ing the problem in terms of entities that engage in

flexible high-level interactions [9,24,28,38]. A sig-

nificant benefit of the flexible nature of agent inter-

action is that the agent decision-making regarding

the nature and scope of its interactions can occur at

run time. This allows the user to bypass the need

to specify every possible inter-agent link [38] (an

impossibility given the nature of the systems’

complexity).

The fact that the agent-oriented mind-set provides

suitable abstractions is evident from the availability of

the rich set of structures that are employed to repre-

sent and manage organizational relationships

[38,42–44] and interaction protocols that overlook

the formation of new groupings and disbanding of

existing ones [38,44,45]. The fact that collectives,

such as teams, can be modelled [38] as well further

supports the aforementioned claim. Finally, the abil-

ity of the paradigm to conduct organizational updat-

ing during run time (in case of an agent being

destroyed or differentiating into a phenotype of pro-

foundly different nature, for example) [38] makes an

ineluctable case in favour of the agent-based philoso-

phy as the most suitable for dealing with organiza-

tional relationships appropriate for complex systems.

But why consider the agent-based approach to

simulate biological phenomena? The answer lies in

the interaction-reliant methodology of the agent-

oriented approach, seemingly consistent with the

mode of operation of biological systems. The macro-

scopic behaviour in the biological world is under-

pinned by a whole range of interactions across all

scales (of course). For example, in the tissue context,

it is cellular interactions—between themselves as well

as their microenvironment (fibres, for example)—

that play a central and pivotal role in determining

the functionality and architecture of the evolving

system. While there are a host of complex intracel-

lular processes that regulate cellular behaviour, a cell

can be assumed, before all other intracellular com-

ponents, as the autonomous entity [46]. Therefore,

the argument boils down to (in the tissue context)

whether an agent can serve as a suitable ontology for

the cell. We shall show that a parallel can be easily

drawn between the two (refer to Figure 1).

As mentioned previously, an agent (i) possesses

well-defined boundaries, (ii) has the ability to sense
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Figure 1: This figure highlights the parallels between an agent and a cell. Top: A communicating agent (stream
X-machine); adapted from [29]. Bottom: Cell decision-making; signalling cues derived from [40]. Depending on the
multitude of input signals that a cell responds to, it transitions into a phenotype based on hitherto unknown biolo-
gical rules.The input signals (represented on the arrows) can be spatial, chemical or electrical and induce a response
from the cell. The cell in its new transition state seems to be quite aware of its latest phenotype, a feature that in
the ABM is represented by the update of agent-memory.

Figure 2: The dynamics of X-machine communication.The message boardmaintains a database of all the messages
sent by the agents. The agents read, and send, messages from (and to) the message board. Adapted from the
FLAME user manual available at http://www.flame.ac.uk/docs/.
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its environment and act on its environment, (iii) can

control its internal state as well as behaviour, (iv) has

particular goals to achieve, (v) can act in the antici-

pation of future goals and (vi) responds in timely

fashion to changes that affect its environment. Cells

can be easily visualized as ‘agents’ in the light of an

agent’s aforementioned properties. After all, cells are

in fact embedded in an environment; possess bound-

aries; maintain a dynamic bidirectional cross-talk

with their environment [22,47–54], thus being

acted by and acting on their environment; have the

ability to control their behaviour through secretion

of relevant autocrines and act in anticipation of

future goals as a result of metabolic sensing (when

cells try to gauge the ‘needs’ of a tissue, as suggested

by Scadden [54]) or signalling (as occurs in a func-

tional immune system [55,56]). This analogy can be

easily extended to tissues, organs, organisms and

colonies, in equal measure.

The greatest advantage offered by the ABM to the

user, however, is its ability to capture emergent

phenomena [19,24,29–31,38,57–59], which the

continuum approach finds more challenging to de-

scribe. Furthermore, self-organizing systems formed

by cells, where individual cells react to their envir-

onment and to each other [58,59], are examples of

emergent phenomena observed in biological systems.

It is the local interactions between cells that deter-

mine the architectural and functional features of the

entire system [58]. Multi-agent systems, a variant of

agent-based models, fit nicely into this problem and

with their application it has become possible to

understand the self-organization behaviour of stem

cells and deal with their emergent global behaviour

[58].

