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Abstract
Tuberculosis (TB) is a global public health emergency. Increasingly drug resistant strains of

Mycobacterium tuberculosis (M.tb) continue to emerge and spread, highlighting adaptabil-

ity of this pathogen. Most studies ofM.tb evolution have relied on ‘between-host’ samples,

in which each person with TB is represented by a singleM.tb isolate. However, individuals

with TB commonly harbor populations ofM.tb numbering in the billions. Here, we use analy-

ses ofM.tb genomic data from within and between hosts to gain insight into influences

shaping genetic diversity of this pathogen. We find that the amount ofM.tb genetic diversity

harbored by individuals with TB can vary dramatically, likely as a function of disease sever-

ity. Surprisingly, we did not find an appreciable impact of TB treatment onM.tb diversity. In

examining genomic data fromM.tb samples within and between hosts with TB, we find that

genes involved in the regulation, synthesis, and transportation of immunomodulatory cell

envelope lipids appear repeatedly in the extremes of various statistical measures of

diversity. Many of these genes have been identified as possible targets of selection in other

studies employing different methods and data sets. Taken together, these observations

suggest thatM.tb cell envelope lipids are targets of selection within hosts. Many of these

lipids are specific to pathogenic mycobacteria and, in some cases, human-pathogenic

mycobacteria. We speculate that rapid adaptation of cell envelope lipids is facilitated by

functional redundancy, flexibility in their metabolism, and their roles mediating interactions

with the host.

Author Summary

Tuberculosis (TB) is a grave threat to global public health and is the second leading cause
of death due to infectious disease. The causative agent,Mycobacterium tuberculosis (M.tb),
has emerged in increasingly drug resistant forms that hamper our efforts to control TB.
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We need a better understanding ofM.tb adaptation to guide development of more effective
TB treatment and control strategies. The goal of this study was to gain insight intoM.tb
evolution within individual patients with TB. We found that TB patients harbor a diverse
population ofM.tb. We further found evidence to suggest that the bacterial population
evolves measurably in response to selection pressures imposed by the environment within
hosts. Changes were particularly notable inM.tb genes involved in the regulation, synthe-
sis, and transportation of lipids and glycolipids of the bacterial cell envelope. These find-
ings have important implications for drug and vaccine development, and provide insight
into TB host pathogen interactions.

Introduction
Mycobacterium tuberculosis (M.tb) causes over nine million new cases of tuberculosis (TB) per
year and is estimated to infect one-third of the world’s population [1]. The emergence of
increasingly drug resistant strains ofM.tb [2] demonstrates the bacterium’s ability to adapt to
antibiotic pressures, despite limited genetic diversity [3]. Prior research has identified the
influence of bottlenecks, population sub-division, and purifying selection on genetic diversity
ofM.tb circulating among human hosts [4–7]. In these studies, each TB patient was repre-
sented by a singleM.tb strain isolated in pure culture. However, individuals with TB harbor a
large population ofM.tb cells for a period of months to years, which raises the possibility of sig-
nificant diversification of bacterial populations over the course of individual infections.

There are few studies of within-host evolution ofM.tb. One example is a study of the trans-
posable element IS6110 marker that found multiple lines of evidence suggestive of positive
selection onM.tb populations within hosts [8]. Advances in sequencing technologies have
since enabled detailed, genome-wide studies of the evolution of intra-host populations of both
pathogenic and commensal microbes [9–22]. Whole-genome sequencing (WGS) studies of
natural populations ofM.tb have focused primarily on the emergence of drug resistance [23–
26]. Here, we use analyses of genetic data from within and between patients with TB to charac-
terizeM.tb variation across evolutionary scales. We find that overall diversity ofM.tb popula-
tions within hosts can vary dramatically and identify candidate genetic loci forM.tb adaptation
during infection.

Results and Discussion

Genome-wide variation
We quantified genetic diversity of five within-host populations ofM.tb (Table 1) using data
from three published studies. The data we selected from the original studies were directly com-
parable with respect to sequencing platform and other factors we observed to affect diversity
(see Methods and S1 Table). The data set includes samples susceptible to all first line drugs (A0
and E0) as well as INH-monoresistant, multidrug-resistant (MDR) and extensively drug-resis-
tant (XDR) samples (Table 1). HIV status was not reported in any of the primary studies.M.tb
lineage 2 (East Asian, Patients A, B, C, and D) and lineage 4 (Euro-American, Patient E) are
included in this sample; patient origin was reported as China (Patients A, B, and C), Abkhazia
(Patient D) and “Eastern Europe” (Patient E). We used PoPoolation software [27] to estimate
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two standard measures of genetic diversity, nucleotide diversity (π) and Watterson’s theta
(ƟW) (see Box 1 for descriptions), from the pooled within-hostM.tb genomic data. It is chal-
lenging to distinguish rare genetic variants from sequencing errors in pooled genomic data:
PoPoolation implements methods that account for the effects of sequencing errors on low fre-
quency variant calls [27,28]. In order to eliminate effects of coverage differences on diversity,
we sub-sampled the genomic data to a uniform 50X coverage (seeMethods).

Table 1. Within-host samples ofMycobacterium tuberculosis.

Patient/
Sample
Date

Study/
Accession
No.

Mean
Cov.

INH
(H)

STR
(S)

RIF
(R)

EMB
(E)

PZA
(Z)

ETH OFX CIP KAN AMK PAS CPR Treatment

Patient A Sun et al.
(2012)

0 month
(-7th day)

SRR413213 55.8 S s s s

19 month SRR413216 61.8 r s s s HR

24 month SRR413221 191.3 r s s s HR

Patient B Sun et al.
(2012)

36 month SRR413226 100.5 r r r S HR

Patient C Sun et al.
(2012)

-1 month
(-24th day)

SRR413231 89.6 r r r r DEthZE

11 month SRR413266 72.5 r r r r DEthZE

Patient D Merker et al.
(2013)

0 month SRR611417 70.7 r r s s r s s r s r

9 month SRR611426 68.2 r r r r s s r HRZE

11 month SRR611415 75.3 r r s R* r r r HRZE

20 month SRR611416 88.6 r r r r r r r EthCprOfxCsPas

Patient E Eldholm et al.
(2014)

0 month ERR461940 65.9 s s s s s s s s s s r s

8 month ERR461941 63.2 r s r s s s s s s s r s HRZ

12 month ERR461942 64.0 r s r s s s s s s s r s ZESOfx

14 month ERR461943 66.2 r r r s s s s s s s r s ZESOfx

28 month ERR461944 65.5 r r r s s r r r s s r s ZESOfxEth

31 month ERR461945 67.6 r r r S* s r r r s s r s ZECfzAmk

34 month ERR461946 65.6 r r r S* s r r r r r r s ZECfzAmk

39 month ERR461947 68.6 r r r S* s r r r r r r s ZCprCfz

42 month ERR461948 65.3 r r r S* s r r r r r r s ZCprCfz

Sample dates and resistance profiles are from the respective publications; sample timing is in reference to treatment initiation. Mean coverage of each

sample reflects data passing all filters, with a minimum base quality score of 20. Treatment at the time of sampling is listed; only the first letters of drug

abbreviations are capitalized. Resistance profile abbreviations: R = resistant; S = susceptible; blank = not reported; *indicates more details presented in

the original paper. Drug abbreviations: INH (H), isoniazid; STR (S), streptomycin; RIF (R), rifampicin; EMB (E), ethambutol; PZA (Z), pyrazinamide; ETH,

ethionamide; OFX, ofloxacin; CIP, ciprofloxacin; KAN, kanamycin; AMK, amikacin; PAS, para-aminosalicylic acid; CPR, capreomycin; D, Dipasic

(isoniazid aminosalicylate); CS, Cycloserine; CFZ, clofazimine.

doi:10.1371/journal.ppat.1005257.t001
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We compared the pooledM.tb within-host data to a globally diverse sample of 201
‘between-host’ genomes from the seven major lineages, where each individual with TB is repre-
sented by a single isolate ofM.tb (S2 Table). These data were originally reported in Comas et al
[29]. Drug resistance phenotypes were not reported in the original study. We examined the
between-host alignment at 1004 loci with a reported association with drug resistance [30] and
found that 37 of these loci had segregating polymorphisms. We conclude that the between-
host dataset is likely to include both susceptible and drug resistant isolates.

Estimates ofM.tb diversity within hosts were very sensitive to coverage and platform; mea-
sures of diversity from some samples were also sensitive to base quality score and minor allele
count threshold (S1 File and S3 Table).

Patients D and E were similar in that both developed progressive drug resistance during
treatment, and therapy was tailored to results of extended drug susceptibility testing (DST).
Patient E’s treatment outcome was eventually successful; treatment outcome of Patient D was
not reported. For a given set of parameters, estimates of diversity from Patients D (M.tb lineage
2) and E (M.tb lineage 4) were very similar to each other, and stable across serial samples (Fig 1
and S3 Table). Estimates from Patient E were slightly more sensitive to the minor allele count
threshold, suggesting this patient harbored more rare variants than Patient D.

Patient A (M.tb lineage 2) was described as non-adherent during standard therapy of drug-
susceptible disease; the second and third samples from this patient exhibited INH-monoresis-
tance. Patient A was treated with two months of four-drug treatment, followed by 27 months
of INH and RIF (i.e. only one drug to which the bacteria were susceptible). Measures of diver-
sity from theM.tb population of Patient A were similar overall to those from Patients D and E,
but showed an increasing trend over the sampling period (Fig 1). Increasing diversity could
indicate loss of control of the infection. Patient A defaulted treatment, and no further samples
were reported after the sample collected at 24 months into treatment.

Box 1. Description of Statistical Measures Used in the Text
We used two measures to quantify genetic diversity in the samples included in our study.
Nucleotide diversity (π) is the proportion of loci at which sequences differ in pairwise
comparisons (π/site is reported in the text). Watterson’s theta (ƟW) is an estimate of the
population mutation rate (the product of the effective population size and mutation
rate). It is based on the number of segregating sites in a sample of sequences. Segregating
sites are loci at which differences are found in one or more sequences. We reportƟW/site
in the text.

Tajima’s D (TD) computes the difference between scaled average numbers of pairwise
differences and segregating sites. In a neutrally evolving population of constant size, TD
is expected to be zero. Many neutral and selective influences can cause TD to deviate
from zero. For example, selection against deleterious mutations (‘purifying’ selection),
population expansion, and past selective sweeps (in which an advantageous mutation
rapidly increases in frequency) can cause TD to decrease. TD can increase as a result of
population sub-division and selection that maintains diversity in the population.

πN/πS is the ratio of counts of non-synonymous variants per non-synonymous site to
synonymous variants per synonymous site. Stably maintained amino acid polymor-
phisms (πN/πS > 1) may indicate diversifying selection or local sweeps (selection for
advantageous mutations under a regime of restricted migration).
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Patients B and C had MDR TB. Extended DST results were not reported for these patients
and both died.M.tb diversity of pre-terminal samples from Patients B and C was extremely
high relative to the other intra-host samples (Fig 1). This difference in diversity could be due to
a technical issue, such as relatively high sequencing error rates in these data. In this case, we
would expect that application of more stringent quality filters would decrease observed diver-
sity. Application of a higher base quality threshold did not result in loss of relative diversity of
these samples. Differences between samples from Patients B, C, and the others were, however,
less marked when the minor allele count threshold was increased (S3 Table). This suggests that
high diversity of B36 and C11 was driven by rare variants. Excess rare variants are a hallmark
of an expanding population; diversity of pre-terminal samples from Patients B and C could
reflect expansion of theM.tb population in the final phases of an uncontrolled infection.
Another possibility is that terminal progression of their TB infections involved extensive break-
down of lung tissue allowing sampling of previously inaccessibleM.tb sub-populations.

TB patients included in our within-host data set were culture positive for prolonged periods:
this is atypical for settings with well-functioning TB control programs and these patients are
unlikely to be broadly representative. Further studies of within-host diversity of TB patients
from a range of settings and with a variety of clinical presentations are needed to fully charac-
terizeM.tb adaptation within hosts. Nonetheless, these data delineate some interesting patterns

Fig 1. Patterns of nucleotide diversity (π) andWatterson's theta (ƟW) across theMycobacterium tuberculosis (M.tb) chromosome. Sliding-window
analyses were performed using 100-Kb windows with a step-size of 10-Kb on uniformly sub-sampled alignments of each sample (50X sequence coverage);
plotted values are the mean of each window across 9 replicate sub-samplings. Chromosomal coordinates reflect the genomic positions of the reference
strain H37Rv, against which pooled-sequence reads were mapped. Temporal samples of each patient’sM.tb population are colored to reflect the sample
collection date as shown in the legend; global and lineage-specific estimates are colored as indicated in the legend.

doi:10.1371/journal.ppat.1005257.g001
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of within-host diversity. It is striking thatM.tb within-host diversity is so similar across
patients from three independent studies (Patients A, D, and E). In vitro estimates ofM.tb’s
mutation rate vary substantially according to lineage [31], yet we did not observe an obvious
effect of lineage on diversity in comparisons ofM.tb populations from lineage 2 (Patients A
and D) and lineage 4 (Patient E). This could reflect differences between in vitro and in vivo
mutation rates, or perhaps other parameters are more important in shaping overall patterns of
diversity within hosts. Diversity ofM.tb lineage 2 was lower than lineage 4 at the between-host
scale (Fig 1), whereas lineage 2 isolates have been observed to evolve more quickly in the lab.

Our data set includes four within-host samples that were collected prior to the initiation of
treatment (A0, C1, D0, and E0). We did not observe a substantial decrease inM.tb diversity fol-
lowing initiation of treatment in any of these patients (A19, C11, D9, and E8). It could be that
TB treatment does not affect the average number of pairwise differences and segregating sites
of residentM.tb populations. Alternatively, measures ofM.tb diversity may change in response
to treatment in TB patients whose sputum cultures convert more quickly than the patients in
our study. Our study included twoM.tb samples with susceptibility to all first line agents (A0
and E0). Diversity of these samples was not markedly different from samples with a drug resis-
tant phenotype.

In summary, our results suggest thatM.tb lineage, initiation of TB treatment, and drug
resistance do not have strong impacts on diversity measures for within-hostM.tb populations.
Disease severity, on the other hand, appears to have marked effects onM.tb diversity.

Genes and gene categories with distinct patterns of variation across
evolutionary scales
Several studies have identified distinct patterns of variation atM.tb genetic loci associated with
different functions [4,32]. Such patterns of variation may reflect distinct regimes of natural
selection, heterogeneity of mutation rates, or other influences. We sought to identify bacterial
genetic loci with extreme patterns of variation at within- and between-host scales; these are
candidate loci forM.tb adaptation during transmission and infection.

For each gene with data that passed our quality thresholds (seeMethods), we quantified π
andƟW using methods that account for sequencing error [27]. We used the same approach
and estimated two statistics designed to capture deviations from neutral patterns of variation:
Tajima’s D (TD, [33]) and the ratio of non-synonymous changes per non-synonymous site
(πN) to synonymous changes per synonymous site (πS) (see Box 1). We disregarded genes lack-
ing either synonymous or non-synonymous variation in comparisons of πN/πS. Since neutral
forces such as population growth can affect patterns of variation, we compared relative values
of statistics in each within-host sample, where all genes are likely to have the same demo-
graphic history.

Natural selection can lead to population differentiation when the relative fitness of geno-
types varies among environments; empirical outlier analyses for loci with extreme measures of
population differentiation are commonly used to identify candidates of positive selection [34–
36]. Treating each serial sputum sample from an individual patient as a distinctM.tb popula-
tion, we calculated pairwise FST values for polymorphic sites covered by at least 10 reads with a
minimumminor allele count of 6 (pooled across all samples from a patient) with PoPoolation2
[37]. In order to reduce biases introduced by variable coverage, we conditioned our analysis on
the ability to detect a significant change in allele frequency between samplings using a two-
sided Fisher’s exact test as previously proposed [38] (see Methods).

Patterns of variation among genes involved in lipid metabolism. In order to identify
candidate groups of genes under selection, we examined the extreme tails (� 5th percentile,
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� 95th percentile) of π,ƟW, and TD for enrichment of specific functional categories. We did
not observe any consistent patterns of enrichment in genes with extreme values of π,ƟW, or
the upper tail of TD (S4 Table). There was, however, a striking pattern of enrichment among
genes with extremely low values of TD across evolutionary scales (Fig 2). The Tuberculist [39]
categories “lipid metabolism” (LIP), “conserved hypotheticals” (CHP), and the Clusters of
Orthologous Groups (COG) [40] category “secondary metabolite biosynthesis, transport, and
catabolism” (COG:Q) are significantly enriched in the low tail of the distribution of gene-wise
TD values of most samples, and all patients, in the within-host studies, as well as in the global
between-host sample (Fig 2 and S4 Table).