The decentralized manner of targeting complex

systems is perhaps the strongest argument in favour

of using ABM to simulate biological processes.

Unlike the continuum approach with a distinct

cause-and-effect motif, the agent-based approach

relies on interactions—among agents coupled with

their environment—to capture and explain macro-

scopic observables. Biological systems, as mentioned

previously, thrive on such interactions and there

seems to be an absence of a strict causative impulse

within them. The flocking of birds [60,61], the ag-

gregation displayed by a slime mould colony under

duress [62], the outcome of cellular phenotype based

on the microenvironment [63] and the multiple

streams of consciousness [64] that seem to govern

human endeavours, all seem to have little centralized

control [61], if any. On the contrary, it is the under-

lying agent-like behaviour that gives rise to each of

the aforementioned global observables. The flocking

behaviour is borne out of each bird in the flock

responding to the movements and positions of its

neighbouring birds (an example of a lower-level

rule) [65], the queen termite/ant has little centralized

role to play in orchestrating the dynamics of the bee/

ant colony [61] and the aggregation of slime moulds

itself is a response to other slime moulds trapped in

unfavourable conditions [62]. Similarly, embryogen-

esis continues without a strictly causative impulse.

One may argue that cells contain the information

needed to form the organism, but the outcome

itself is a result of interactions between genes and

proteins at the sub-cellular and cells at the cellular

level.

AGENT-BASEDANDCONTINUUM
APPROACH
Another reason why agent-based models tend to do

better than their continuum counterparts is because

the latter tend to be population-based, relating

observables to each other via equations that may

either be algebraic, or capture variability temporally

(ODE) or spatiotemporally (PDE) [66]. This is

achieved by considering the impact of the system-

level observables, disregarding the underlying cellular

(individual) variation entirely. The homogeneity

condition is essential for continuum models, as het-

erogeneity makes it impossible to obtain an analytical

solution [67]. In doing so, these models overlook

lower-level details as well as the augmentative

impact of the (micro)environment heterogeneity

on system evolution. Such an oversight cannot be

accommodated while considering biological behav-

iour for, to argue in the cellular context, identical

cells can generate non-identical colonies based on

microenvironmental or intracellular cues [22,31].

Agent-based models allow one to study agent inter-

actions and trace processes that emerge from such

interactions. Such models are therefore better repre-

sentational formalisms for biological systems and

more accurate tools to deduce the effects of external

stimuli, as they account for heterogeneity in respon-

siveness of individual cells—an integral constituent of

most biological models.

It must, however, be stated that the agent-based

approach and discrete computational approaches, in

general, are typically less utilized to simulate bulk
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phenomena, where population behaviour holds

more significance than individual behaviour, at least

within currently available computational resources.

So, while ABM can be used to model intercellular

and cell–microenvironmental interactions, as sug-

gested by Thorne et al. [33], the approach is not a

pragmatic option for capturing gradients (chemical,

electrical or energetic) that exist in the cells’

microenvironment—for which recourse to the

more traditional PDE-based models is recom-

mended. Integrating agent-based models with their

continuum counterparts, as has been tried elsewhere

[31,68–71], is an elegant and, from a biological per-

spective, a more precise way of addressing the non-

trivial problem of modelling biological systems.

Another weakness generally associated with ABM

is the flexible and dynamic nature of agent inter-

actions, which makes the patterns and outcomes of

these interactions inherently unpredictable. This is a

necessary evil associated with the agent-oriented ap-

proach, for it is precisely these flexible and dynamic

interactions that enable agent-based models to cap-

ture emergent phenomena. Problems associated with

the unpredictability, however, can be eliminated

by conducting sensitivity [72] and parametric [73]

analyses, and optimization procedures [9,32,74].

In terms of implementation, agent-based models

are no different than their continuum counterparts.

Allow us to make the case for the parallel. Simulating

a physical process using transport phenomena—a

continuum approach—requires identifying appropri-

ate governing equations as well as boundary and ini-

tial conditions. This is followed by approximating

the differential equations by a system of algebraic

equations for variables at discrete locations in time

and space: a process known as discretization.