To clarify whether the same genes are driving the enrichment of LIP, COG:Q, and CHP cat-
egories across evolutionary scales, we examined the overlap of genes in the bottom 5% tail of

Fig 2. Enrichment of annotation categories among genes with extreme negative values of Tajima’s D (TD).Within each sample (labeled at the bottom
of the heatmap), gene-wise TD values were compared and the bottom 5% of genes in the distribution were tested for overrepresentation of functional
categories using a two-sided Fisher’s exact test. To account for multiple hypothesis testing, a false discovery rate of 5% was used and the resulting q-values
are displayed on a continuous scale with varying shades of blue indicating significance at the 0.05 level. The manually curated TubercuList “conserved
hypotheticals” and “lipid metabolism” categories [39], as well as the computationally predicted COG:Q “secondary metabolites biosynthesis, transport and
catabolism” [40] are notable for their consistent enrichment at both the within- and between-host scales.

doi:10.1371/journal.ppat.1005257.g002
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the between-host distribution with the bottom 5% tails of the TD distributions from within-
host samples: all 181 genes in the bottom tail of the between-host TD distribution are also in
the tail of at least one within-host sample’s TD distribution.

Low values of within- and between-host TD in COG:Q (234 genes in category) are driven in
part by genes that are also categorized as LIP (272 genes in category). Eighty-eight genes over-
lap between the two classification schemes, of which 42 are in the bottom tail of at least one
within-host sample, and 12 are in the bottom tail of the between-host, gene-wise TD distribu-
tion. Intriguingly, in a study that analyzedM.tb RNA-Seq data over the course of a TB infec-
tion, COG:Q was also found to be enriched among genes whose expression was down-
regulated [25]. Eldholm et al did not look for differences in expression of TubercuList catego-
ries, so we do not know whether LIP and/or CHP were differentially expressed in their study.

Our results indicate that influences producing distinct patterns of variation among genes in
LIP, CHP, and COG:Q categories are found across a range of human genetic backgrounds and
environments. The fact that expression of COG:Q genes appear responsive to the environment
within hosts provides further evidence in support of the hypothesis that they are targets of
adaptation during infection.

Systematic errors in sequencing and mapping at LIP, CHP, and COG:Q loci could poten-
tially also produce unusual patterns of genetic variation. In order to investigate this possibility,
we compared base and mapping quality scores of variants in COG:Q, CHP, and LIP with
genome-wide values. We did not identify significant differences in quality scores among genes
in these categories, suggesting that extreme patterns of variation are not driven by errors in
sequencing and processing of sequencing data (S1 Fig).

Mutation rate variation is another possible explanation for our observations. That is, loci
with a relatively high mutation rate could plausibly produce excess rare variants (low TD) and/
or excess non-synonymous variation (high πN/πS). In this case, we would expect to see the
same pattern of category enrichment among genes with extremely high diversity as we do
among loci with low TD. We did not, however, observe a consistent enrichment of functional
categories among loci with high (or low) values of π orƟW (S4 Table).

Low values of TD can be observed among loci under selection to remove deleterious muta-
tions. Here, we might expect to observe low levels of non-synonymous variation at the same
loci, and perhaps a positive correlation between TD and πN/πS. At the between-host scale, there
is no overlap between genes in the bottom 5th percentiles of TD and πN/πS (Fig 3). The

Fig 3. Gene-wise estimates of Tajima’s D and πN/πS at the between-host scale. Each circle represents a
gene in the H37Rv genome. πN/πS values are plotted on a logarithmic (base 2) scale.

doi:10.1371/journal.ppat.1005257.g003
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relationship between TD and πN/πS is complex, with a possible switch from a negative to a pos-
itive correlation within the distribution.M.tb genes with low TD are associated with a range of
πN/πS values. Ratios of non-synonymous to synonymous variation are an imperfect measure of
selection strength for within-population (as opposed to between-species) comparisons [41]:
values may be flat over a range of selection coefficients. It is possible that TD and πN/πS are
responsive to purifying selection in different ways (e.g. over different timescales) and that this
is the reason for the non-linear relationship we observed between the two statistics.

LIP and COG:Q categories contain several large genes, so we wondered about an effect of
gene size on TD. LIP and COG:Q categories were enriched for genes in the 95th percentile for
size, as were seven other categories (S2 Fig). We observed a weak correlation between TD and
gene size (R squared 0.25). While the few genes of extremely large size (>5kb) all have low TD,
genes in the 5th percentile of TD have a range of sizes (S3 Fig). One possible explanation for an
association between gene size and TD is an effect of the target size for deleterious mutations,
with larger genes providing larger mutational targets. Given the strong linkage of sites in the
M.tb genome, these effects may be particularly relevant.

Low values of TD can also be associated with selective sweeps, where an advantageous
mutation rises quickly in frequency. In recombining organisms, this can create local reductions
in TD around the site of selection following the sweep. However, for organisms likeM.tb in
which linkage of sites is thought to be complete (i.e. strictly clonal [42]), all variants, which are
linked to the adaptive mutation, should move in parallel with it. Therefore, we would not
expect differences amongM.tb loci in values of TD to be driven by selection for advantageous
mutations. There is, however, little theoretical work to guide the interpretation of locus specific
variation in TD for clonal organisms. More work is needed to identify conditions under which
regional variation in TD may be observed in the setting of complete linkage of sites. Our obser-
vations could result from unexplored neutral and/or selective regimes that give a signature of
locus specific patterns of TD in a linked genome. It is also possible that linkage ofM.tb loci is
not in fact perfect, and our results reflect unrecognized recombination during TB infection.

Patterns of variation at drug targets. As expected, alleles at several known targets of anti-
TB drugs underwent extreme changes in frequency between serial, within-host samples (FST
outliers, Fig 4 and S5 Table). This is due to the emergence of drug resistance mutations, which
increase in frequency in response to selection pressures imposed by drug therapy. Interestingly,
several drug targets were in the low tail (� 5th percentile) of TD across numerous within-host
samples. We defined a cutoff of 5 or more samples as extreme, based on the observation
that< 4% of genes met this criterion. Within-host values of TD were in the extreme low tail in
5 or more samples for gyrA, gyrB, embB, and ethA.

Two recent studies identifiedM.tb genetic variants associated with drug resistance pheno-
types using tests for excess polymorphisms and homoplastic polymorphisms, respectively
[43,44]. These variants could play a direct role in drug resistance, or they could increase the fit-
ness of bacteria with drug resistance mutations at other loci (compensatory mutations). The
‘targets of independent mutation’ (TIM) category identified by Farhat et al. was enriched
among genes with low TD in two of the samples in our study (Fig 2). Two of the targets identi-
fied by Zhang et al, lprO and fadE33, harbor FST outlier SNPs in our dataset (Fig 4 and S5
Table). A D!G variant in lprO emerged in Patient A’sM.tb population and rose to near fixa-
tion in parallel with a D!N variant in katG. A SNP in fadE33 emerged in the last sample col-
lected from Patient E. Based on their allele frequencies, it may have been on the same genetic
background as a non-synonymous variant in gid that is thought to mediate streptomycin resis-
tance. Interestingly, a different SNP in fadE33 also emerged in Patient D’sM.tb population. We
were not able to confidently calculate allele frequencies of this SNP across more than one sam-
ple, due to low coverage at the site. FadE33’s function is not known; it is essential forM.tb
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growth on cholesterol [45]. Based on these data and the findings of Zhang et al, we hypothesize
that LprO and FadE33 play a role in compensation for drug resistance mutations.

Extreme patterns of variation in mycolic acid synthesis genes. Lipid metabolism genes
are found among those with πN/πS > 1 at the within-host scale (183/2122 genes with πN/πS> 1
are categorized as LIP). In theM.tb population of Patient E, a specific sub-group of lipid metab-
olism genes–those in the mycolate biosynthesis superpathway—are over-represented among
genes in the top 5% of values of πN/πS at two different time points (E0, p-value = 0.026; E12,
p-value = 0.049), and over-represented among genes in the bottom 5% at one time point (E42,
p-value 0.031).