Numerical grids, which divide the geometry into

finite sub-domains, act as the discrete locations

where the aforementioned variables are solved. In

the meshfree Smooth Particle Hydrodynamics

[75]—an alternative continuum approach—instead

of using static or moving partitions of the domain

(meshes), it is covered by discrete elements known as

particles, which act as locations where the aforemen-

tioned differential equations are solved [75,76].

Finally, the appropriate solution method is applied

followed by setting the convergence criteria for the

solution method [77].

Similarly, once the problem to be modelled via

the ABM is identified, the appropriate set of hypoth-

eses or logic/mathematical rules governing the agents

must be developed. Ideally, these rules must have

empirical relevance (and justification). Boundary

and initial conditions regulating the model are also

specified at this point [72]. The governing rules are

implemented at each discrete agent location, at vari-

ous discrete time steps, which are confined to the

specified boundary (the environment). The choice

of agents is quite important—after all, ‘you can’t

model bulldozers with quarks’ [78]. Whether the

agents are cell organelles, cells, tissues or organisms

plays a significant role in determining the validity of

the governing rules. The model is completed by

choosing the time marching features physically rele-

vant to the process being studied [72]. Finally, the

model is calibrated and validated by comparing the

computational data with its empirical analogue (and

measuring the error function [72]). Refer to Figure 3

for the parallel between continuum and discrete

approaches.

AGENT-BASEDMODELS
The level of detail embedded [72] in an agent-based

model deserves a special mention. If the model is too

simple, it might not prove fit enough to provide

understanding and testable predictions; on the

other hand, too complex a model will be computa-

tionally cumbersome [28]. As Grimm and Railsback

[28] point out, there are two ways to fine-tune any

such model: pattern-oriented modelling and method

of strong inference [79]. Pattern-oriented modelling

entails incorporation of details that allow emergence

of empirically observed patterns—patterns being

non-random events. This approach is, Grimm and

Railsback [28] argue, parallel to the methodology

applied in natural sciences, citing how the key to

revealing the structure of DNA lay in the patterns

that indicated internal organization. The pattern-ori-

ented approach also makes the model testable at vari-

ous hierarchical levels due to the underlying details

linked to the system’s internal organization [28]. The

strong inference approach involves developing and

contrasting alternative theories—including null the-

ories, which will not give rise to emergent proper-

ties—to determine the theory most amenable to

reproducing the observed patterns [28]. The vali-

dated theories can then be used to model similar

behaviours in other systems or environments [28].

Another point worthy of a special mention, we

believe, in any review (or, for that matter, research

article) covering agent-based models is the Science
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and Art of rule generation. Recourse to rules instead

of (or in most cases, in addition to) mathematical

equations, as suggested in this review previously, is

the fundamental way in which the agent-based ap-

proach differs from its continuum counterparts. But,

how can the user devise these rules? The iterative

method—of constructing a rule (based on empirical

facts), deploying it to computationally predict the

empirical observation and optimizing it until statis-

tical significance between the computational predic-

tion and empirical observation is achieved—utilized

is no different than the one used to develop the

classical continuum models. Just as the creation of

mathematical models begins with the simplest equa-

tion, which subsequently improves in complexity

and level of detail, it is recommended that the initial

set of rules designed are simple, followed by a gradual

advancement in complexity and detail. However, to

include or not to include a particular parameter: that

is the ‘essential’ question [9,28,31,32,72,80,81] when

it comes to ABM. Ideally, these parameters must

originate from empirical data, and the system’s (sig-

nificant) dependence on these parameters must be

rigorously validated. This, unfortunately, is not

always the case (or even possible) due, as suggested

by Thorne et al. [32,80], to a lack of relevant pub-

lished data, unpublished experiments and absence of

more advanced protocols/apparatuses/techniques

needed to conduct a particular experiment. In such

cases, the iterative approach of rule-generation that

leads to the prediction of observed global patterns is

the most suitable option. The rule may (quite

rightly) not be accepted until it is experimentally

validated, but the availability of the rule (and the

model) itself, in terms of offering alternative explan-

ations, may in turn push for the experiment to

become available.

However, in cases where data is available, and in

certain cases—such as bioprocess or ‘omic data—

where an overwhelmingly large amount of data is

present, as Kaul et al. [31] suggest, recourse to statis-

tical analyses and rule-mining paradigms is recom-

mended. Broadly categorized as computational

intelligence methods, the techniques are generally

employed to construct predictive models based on

available data [82,83]. However, as these models cap-

ture neither the heterogeneity of interactions be-

tween system components nor their governing

physical laws, and, furthermore, are based on aver-

aged global values, they tend to have limited predict-

ive power. The techniques can, however, be used to

extract (logical) rules from the available data [82,83].

The methodologies based on the underlying pattern

recognition approach can be statistical, neural, evo-

lutionary, genetic, tree-based or machine-learning-

type [84]. Furthermore, based on whether

rule-extraction relies on the presence of a class struc-

ture, the method itself can be classified as either

Figure 3: The figure shows the parallel between how the continuum and discrete approaches are used to simulate
biological phenomena.Calculating the error function in ABM is analogous to setting the convergence criteria in con-
tinuum methods. Similarly, meshing a geometry to assign discrete locations where the differential equations are
solved is equivalent to distributing agents (in the environment) capable of transitioning between a finite set of
states based on the logic/mathematical rules assigned to them.
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supervised or unsupervised [84]. The basic idea of

employing either of these techniques (especially in

the case of Artificial Neural Networks) entails corre-

lating data input with output via mathematical trans-

formations, which, if applied to the input, will

generate the output [84]. The mathematical trans-

formations can be converted into logical rules [82],

which can be subsequently employed to construct

agent-based models.

Based on the rule-extraction approach utilized

by the computational intelligence methods, they

can be Naı̈ve Bayesian, Artificial Neural Networks,

Decision Trees or Support Vector Machines [85,86].

The abundance of rule-extracting methodologies

necessitates a review of its own accord, as has been

conducted in the following [82,85–87], perhaps of

interest to the eager reader. Finally, the accuracy

with which an agent-based model will predict and

capture the global behaviours observed in a biolo-

gical system heavily relies on the validity of the rules

attributed to the system (in addition to the level of

detail embedded in the model). Therefore, care must

be taken in ensuring that post-extraction rule-

refinement [87], pruning [88] and optimization [82]

protocols are rigorously followed.

The use of agent-based models extends to the

entire biological spectrum. The paradigm is espe-

cially useful to develop models based on ‘soft’ factors

such as the irrational and subjective human behav-

iour employed to construct sociological models [24].

Agent-based models have been used in the field of

cancer research [71,89–91], ecology [28,61,65], eco-

nomics [92], immunology [9,34,55,56], tissue engin-

eering [18,19,25,31,58,59,68–70,93,94] and clinical

[23] and systems biology (the latter discussed in [95]).

The most promising aspect of some of these models

has been their ability to capture emergence

[19,31,58,61,67,96].

Standalone models
Reynolds’ Boids model [65], based on simple rules:

agents avoiding collision, staying close to neighbours

and matching the velocity of neighbours, leads to the

emergent school-like aggregation of agents, and can

be employed to model flocking behaviour of birds

[9,28,61] or schooling of fishes [28,97]. On a similar

note, Railsback and Harvey [98] developed an

agent-based model to explain habitat selection pat-

terns in stream salmonids, using input data and par-

ameters representing cutthroat trout (Oncorhynchus
clarkii). By contrasting three ‘theories’ (refer to the

strong inference approach discussed in this section):

maximizing current growth rate, current survival

probability, or expected maturity, they reproduced

numerically all habitat selection patterns (especially

with the ‘maximizing the expected maturity’ rule).

In the ecological context, the agent-based approach

was utilized to simulate sea-lice (Lepeophtheirus salmo-
nis) infestation patterns on a representative Atlantic

salmon (Salmo salar L) population [99]. The basic

motivation was to optimize Wrasse (which prey on

the sea lice) densities so as to control the population

of L. salmonis as the means of a pest management

programme. An agent-based model developed by

including a ‘threshold’ parameter into Thomas

Schelling’s model of racial segregation [100] led to

a rather robust emergent clustering behaviour that,

despite being amenable to empirical verification, is

practically quite challenging to validate due to un-

availability of reliable and extensive data [67].

Furthermore, Mitchel Resnick’s Turtles, Termites,

and Traffic Jams [61] review the various rule-sets

utilized to model patterns observed in slime mould,

ant and termite colonies. Resnick utilized the agent-

based platform StarLogo.