Many individual genes in the mycolic acid synthesis pathway exhibited interesting patterns
of variation across evolutionary scales. For example, fatty acid synthase (fas, Rv2524c) is in the
1st percentile of gene-wise TD values in the between-host dataset (BHTD), it was in the low tail
of gene-wise TD values for 14 within-host samples (WHTD), and it was one of nine genes with
πN/πS> 1 across three patients’M.tb populations (Table 2). This gene was also identified as a
possible target of positive selection in a recent study of genetic variation amongM.tb strains in
the Beijing lineage [46]. Pks5, which is in the mycolate biosynthesis superpathway, was also

Fig 4. Population differentiation between samples. A.) Pairwise FST of polymorphic sites. Each patient sample was treated as a population and FST was
calculated individually for each polymorphic site in a population. Calculations were performed on all polymorphic sites covered by at least 10 reads per
sample for which the minor allele was supported by a minimum of 6 reads across all samples from the population (see Methods). Dots show the highest
observed FST value for each single nucleotide polymorphism (SNP) across the H37Rv genome. Red color coding indicates allele frequencies changed
significantly across the sampling interval (based on a Fisher’s exact test; q-value < 0.01). Genes implicated in drug resistance are outlined in black. Outliers
of the FST distribution are likely to be under positive selection, or linked to a mutation under positive selection. B.) Allele frequencies over the course of
treatment for SNPs with significant changes in allele frequency (red dots in A).

doi:10.1371/journal.ppat.1005257.g004
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singled out as a target of selection in Merker et al. Pks5 was in the 1st percentile of BHTD, it
was in the low tail of WHTD in 11 samples, and had πN/πS > 1 across three patients’M.tb pop-
ulations (Table 2).

FadD32 is essential for mycolic acid synthesis [47] and is currently being investigated as a
target for new TB treatments [48,49]. Patient A’sM.tb population harbored an FST outlier SNP
in fadD32 (Fig 4 and S5 Table). Expression of fadD32 was recently found to decrease over the
course of infection in a patient with extensively drug-resistant TB [25]. Eldholm et al specu-
lated that down-regulation of fadD32 could help to compensate for drug resistance mutations.
In addition to identifying this gene in our outlier FST analysis, we found that it had one of the
highest gene-wise values of πN/πS in the between-host sample (πN/πS = 32), as well as being in
the 93rd percentile of BHTD. These results suggest that FadD32 is a target of selection during
infection and possibly transmission, and that this leaves a signature of diversifying selection at
the between-host scale. Although regulatory and/or sequence variation at this locus could play
a role in compensation for drug resistance mutations, we think it is unlikely that this alone
would produce the extraordinary levels of diversity observed in our study. Despite recent pre-
clinical promise of FadD32 as a target of coumarin compounds [48,49], our finding of high
diversity in this gene suggests that the genetic barrier to acquisition of resistance at this locus is
likely to be low.

The gene encoding phosphopantetheinyl transferase (pptT) harbored a non-synonymous
SNP at a frequency of 41% in theM.tb population of Patient B, which was undetected in the
prior sputum sample (data from this sample did not meet inclusion criteria). PptT belongs to
the functional categories LIP and COG:Q. PptT activates Pks13, a type-I polyketide synthase
involved in the final step of mycolic acid biosynthesis, as well as various type-I polyketide
synthases required for the synthesis of lipid virulence factors [50,51]. Pks13 was found to be
down-regulated during infection in the study of Eldholm et al. Active FadD32 and Pks13 are
involved in the final steps of mycolic acid condensation in vitro [47]. The identification of an
FST outlier in fadD32 (Patient A) and a newly emergent SNP in pptT (Patient B), the associa-
tion of mycolic acid synthesis genes with extreme values of TD and πN/πS, and the identifica-
tion of these genes as targets of selection/regulatory variation across independent studies
suggests thatM.tbmycolic acids may be modulated over the course of individual TB infections.
This individual-to-individual variation could explain the high diversity observed at the

Table 2. Genes with πNπS > 1 across 3 within-hostMycobacterium tuberculosis populations.

Gene Common Name Gene Description

Rv0101 nrp peptide synthetase

Rv0931c pknD transmembrane serine/threonine-protein kinase D

Rv1527c pks5* polyketide synthase

Rv2318 uspC periplasmic sugar-binding lipoprotein

Rv2476c gdh NAD-dependent glutamate dehydrogenase

Rv2524c fas* fatty-acid synthase

Rv2566 conserved hypothetical protein

Rv2946c pks1* polyketide synthase

Rv3157 nuoM NADH dehydrogenase I chain M

Genes identified in at least one sample from 3 independent patients’ M.tb population with a πNπS > 1 are

displayed. Two genes meeting this criterion were excluded due to potential copy number variants identified

by manual inspection of the alignments.

*Indicates the gene is in the superpathway of mycolate biosynthesis.

doi:10.1371/journal.ppat.1005257.t002

Adaptation ofM. tuberculosis within and between Hosts

PLOS Pathogens | DOI:10.1371/journal.ppat.1005257 November 12, 2015 11 / 29



between-host scale in some of these genes. Caution is warranted in drug development aimed at
this pathway, as loci with high natural diversity may not be optimal drug targets.

Variation in polyketide synthases and related genes. M.tb polyketide synthases (PKS)
play essential roles in the biosynthesis of lipids and glycolipids of the cell envelope [52]. These
lipids and glycolipids are positioned at the outer edge of the envelope, at the host-pathogen
interface. As might be predicted based on their location, they play important roles in the patho-
genesis of TB (reviewed in [52–54]). In addition to mycolic acids, PKS-synthesized lipids
include phthiocerol dimycocerosates (PDIM), sulfolipids (SL), polyacyl trehalose (PAT), diacyl
trehalose (DAT), phenolic glycolipid (PGL), novel complex polar lipids synthesized by Pks6
(POL), and mannosyl-β-1-phosphomycoketides (MPM).

Genes encoding polyketide synthases (PKS) are particularly striking for extreme patterns of
variation: among 22 PKS homologs in the H37Rv genome (excluding the incorrectly annotated
pks16, and counting pks15/1 and pks3/4 as one locus each [52]), we found 18 exhibited extreme
patterns of variation (5th or 95th percentile at the between-host scale for TD or πN/πS, and/or in
the extreme low tail of WHTD in� 5 samples). The most common pattern found among PKS
is low gene-wise TD at both within- and between-host scales. Of 15 genes found in the 5th per-
centile of BHTD and the low tail of WHTD in� 10 samples, 10 are PKS.

Similar to pks5 (discussed above), pks1 is also among nine genes with a πN/πS> 1 across
three patients’M.tb populations (Table 2). Zhang et al [43] found evidence of an association
between pks2, pks8, and pks17 variants and drug resistance. Pks2 and pks8 exhibited extreme
patterns of variation in our study (1st percentile of BHTD and low tail of WHTD in 15 samples;
1st percentile of BHTD and low tail of WHTD in 11 samples). Farhat et al [44] found evidence
of positive selection on ppsA, pks3, and pks12, all of which were in the extremes of BHTD and/
or 5 or more samples’WHTD in our data.

PKS-synthesized lipids are transported to the cell surface by the Mycobacterial membrane
protein Large (MmpL) family of membrane proteins. H37Rv includes genes encoding 13
MmpL transporters [55]; substrates have not been identified for all them. MmpL have been
shown to play important roles in TB pathogenesis [55,56].MmpL genes were also notable for
extreme patterns of variation: 10/13 of these loci were in the extreme tail of πN/πS and/or TD at
the between-host scale and/or the low tail of TD in 5 or more within-host samples. Similar to
PKS genes, the combination of low values of gene-wise TD at the within- and between-host
scales was most common. In addition, we identified an FST outlier SNP inmmpL12 (Fig 4 and
S5 Table);mmpL11 has been identified as a target of positive selection in a previous study [46]
andmmpL1 variants were associated with drug resistance in a separate study [43]. Genes
encoding two non-MmpL transporters of PDIM, drrA and drrC, also exhibited extreme pat-
terns of variation. DrrA is in the 99th percentile of BHTD, whereas drrC is in the 1st percentile
of between-host πN/πS. These observations suggest that PKS and associated transporter genes
are involved in adaptation ofM.tb during infection. For some of these loci, there is evidence
suggesting a role in drug resistance, augmenting the phenotype and/or increasing the fitness of
drug resistant mutants.