Gary An [23] developed an agent-based model of

innate immune response and used it to simulate clin-

ical sepsis trials of anticytokine therapy, which pro-

duced patterns qualitatively similar to those

published in the literature. Furthermore, An imple-

mented a series of treatment regimens in the ABM to

determine their impact on system mortality. No sig-

nificant improvement was recorded. The investiga-

tion was meant to introduce ABM to clinicians, and

the innate immune response model itself was able to

successfully demonstrate counterintuitive system

responses [23]. Segovia-Juarez et al. [101] used the

agent-based approach to simulate the formation of

granuloma in lungs post Mycobacterium tuberculosis in-

fection. The alveolar lung tissue acted as the envir-

onment in which agents acted as ontologies for

macrophages and T-cells. Model observations, such

as the primary contribution of spatial distribution of

T-cells (rather than the number of recruited T-cells)

to a developing granuloma, have empirical basis. The

investigators were the first to apply uncertainty and

sensitivity analyses in this setting.

To determine how background peptides bound to

Major Histocompatibility Complex (MHC) mole-

cules—together referred to as pMHC—present on

the surface of antigen-presenting cells influence anti-

gen recognition by T-cells requires a computational
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model. This is due to the inherent physiological

complexity of the process that relies on interactions

between T-cells and their ligand on antigen-present-

ing cells or target cells (pMHC). In light of the ex-

treme abundance of background peptides (compared

with foreign ones), it seems intuitive to suggest that

T-cells ignore the background proteins. An agent-

based model developed by Casal et al. [56] suggests

that T-cells rely instead on information gathered

from all pMHC interactions and not just (selectively)

from a few peptides. Along similar lines, employing

an agent-oriented approach, Riggs et al. [55] de-

veloped a two-dimensional (2D) model of a lymph

node that captured various empirically observed fea-

tures of T-cell and dendritic cell dynamics. The

model further suggests that a random search strategy,

as opposed to chemotaxis (quite a counterintuitive

thought), is more suited for a rare cognate T-cell to

find its dendritic match, and thus activate T-cells.

While supported by empirical evidence, the implica-

tions of this model need to be further investigated

and validated.

In The Hallmarks of Cancer [102], Hanahan and

Weinberg suggested six alterations in normal cell

physiology that collectively lead to malignant

growth. These included [102] self-sufficiency in

growth signals, insensitivity to anti-growth signals,

evasion of apoptosis, limitless replicative potential,

sustained angiogenesis and tissue invasion and metas-

tasis. Abbott et al. [89] developed CancerSim, an

agent-based simulation, based on the Hanahan–

Weinberg article [102], to simulate the dynamics

through which cell populations acquire heterogen-

eity and the hallmarks of cancer. Mutation was intro-

duced as a probabilistic parameter. Results from

CancerSim were found to be in agreement with

a(n) (ODE-based) continuum model that was

also employed to model the hallmarks. Both,

CancerSim and the continuum model suggested im-

plicate cell death rather than genetic instability in

driving the progression to cancer. This was in con-

trast to the pathways suggested by Hanahan and

Weinberg, which place insensitivity to anti-growth

signals at the beginning and limitless replication at

the end of each pathway [89].

Lollini et al. [103] developed SimTriplex, an

agent-oriented simulator, to investigate the min-

imum vaccination (Triplex vaccine) schedule that

could afford immunological prevention of cancer

in HER-2/neu transgenic mice at par with the cur-

rently implemented Chronic (administered for host’s

lifetime) protocol. The experiments would have

required a lot of experiments with associated cost

implications. SimTriplex employs a minimal search

strategy, which is based on a genetic algorithm, to

describe the immune response activated by Triplex

vaccine. Results from the investigation seem to sug-

gest that the same efficacy as the Chronic protocol

can be achieved by cutting down the number of

vaccinations by roughly 40% [103]. Nagoski et al.
[104] modelled the risk of contracting HIV, as a

factor of heterogeneity of sexual motivation, in com-

puter-generated artificial societies. A significant

reason behind the use of ABM as a methodological

approach was the opportunity to model systems

where research data are either inaccessible or

unethical. The fact that ABM can consider ‘soft’

variables such as stigma, discrimination, distrust of

vaccines, etc. made it especially relevant as a model-

ling tool in this investigation. Gendered agents,

hypothetical diseases and sexual motivation profiles

constituted the three elements of the model. The

model led to results such as high susceptibility

to infection among the female-gendered agents

earlier in their lives and emergence of ‘pockets of

protection’ or infection-free zones that were not

predicted but reflected patterns observed in human

systems.

From a tissue engineering and regenerative medi-

cine perspective, the agent-based approach has been

utilized to model stem cell self-organization [58,59]

in a niche [54], stem cell differentiation and

division [58] and stem cell internal life cycle [19].

Furthermore, Galvao et al. [18] used a 2D agent-

based computational model to investigate the role

of stem cell therapy in tissue regeneration. They

chose to model the chronic chagasic cardiomyopathy

after bone marrow stem cell transplantation and

therefore better understand the kinetics of cardiac

tissue regeneration. The model could simulate apop-

tosis and differentiation and implicated concentration

patterns of fibrotic regions and inflammatory cells

(these categories corresponded to types of agents

used in the model) as the most important factors in

the kinetics of chronic chagasic cardiomyopathy re-

generation after bone marrow stem cell transplant-

ation. The results also attributed the reduction in

fibrotic area to the initial fraction of bone marrow

stem cells (another agent type in the model). Walker

et al. [25,93] have been working on developing the

model of epithelial tissue employing an agent-based

model based on the social behaviour of cells. In the
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initial proof-of-concept model [93], they used rules

explaining cellular behaviour such as cell cycle,

bonding, spreading, migration and apoptosis to simu-

late growth characteristics of epithelial cells in mono-

layer culture under low and physiologic calcium ion

(Ca2þ) concentration. The computational results

were found to qualitatively replicate the trends

observed in vitro. An advanced form [25] of this

model was used to describe the impact of extra-cel-

lular calcium on the growth and differentiation of

human keratinocytes. Furthermore, the model was

used to invalidate the hypothesis that growth char-

acteristics of the transformed HaCat (epithelial) cell

line can be explained by simply ‘turning off’ the

differentiation rule from the keratinocyte model,

thereby demonstrating the application of agent-

based models as hypothesis testing tools in biological

investigations.

Thorne etal. [105] used the agent-based approach to

describe cell-mediated changes in the geometry, com-

position and properties of an adapting vascular wall.

The agents, representing endothelial and smooth

muscle cells, displayed an array of behaviours such as

proliferation, growth factor production, matrix pro-

duction or degradation and apoptosis. The investiga-

tors utilized a ‘refined rule-set’ to model mouse aorta

during homeostasis and in response to both transient

and sustained increases in pressure. The agent-based

model was compared with results derived from a

pre-validated constrained mixture model of vascular

adaptation at the tissue level. They concluded that

their model was responsive to increased intramural

wall shear stress in hypertension, but insensitive to

transient elevations in the blood pressure. Long and

Rekhi [106] used the agent-based approach to test the

strategy that best governs cell movement during vessel

regeneration as a function of vascular endothelial

growth factors and brain-derived neurotrophic factor.

The investigators compared the computational results

with physical data derived by carrying out

in vitro angiogenesis. Even though only three basic

cellular behaviours—proliferation, migration and

branching—were considered, the model was capable

of predicting ‘growth for novel situations’. Certain

aspects of the model, as the authors themselves

acknowledged, were highly idealized. For example,

the authors assumed spatiotemporal uniformity in

the concentration of vascular endothelial growth

factors and brain-derived neurotrophic factor, and

focused the investigation to the first 24 hours of

sprout growth.

Comparatively, Artel et al. [107] modelled sprout-

ing angiogenesis in a porous scaffold using the agent-

based approach. The objective of this investigation

was to examine the impact of scaffold pore size on

the rate of angiogenesis. The investigators relied on

in vivo results to define the speed of vessel sprouting.

The agents, representing capillary segments, were

attributed behaviours such as elongation, branching

and anastomosis. These behaviours were either sto-

chastic or influenced by microenvironmental condi-

tions. Results showed positive correlation between

pore size and the rate of scaffold vascularization.

Specifically, pore size between 160 and 270 mm

was observed to support ‘rapid and extensive angio-

genesis throughout the scaffold’.