Patterns of variation among regulators of PKS lipids. We observed extreme patterns of
variation in genes involved in regulation of immunomodulatory lipids, in addition to those
involved in their biosynthesis and transport (Fig 5). For example, the gene encoding a regulator
of PDIM, pknD, was in in the low tail of BHTD and six samples’WHTD. It was also in the
group of nine genes with πN/πS> 1 across three patients’M.tb populations (Table 2). PknD is
thought to regulate deposition of PDIM on the cell wall via its effects on MmpL7, which trans-
ports PDIM [57]. Another example is the GTP pyrophosphokinase relA (Rv2583c), which reg-
ulatesM.tb gene expression during the chronic phase of murine infection and plays a central
role in the response to hypoxia and starvation [58,59]. RelA was in the low tail of seven
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samples’WHTD. RelA modulates expression of pks3/4, pks5, and fas, all of which exhibited
extreme patterns of variation (discussed above).

Patterns of variation in fadD9, which is of unknown function, are similar to many genes
affecting immunomodulatory lipids (S6 Table): fadD9 was in the 2nd percentile of BHTD and
the low tail of 10 samples’WHTD. Expression of fadD9 is under the control of two regulators
that are central toM.tb’s adaptation to the within-host environment: PhoP [60] and DevR [61]
(Fig 5). PhoP controls the production of PAT/DAT and SL [62]. DevR exhibited extreme pat-
terns of variation, with BHTD in the 99th percentile. Another regulator of fadD9,moxR3,
exhibited extreme patterns of variation: this gene was in the 5th percentile of between-host πN/
πS (Fig 5 and S6 Table).MoxR3 is upregulated during re-aeration of hypoxicM.tb cultures
[63]. As noted above, the function of FadD9 has not been identified; patterns of variation in
this gene and its regulators, as well as its co-regulation with virulence associated lipids, suggest
it may play a role in host-pathogen interactions, and that it is a target of selection within hosts.

PKS lipids as targets of selection within hosts
We have shown that numerous genes affecting PKS associated lipids (mycolic acids, PDIM,
PAT/DAT, PGL, POL, and MPM) exhibit extreme patterns of variation across a range of statis-
tical measures and independent data sets. We hypothesize that these patterns of variation are
due to adaptation withinM.tb’s natural human host. Several characteristics of PKS-associated
lipids make them likely targets of selection during infection.

PKS associated lipids are important mediators of host-pathogen interactions. For example,
mycolic acids are known to modify host cell phenotype [64] and to affect virulence in animal
models of TB [65]. PDIM has major impacts onM.tb’s virulence in animal models of TB
[66,67] via numerous mechanisms (reviewed in [68]) including protection from innate
immune responses [69]. Like PDIM, the PKS synthesized lipids PAT/DAT, SL, MPM, POL
and PGL also appear to mediate interactions betweenM.tb and the immune system [66,70–
86].

Fig 5. Connectivity of regulators and targets involved in the synthesis ofMycobacterium tuberculosis
immunomodulatory lipids. Interactions (shown as arrows) among select genes involved in the regulation
(circles), synthesis (rectangles) and transport (block arrows) of phthiocerol dimycocerosates (PDIM),
sulfolipids (SL), polyacyl trehalose (PAT), diacyl trehalose (DAT), and mycolic acids. The coloring scheme
reflects patterns of variation observed at these loci: genes colored red had signatures of positive selection
(gene contained an FST outlier and/or was in the 95th percentile of πN/πS at the between-host scale), blue
indicates the gene had extreme Tajima’s D (TD) (5th percentile of between-host TD and/or 5th percentile of
within-host TD for� 5 within-host samples), purple genes contained both low TD and signatures of positive
selection, while pink indicates\ the gene had evidence of selection against non-synonymous diversity (5th

percentile between-host πN/πS). Genes identified as targets of selection in other studies are indicated with
bolded outlines. See discussion in text for more details.

doi:10.1371/journal.ppat.1005257.g005
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The capacity for adaptation is predicated on phenotypic variation, which has been demon-
strated for PKS associated lipids. Production of PAT/DAT has been shown to vary among clin-
ical isolates; some isolates do not make them at all [87]. Production of PGL also varies among
clinical isolates, and variant forms of PDIM have been identified in clinical isolates [54].
Based on their roles in pathogenesis and their variability, it has been proposed previously that
modifications of these lipids could arise during natural infection in order to optimize host cell
manipulation [54]. The observation of unusual patterns of variation at genes involved in the
synthesis, transportation, and regulation of these lipids provides evidence in support of this
hypothesis.

Several features are conducive to efficient selection on genes controlling the synthesis, regu-
lation, and transportation of PKS associated lipids. There are connections between biosynthetic
pathways controlling production of distinct PKS synthesized lipids (e.g. PDIM, SL, and mycolic
acids) such that metabolites can be shuttled between them [88,89]. This flexibility allowsM.tb
to respond rapidly to environmental fluctuations. It may also allow more efficient selection for
adaptive mutations, since single mutations can potentially affect multiple lipid products. In
addition, since intermediate metabolites could potentially be shuttled down multiple pathways,
they need not accumulate with potentially toxic effects if one pathway is affected by a harmful
mutation.

PDIM, PAT/DAT, and SL are not essential for growth ofM.tb in artificial media, and PDIM
is in fact frequently lost during passage ofM.tb in the laboratory [87,90]. This suggests that
functions of these lipids are specific to natural, within-host environments. The expression of
M.tb immunomodulatory lipids is responsive to physiological conditions (hypoxia, starvation)
encountered during natural infection [91,92]. In tissue culture and animal models of TB, the
shift from axenic growth to infection is accompanied by alterations in expression of genes
involved in lipid metabolism with consequent changes to the bacterial cell envelope [88,93–
95]. Further supporting the idea that these lipids are important for adaptation to the patho-
genic niche, MPM, PGL, and PDIM are only found among pathogenic mycobacteria, and
PAT/DAT and SL are specific to theMycobacterium tuberculosis complex (MTBC) (Fig 6)
[54,62,79]. It was shown recently that even among members of the MTBC, production of PAT/
DAT and SL is specific to human-pathogenic mycobacteria [62].

Recent work has shown that PAT/DAT, PDIM, and SL all impair phagosomal acidification
and thereby improveM.tb survival within macrophages; there appears to be significant flexibil-
ity in how these functions are performed, and distinct lipid moieties may compensate for each
other [87]. By providing cover during exploration of the fitness landscape, both functional
redundancy and metabolic flexibility may increase the potential for rapid adaptation. For
example, they would enable progress toward fitness peaks that are otherwise unreachable as a
result of a preceding ‘valley’ created by mutations that are deleterious except in certain combi-
nations. This may be particularly important for a clonally reproducing organism such asM.tb.

Conclusions
We have shown that genetic diversity ofM.tb populations can vary dramatically between indi-
viduals with TB. Variation correlated with clinical severity, rather than treatment status, drug
resistance phenotype orM.tb lineage. Further studies are needed to explore the replicability of
patterns observed here across different types of patients with TB and treatment settings.

We have also observed distinct patterns of variation among genes associated withM.tb viru-
lence lipids: these patterns carry through functional links among genes, and across different
statistical measures and datasets in our own and previously published studies. These lipids are
good candidates for adaptation during infection based on the phenotypic variation observed
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among clinical isolates, their roles mediating host interactions, their specific association with
the pathogenic niche, and their flexible functional architecture.

It is important to note uncertainties in the data and its interpretation. We cannot, for exam-
ple, assert that all genetic variants described here were generated within hosts. In all the studies
whose data we analyzed, clinical specimens were manipulated in vitro prior toM.tb genome
sequencing. Some mutations may have occurred during culture.