Multi-paradigmmodels
Being hierarchical in nature, most agent-based

frameworks can be easily linked to various other

computational paradigms [68]. This is perhaps the

most desirable feature of the ABM paradigm, as it

allows for the most precise representation of biolo-

gical systems: the continuous environment encapsu-

lating the autonomous agents. The so-called hybrid

models [31,68–71] (among numerous others) use the

agent-based approach to simulate biological inter-

actions and decision-making, and partial/ordinary

differential equations-based continuum approach to

model the environment (gradients, concentrations,

stresses, etc.)—features that would require enormous

computational capabilities to be solved using the

agent-based approach alone. Athale et al. [71] created

a 2D multi-scale model of gene–protein interactions

to simulate the decision-making approach that

cancer cells employ to switch between proliferation

and migration—cancer cells do not display the two

phenotypes concurrently. The model included a

novel intracellular module. They integrated the

RePast toolkit (http://repast.sourceforge.net) with

in-house-developed classes for representing mol-

ecules, reactions and sub-cellular compartments.

The evolution of variables, such as molecular con-

centrations, is represented using ordinary differential

equations and cellular behaviour using the agent-

based framework. The system can simulate tumour

growth over several orders of magnitude. Bailey et al.
[70] developed a model underpinned by a blood

flow network simulation to dynamically track in-

flammatory cell navigation through microvasculature

to a simulated skeletal muscle capillary bed via inter-

actions with the endothelium. The microvascular
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network was derived from mouse spinotrapezius

muscle, and combined with a network flow model

designed to calculate haemodynamic parameters

(such as fluid flow and wall shear stress) throughout

the simulated microvascular network. The investiga-

tion yielded results consistent with literature data,

including monocyte migration occurring primarily

in the venules (even though differences in endothe-

lial cell phenotype were not explicitly accounted for

in the model) and low dependence of monocytes on

selectins for firm adhesion (a non-intuitive result)

[70]. The network flow model was implemented

in MATLAB, whereas the agent-based model in

NetLogo.

Adra et al. [68] integrated Flexible Large-scale

Agent-based Modelling Environment (FLAME)

with COmplex PAthway SImulator and a physical

numerical solver [93] to develop a three-dimensional

(3D) multi-scale model to grow a virtual piece of

epidermis from a collection of stem cells and derive

a set of biological rules for transforming growth

factor-beta 1 (TGF-b1; cytokine) during epidermal

wound healing. In this investigation, the agent-based

model was used to capture biological rules governing

intercellular interactions in the human epidermis;

COmplex PAthway SImulator was used to simulate

the expression and signalling of TGF-b1 at the intra-

cellular level and the physical solver was used at the

continual level to resolve forces exerted between

cells. The model was able to successfully simulate

many described keratinocyte behaviours and TGF-

b1 intracellular mechanisms. Sun et al. [69] utilized

the same approach to develop a 3D multi-scale

model of the formation of skin epithelium based

on rule-sets involving TGF-b1 to test the role

TGF-b1 plays in wound healing. Wounds were

introduced into the model, which was then used

to observe keratinocyte behaviour during healing

and explore various hypotheses concerning the role

of TGF-b1 by manipulating the rule-set associated

with the cytokine. The model supported the in vivo/
in vitro observation that TGF-b1 maintains a balance

between keratinocyte proliferation and differenti-

ation during wound healing, and further indicated

that disruption of TGF-b1 expression or signalling

could impact the healing process.

Solovyev etal. [108] constructed a hybrid model of

ischaemia-induced hyperemia (sudden increase in

skin blood flow following ischaemia) and pressure

ulcer formation by combining an ODE model of

blood flow and reactive hyperemia, and ABM of

skin injury, inflammation and ulcer formation.

Their primary objective was to gain useful insights

into post-spinal cord injury (SCI) pressure ulcers,

which may result from prolonged tissue ischaemia.

The agent-based aspect of the model simulated

injury, inflammation and ulcer formation by captur-

ing interactions between oxygen, pro-inflammatory

elements, anti-inflammatory elements and skin

damage (agents used in the model). Experimental

data from human subjects (six SCI patients and six

non-injured subjects) were used to calibrate the

ODEs used in the model. The model suggested a

higher propensity for ulceration in the patients com-

pared with the subjects. Despite certain limitations

identified by the authors themselves, the model can

be employed as a diagnostic platform for post-SCI

ulcer formation.

Kaul et al. [31] integrated FLAME with a multi-

physics transport phenomena platform (CFD-

ACEþ, ESI Group, Paris, France) to capture

dynamic reciprocity [109] in a 3D bioreactor.

Through the model, the authors investigated the

impact of system initial and boundary conditions

on its overall evolution. The platform capable of

supporting 2D (refer to Figure 4) and 3D models

Figure 4: This sequence displays results generated from a platform developed by integrating the agent-based with
the continuum approach.The figure shows various stages of cell chemotaxis under the influence of an arbitrary che-
mokine. The cells, on sensing chemokine-deficient conditions, try to move into chemokine-rich regions. The four
frames were captured at 0, 20, 30 and 50 hours of experiment time.Whereas chemokine concentration in the cellu-
lar microenvironment was modelled using the transport phenomena solver, cellular chemotaxis was simulated
using FLAME. The image first appeared in [31] and was reprinted under the Creative Commons Attribution
License. A colour version of this figure is available at BIB online: http://bib.oxfordjournals.org.
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can simulate most cellular behaviours and captured

not only the differences in system evolution due to

the differing initial/boundary conditions but the

similarities as well. Furthermore, as the cells tried

to evade hypoxic regions inside the bioreactor,

they aggregated around regions with threshold

oxygen concentration in a manner that can only be

described as emergent (although this needs experi-

mental verification). The proof-of-concept demon-

strated the utility of such a platform as a hypothesis

testing (experimental purposes) and design optimiza-

tion (commercial purposes, as during bioreactor con-

cept selection phase) tool.

Due to the nature of this document, we were

unable to delve more critically into the scope,

design, functionality and results of the agent-based

models presented here and therefore urge the reader

to explore the articles relevant to them. We also

hope that investigators whose seminal and relevant

work in this field we were unable to cite will forgive

the nature of this review, primarily aimed to

evaluate the merit of agent-oriented approach in

simulating biological phenomena, and associated

space constraints.

CONCLUSIONS
The versatility of the agent-based approach makes it

a particularly appealing modelling framework to ana-

lyse complex systems. Despite its successes and enor-

mous potential, the agent-based approach remains

nascent and requires utilization on a larger scale,

not only by biologists, due to its intuitive and

simple execution, but also by mathematicians and

engineers alike, as either a standalone approach or

coupled with other modelling paradigms. An

agent-oriented view might not only be able to ex-

plain biological behaviour, but uncover the rules

leading to emergent behaviour in such systems and

the macroscopic dynamics that regulate them. We

conclude this article by reiterating the features—a

summation of the literature reviewed to write this

article—that any modelling approach required to

simulate biological complexity must possess. These

include the ability of the approach to simulate

non-linear and dynamic behaviour, synthesize rele-

vant ‘constituent-constituent’ and ‘constituent-

environment’ interactions, track the evolution of

various constituents that are heterogeneous in

nature, develop memory of various prior constituent

interactions, adapt to the external environment and

permit visualization of emergent phenomena that

will result from the combined interactions of

system constituents. The agent-based paradigm is

probably the most perfect embodiment of these

characteristics.

Key Points

� Agent-based models allow the study of component-level inter-
actions and trace processes that emerge from such interactions.
Such models are therefore better representational formalisms
for biological systems and more accurate tools to deduce the
effects of external stimuli, as they account for heterogeneity in
responsiveness of individual cellsçan integral constituent of
most biologicalmodels.

� ABM ‘discretizes’ the system beingmodelled into a collection of
autonomous decision-making entities that act at each of several
discrete time steps based on their local information and rule-
set attributed to them.

� Just as the creation of continuum models begins with the sim-
plest equation, which subsequently improves in complexity and
level of detail, it is recommended that the initial set of rules
designed are simple, followed by a gradual advancement in com-
plexity and detail.

� The decentralized manner of targeting complex systems is per-
haps the strongest argument in favour of using ABM to simulate
biological processes.Unlike the continuum approach with a dis-
tinct cause-and-effectmotif, the agent-based approach relies on
interactionsçamong agents coupled with their environmentç
to capture and explainmacroscopic observables.
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