Genetic variation inM.tb is skewed to rare allele frequencies, at both the within- and
between-host scale. While we have endeavored to ameliorate the impacts of spurious variants
introduced by sequencing errors and errors introduced during processing of sequencing read
data, rare variants are difficult to disentangle from sequencing errors, particularly in pooled
sequencing data. As is standard in studies ofM.tb genomics, our analyses excluded genomic
segments (totaling ~11%, seeMethods) that are poorly resolved with short read sequencing
technologies. Additional measures to reduce the effects of sequencing errors included trimming
low quality bases from sequencing reads, implementing mapping and base quality thresholds,
and excluding indels as well as SNPs demonstrating strand-bias and/or tail-distance-bias. We
used PoPoolation, which explicitly accounts for the effects of sequencing error, to estimate

Fig 6. Mycobacteria maximum likelihood tree. Phylogenetic analysis is based on a core genome
alignment of 57 strains (S7 Table). Arrows indicate the probable emergence of specific lipids in the
phylogenetic history ofMycobacterium based on previous studies [54,62,79]. *Indicates lipids are only found
inM. tuberculosis sensu stricto, not other members ofMycobacterium tuberculosis complex (MTBC).
†Indicates uncertainty in the placement because lipids ofM. sp. JDM501 have not been characterized.
Bootstrap values are 100 unless otherwise labeled. Scale bar indicates the mean number of substitutions per
site. ABREVIATIONS: PDIM–phthiocerol dimycocerosates; PGL–phenolic glycolipids; SL–sulfolipids; MPM–

mannosyl-β-1-phosphomycoketides; PAT–polyacyl-trehalose; DAT–diacyl-trehalose

doi:10.1371/journal.ppat.1005257.g006
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population genetic parameters in our study. Validation studies of PoPoolation have shown that
implementation of PoPoolation’s recommended minor allele count and quality thresholds
decreases the error rate from 1% to ~ 0.01% post processing [27]. These studies also demon-
strated that PoPoolation parameter estimates from pooled sequencing data are highly corre-
lated with estimates from Sanger sequencing data.

However, there are differences between PoPoolation validation datasets and those analyzed
in our study: PoPoolation was validated for sequencing reads generated on the Illumina GAIIx
from a Drosophila melanogaster population (and data simulated to mimic these reads), whereas
we have analyzed sequencing reads generated on the Illumina HiSeq fromM.tb populations.
GAIIx and HiSeq differ in their biases [96], and GC content differs significantly betweenM.tb
and D.melanogaster. We note that despite these potential limitations of PoPoolation in cor-
recting errors in our pooled data, we observed similar patterns of genetic variation in the
between-host dataset, which is based on single-colony isolates and a different variant-discovery
pipeline.

Interpretation of genetic data across evolutionary scales is also not straightforward. The
consistent identification of specific functional categories in extremes of various statistics sug-
gests that they are due to natural selection, but the type of selection and where it operates is not
clear. The patterns we observed may be due to selection imposed by drug therapy, the immune
response and/or transmission, with further modification as a result of complex neutral influ-
ences on variation. In addition, our hypotheses need to be investigated at the level of pheno-
types. Based on the analyses presented here and their contextualization with published data, we
propose that further characterization of individual-level, phenotypic variation inM.tb PKS
associated lipids is likely to be fruitful. In addition, several of the loci described here are worthy
of investigation for a potential role mediating or compensating for drug resistance.

Methods

Data collection
Within-hostM.tb data set (n = 19). We used carefully chosen WGS data from three previ-

ously published studies [23,25,26] to characterize within-host populations ofM.tb. In each of
these studies, primary specimen from sputum samples of patients being treated for TB were
sub-cultured on Lowenstein-Jensen (LJ) slants without single colony passage; genomic DNA
was extracted from each LJ slant and sequenced on an Illumina platform to capture theM.tb
population present in the sputum sample (pool-seq). Since sequencing error biases are known
to vary across platforms [96], we only used WGS data generated on the Illumina HiSeq (data
from a variety of platforms were analyzed in the original Sun et al and Eldholm et al studies).
As low frequency variants are important in the analysis of population genetic parameters, we
only used samples for which the mean coverage across the genome was� 50X in the present
study. Accession numbers and publicly available meta information for the 19 within-host sam-
ples (from 5 different patients’M.tb populations) passing these criteria are shown in Table 1.
In each of the primary studies, standard genotyping methods (restriction fragment length poly-
morphism analysis and/or variable number tandem repeat analysis) indicated that all serial iso-
lates had identical profiles. Accession numbers, mapping statistics, and exclusion basis (when
applicable) for all sequencing runs considered are in S1 Table.

Between-hostM.tb data set (n = 201). We used previously published WGS data from 201
diverse, globally extant strains ofM.tb [29] to characterize between-host populations ofM.tb.
The data set includes isolates from all seven major lineages ofM.tb [97,98]. Accession numbers
and more detailed information about the strains are in S2 Table.
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Processing of raw sequencing reads
For the within-hostM.tb data set, we trimmed low-quality bases from the FASTQ data using a
threshold quality score of 20, and reads of length less than 35bp were discarded using Trim
Galore! (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/)—a wrapper tool
around Cutadapt [99] and FastQC (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/). We mapped reads to H37Rv (NC_000962.3) [100] using the default parameters of the
BWAMEM algorithm with the–M flag enabled for downstream compatibility [101], and we
removed duplicates using Picard Tools (http://picard.sourceforge.net). Local realignment was
performed with the Genome Analysis ToolKit (GATK) [102] in a sample aware manner, and
aligned reads with mapping quality> 20 were converted to mpileup format using Samtools
software [103]. The resulting reference-guided assembly of each sample spanned over 98.9% of
the H37Rv genome, with a mean depth of coverage per site ranging from 56X to 192X (S1
Table). Loci at which indels were present in a sample were removed along with 5bp of flanking
sequence using the PoPoolation package [27].

For the between-hostM.tb data set, we trimmed low-quality bases from FASTQ data using
a threshold quality of 15, and reads resulting in less than 20bp length were discarded using
Trim Galore! (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/)—a wrapper
tool around Cutadapt [99] and FastQC (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/). Reads were mapped to H37Rv (NC_000962.2) [100] using the suggested algorithm of
BWA for the given sequencing strategy (e.g. paired-end/single-end, read length) [101,104], and
duplicates were removed using Picard Tools (http://picard.sourceforge.net). We used GATK to
perform local realignment and variant calls using a minimum phred-scaled confidence thresh-
old of 20 [102]. Variants were filtered with the following expression “QD< 2.0 || FS> 60.0 ||
MQ< 40.0 || MQRankSum< -12.5 || ReadPosRankSum < -8.0” as described in the GATK
best practices. Genome alignments were generated with scripts that can be found at https://
github.com/tracysmith/RGAPepPipe.

Transposable elements, phage elements, and repetitive families of genes (PE, PPE, and
PE-PGRS gene families) that are poorly resolved with short read sequencing were removed
from the mpileup files and alignment prior to subsequent analyses plus 5bp up- and down-
stream of the genes. We additionally removed regions that were found to have poor mapping
quality using the CallableLoci tool of the GATK: for each within-host sample, any region
reported as poorly mapped using the following flags was removed from all datasets (including
between-host) plus 5bp up- and down-stream: -frlmq 0.04 –mmq 20 -mlmq 19. As an addi-
tional measure, we also removed sites with the lowest 2% average mapping quality in the global
alignment from all datasets prior to subsequent analysis. Regions removed from all datasets
based on these criteria can be found in S8 Table. Polymorphisms in the within-host dataset
demonstrating strand-bias or tail-distance-bias identified by a previously described method
[22] (https://github.com/tamilieberman/IntrasamplePolymorphismCaller) were removed
along with 5bp up- and down-stream from all within-host samples (S8 Table).

Population genetic estimates of within-host populations
We used the PoPoolation package [27] to estimate nucleotide diversity (π), Watterson’s theta
(ƟW), and Tajima’s D (TD) in sliding windows across theM.tb genome. Sensitivity analyses of
these statistics to input parameters are described in the S1 File. Parameter estimates were
strongly influenced by sequencing coverage (S1 File). In order to alleviate biases in parameter
estimates caused by variable coverage among samples, we randomly sub-sampled read data
without replacement to a uniform coverage of 50X; this process was performed 9 times for
each sample to reduce potential biases introduced by sampling of rare alleles. We used default
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equations in the PoPoolation package to estimate π,ƟW, and TD [27,28]. In order to reduce
the effects of sequencing errors on parameter estimates, PoPoolation implements modified cal-
culations of the classical π,ƟW, and TD that are only evaluated on SNPs above a designated
minor allele count. PoPoolation estimators account for the truncated allele frequency spectrum
and re-sequencing of the same chromosomes that occurs during pool-seq. PoPoolation’s rec-
ommended minor allele count and quality thresholds are based on simulation studies indicat-
ing that their implementation decreases the error rate of 1% in the raw data to ~0.01% in the
processed data. PoPoolation parameter estimates from pooled data have also been found highly
concordant with estimates from Sanger sequencing data. Unless otherwise noted, all calcula-
tions performed with the PoPoolation package were implemented using the recommended
minimumminor allele count of 2 for 50X coverage, and a pool-size of 10,000 (see S1 File for
justification). Calculations performed under differing parameters can be found in the Supple-
mental Data. Sliding-window analyses were performed using a window-size of 100K and a
step-size of 10K; data presented are the mean of each window across 9 replicate sub-sampled
mpileups (Fig 1). Genome-wide averages are expressed as the mean across all windows suffi-
ciently covered (� 60% coverage of 50X) (S3 Table).

To calculate gene-by-gene estimates of π, ϴW, and TD from the 50X sub-sampled mpileups,
we again used the PoPoolation package [27]. Gene coordinates were obtained from the stan-
dardized Gene Transfer Format (.gtf) for the H37Rv annotation on the TB database (tbdb.org)
(S2 File) [105]. Excluding genes with inadequate coverage (<50% of the gene), we calculated
the mean value of each statistic across the 9 replicate sub-samplings for each gene of each sam-
ple, and compared it to all other genes within the sample.

Using the same.gtf file and the PoPoolation package, we also calculated the average number
of nonsynonymous differences per nonsynonymous site (πN) and the average number of syn-
onymous differences per synonymous site (πS) for each gene in the 50X sub-sampled mpileups.
Recognizing that chance samplings of very rare mutations in one replicate sub-sampled mpi-
leup would lead to skewed distributions, we took the median values of πN and πS across 9 repli-
cate sub-samplings for each gene of each sample and calculated πN/πS. Excluding genes with
inadequate coverage (<50% of the gene) and genes with πN and/or πS equal to zero, πN/πS val-
ues were compared relative to all genes passing these criteria within the sample.

To identify candidate SNPs under selection, we treated each temporal sample of a patient as
a population, and estimated pairwise FST for each variable site in the genome with PoPoola-
tion2 [37]. Unlike the sliding-window and gene-wise estimates, all sequencing data for which
the minimum base quality was� 20 was considered (i.e. no sub-sampling). We excluded all
sites with a coverage ˂ 10, and only considered those sites with a minimum allele count� 6
(pooled across all samples for a patient). FST estimates were subjected to an empirical outlier
analysis. To reduce biases resulting from variable coverage, we conditioned our analysis on the
ability to detect a significant change in allele frequency between samplings using a two-sided
Fisher’s exact test as previously proposed [38]. To account for the large number of tests per-
formed we used a false discovery rate (FDR) of 5% and calculated adjusted p-values (q-values)
(R stats Package [106]). SNPs with extreme FST values (> 0.10) and a q-value< 0.01 were
deemed outliers and are listed in S5 Table.

S9 Table shows SNPs passing all filtering criteria that were used in the above described pop-
ulation genetic estimates for the within-host populations.

Population genetic estimates of globally extant strains (between-host)
We used PoPoolation [27] with the “disable-corrections” flag enabled (calculations are per-
formed using the classical equations) to generate sliding-window estimates of π andƟW from
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whole genome alignments of all 201 globally extantM.tb strains,M.tb isolates from lineage 2
(East Asian lineage, n = 37), andM.tb isolates from lineage 4 (Euro-American lineage, n = 53)
(S2 Table) [29]. We required a minimum of 75% of the strains have non-missing data for a site
to be included in the analysis (“minimum coverage”), set the “minimumminor allele count” to
one, and the “pool-size” to the number of strains being analyzed.

We calculated gene-by-gene estimates of π, ϴ, TD, πN, and πS for the global dataset in the
same way as was done for within-host samples, save for a few exceptions: rather than use the
default PoPoolation estimators that apply corrections for sequencing errors [27,28], we
employed the “disable-corrections” flag (calculations are performed using the classical equa-
tions), set the “minimum minor allele count” to one, and the “pool-size” was set to 201 to
reflect the number of strains in the dataset; the “minimum coverage” was set to 151 to exclude
any genes that were not represented by at least 75% of strains in the dataset. Finally, no averag-
ing was performed. For πN/πS calculations, we again excluded genes with πN and/or πS equal to
zero, and compared values relative to all genes passing these criteria within the sample.

Functional and pathway enrichment analyses
For each within-host sample, between 58.7–90.1% of annotated genes in the H37Rv genome
had sufficient coverage to calculate TD; for the between-host sample, TD was calculated for
90.2% of annotated genes in the H37Rv genome, as this was the fraction covered by at least
75% of the strains. Genes with TD values in the top and bottom 5% of the distribution for a
given sample were deemed candidate genes of selection. The significance of enrichment for
functional categories in candidate genes of selection was assessed with a two-sided Fisher’s
exact test. To account for multiple hypothesis testing, we used a false discovery rate of 5% and
calculated q-values (R stats Package, [106]). We used the following annotation categories to
classifyM.tb genes: computationally predicted Clusters of Orthologous Groups (COG) (n = 21
categories) [40]; essential and nonessential genes for growth in vitro as determined by transpo-
son site hybridization (TraSH) mutagenesis [107]; genes essential for growth in a murine
model of TB [108]; "targets of independent mutation" associated with drug resistance [44]; and
theM.tb-specific, manually curated functional annotation lists from TubercuList (n = 7) [39].
COG annotations for the H37Rv genome were obtained from the TB database (tbdb.org)
[105], as were the TraSH “in vitro essential”, “in vivo essential”, and “nonessential” gene anno-
tations. TubercuList functional annotations were obtained from tuberculist.epfl.ch [39] and
reflect the most up-to-date annotations when the database was accessed (12/01/2013). We did
not include the TubercuList categories “PE/PPE”, “stable RNA”, and “unknown” in our analy-
ses. S3 File contains the genes included in each category. Functional enrichment of genes in the
top 5% of π and ϴW for each sample were performed in the same manner.

Variable proportions of annotated genes in the H37Rv genome had sufficient coverage and
contained both nonsynonymous and synonymous variation in a given within-host sample. To
look for commonalities among patients, we examined all genes found to have a positive πN/πS
value in at least one sample from multiple patients; genes found to have a πN/πS > 1 in three
patientM.tb populations are shown in Table 2. Upon noticing a preponderance of genes in the
superpathway of mycolate biosynthesis on the cellular overview tool of the TB database (tbdb.
org) [105] we formally tested for an enrichment of genes in this category using a two-sided
Fisher’s exact test.

Variant base quality and mapping quality
We used the Python package pysamstats (https://github.com/alimanfoo/pysamstats) to calcu-
late the root-mean-square (RMS) value of base qualities for variant alleles and the RMS
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mapping quality for reads aligned at such polymorphic sites in the reference-guided-assemblies
of within-host samples. Variants occurring in genes categorized as CHP, LIP, or COG:Q were
subject to a one-sided Student’s T-test to determine whether the mean RMS base qualities of
the category was significantly lower than that occurring in any gene.

Mycobacteria core genome alignment and phylogenetic tree
We downloaded finished genomes of mycobacterial species from NCBI (S7 Table). Reference
guided assemblies for species where only sequencing reads were available were performed as
described above for the between-host dataset. We used Prokka v 1.7 [109] for genome annota-
tion. Protein sequences output by Prokka were clustered into orthologous groups using
OrthoMCL [110]. The core proteins (those found only once in every genome) were aligned
using MAFFT [111], trimmed with trimAl [112], and concatenated. Scripts used for
core genome analysis can be found at https://github.com/tatumdmortimer/core-genome-
alignment. We used RAxML v 8 [113] for maximum likelihood phylogenetic analysis of the
core alignment. We used Dendroscope [114] for tree viewing and editing.

Supporting Information
S1 Table. Summary statistics and meta information for within-host samples considered for
this study.We used carefully chosen whole genome sequence data from three previously pub-
lished studies [23,25,26] to characterize within-host populations ofM.tb. In each of these stud-
ies, primary specimen from decontaminated sputum samples of patients being treated for TB
were sub-cultured on Lowenstein-Jensen slants without single colony passage; genomic DNA
was extracted from each slant and sequenced on an Illumina platform to capture theM.tb pop-
ulation present in each sample (pool-seq). Inclusion criteria for this study was threefold: 1.)
We only used WGS data generated on the Illumina Hi-Seq platform. 2.) We only used samples
for which the mean depth of coverage was ˃ 50X. 3.) Only one sequencing run per sample was
used to avoid biases introduced by combining data across multiple runs. Tab A contains infor-
mation pertaining to all strains considered including sample names, accession numbers, and
exclusion criteria where applicable. Tab B contains additional base quality and mapping statis-
tics for samples selected for use in the current study.
(XLSX)

S2 Table.Mycobacterial tuberculosis strains used for global and regional datasets in this
study. Strains used in this study are a subset of those used in a previous study [29]. Information
pertaining to the place of birth of the patient, the place of isolation of the strain, and the phylo-
geographic area are taken from Comas et al.–S1 Table and reported here for the ease of the
reader. We performed phylogenetic analysis on the selected strains and confirmed the lineages
reported by Comas et al. Accession numbers are listed for each strain.
(XLSX)

S3 Table. Genome-wide estimates of nucleotide diversity (π) and Watterson’s theta (ϴW)
under varying parameters. Reference-guided assemblies for within-host samples were sub-
sampled without replacement to a uniform coverage of 50X. Sliding-window analyses of π and
ϴW were performed with default PoPoolation equations that account for sequencing error in
pooled-data [27]. A window-size of 100Kb, a step-size of 10Kb, and a “pool-size” of 10,000
were used (see S1 File for justification). Estimates for within-host samples were generated
under three parameter sets: mbq20 –a “minimum base quality score” of 20 with a “minimum
minor allele count” of 2; mbq30 –a “minimum base quality score” of 30 with a “minimum
minor allele count” of 2; mc3 –a “minimum base quality score” of 20 with a “minimumminor
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allele count” of 3. Genome-wide estimates are expressed as the mean across all windows cov-
ered by at least 60% under the given parameters. Genome-wide estimates for the global and
lineage-specific datasets were performed with classical equations in PoPoolation (“disable cor-
rections” flag enabled). Only sites covered by>75% of strains were included in the analyses. A
window-size of 100Kb and a step-size of 10Kb were used, and genome-wide estimates are
expressed as the mean across all windows passing criteria. Other parameters were not applica-
ble to between-host datasets.
(PDF)

S4 Table. Functional enrichment analysis of genes with extreme values of Tajima’s D (TD),
nucleotide diversity (π), and Watterson’s theta (ϴW). Genes with TD, π, and ϴW values in the
top and bottom 5% of the distribution of each sample were tested for enrichment of functional
categories (described inMethods) using a two-sided Fisher’s exact test. To account for multiple
hypotheses testing, a false discovery rate of 5% was used and the resulting q-values are
reported. Red font and cell highlighting indicates significance at the 0.05 level. Note that the
results presented in the tab “TD-bot5%” are visualized in Fig 2.
(XLSX)

S5 Table. SNPs with extreme FST values in serial samples of within-hostMycobacterium
tuberculosis populations. SNPs found to have an FST > 0.10 and a q-value< 0.01 (see Meth-
ods) are annotated for each Patient. Allele frequency change between longitudinal samples,
nucleotide change, and amino acid change are with respect to the minor allele of the first sam-
ple time point of each patient (not the H37Rv reference). FST values reported for Patients A, D,
and E are the maximum observed value among all possible pairwise comparisons.
(XLSX)

S6 Table. Gene-by-gene estimates of population genetic parameters from within- and
between-host samples. For each gene in the H37Rv genome, population genetic parameters
estimated for global (g) and within-host (accession no.) samples are displayed; column headers
correspond to the sample followed by one of the following abbreviations: cov–fraction of gene
resolved at sufficient coverage; theta–Watterson’s theta (ϴW); pi–nucleotide diversity (π), TD–
Tajima’s D; piN–the number of nonsynonymous mutations per nonsynonymous site (πN);
piS–the number of synonymous mutations per synonymous site (πS); piNpiS—(πN/πS). Genes
had to be resolved at� 50% (and in at least 75% of strains for the between-host dataset) in
order for statistics to be calculated. SeeMethods for details of how each parameter was calcu-
lated. Gene symbols, common names, and descriptions are from S2 File obtained from tbdb.
org. Calculations for within-host samples were calculated with PoPoolation [27] under three
different parameter sets and are presented under different tabs: mbq20 –a “minimum base
quality score” of 20 with a “minimumminor allele count” of 2; mbq30 –a “minimum base qual-
ity score” of 30 with a “minimumminor allele count” of 2; mbq20_mc3 –a “minimum base
quality score” of 20 with a “minimumminor allele count” of 3.
(XLSX)

S7 Table. Strain names and accession numbers for genomes used in Fig 6. Strain names and
accession numbers are listed for the genomes used to generate the core genome alignment and
maximum likelihood tree.
(XLSX)

S8 Table. Regions removed from reference-guided assemblies. Stringent quality filters were
imposed in our data processing pipeline. A) Non-overlapping regions removed from all data-
sets (within-host and between-host): transposable elements, phage elements, and repetitive
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families of genes (PE, PPE, and PE-PGRS gene families) that are poorly resolved with short
read sequencing, regions found to have poor mapping quality using the CallableLoci tool of the
GATK (see Methods), and the lowest 2% average mapping quality in the global alignment. B)
Non-overlapping regions remove from all within-host datasets: polymorphisms in the
within-host dataset demonstrating strand-bias or tail-distance-bias in any of the 19 samples
as identified by a previously described method [22] https://github.com/tamilieberman/
IntrasamplePolymorphismCaller plus 5bp up- and down-stream.
(XLSX)

S9 Table. Polymorphisms passing filtering criteria for each within-host patient. Each tab
corresponds to a patient (patA-E) and is followed by either “subsampled” or “fst”. Tables list
allele counts at polymorphic sites used in gene-wise (subsamples) or single nucleotide poly-
morphism (fst) analyses.
(XLSX)

S1 File. Sensitivity analysis and parameter choice justification for PoPoolation software.
Supplementary information on our sensitivity analysis of the PoPoolation Software [27]. This
document includes justification of our parameter choices, as well as four figures with legends
in the document.
(PDF)

S2 File. H37Rv gene transfer format. Tab-delimited gene transfer format file for H37Rv
obtained from tbdb.org. Chromosome has been changed to reflect the reference sequence chro-
mosome used for the between-host dataset.
(TXT)

S3 File. Functional enrichment categories.We used the following annotation categories to
classifyM.tb genes: computationally predicted Clusters of Orthologous Groups (COG) (n = 21
categories) [40]; essential and nonessential genes for growth in vitro as determined by transpo-
son site hybridization (TraSH) mutagenesis [107]; genes essential for growth in a murine
model of TB [108]; "targets of independent mutation" associated with drug resistance [44]; and
the M.tb-specific, manually curated functional annotation lists from TubercuList (n = 7) [39].
COG annotations for the H37Rv genome were obtained from the TB database (tbdb.org)
[105], as were the TraSH “in vitro essential”, “in vivo essential”, and “nonessential” gene anno-
tations. TubercuList functional annotations were obtained from tuberculist.epfl.ch and reflect
the most up-to-date annotations when the database was accessed (12/01/2013). We did not
include the TubercuList categories “PE/PPE”, “stable RNA”, and “unknown” in our analyses.
(TXT)

S1 Fig. Distributions of base and mapping quality scores of polymorphic sites in notable
categories. Box-and-whisker plots of (A) the root-mean-square (RMS) value of base qualities
for variant alleles and (B) the RMS mapping quality for reads aligned at polymorphic sites in
the reference-guided-assemblies (pooled across all within-host samples). RMS values were cal-
culated with the python package pysamstats https://github.com/alimanfoo/pysamstats. Distri-
butions are shown for polymorphisms occurring in any gene (black), TubercuList “conserved
hypotheticals” (blue), TubercuList “lipid metabolism” (red), and COG:Q “secondary metabo-
lites biosynthesis, transport, and catabolism” (purple). Upper and lower whiskers delineate
highest values within 1.5 times the distance between the first and third quartiles. Outliers and
plotted as points.
(TIF)
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S2 Fig. Enrichment of functional annotation categories among genes in the 95th or greater
percentile for gene length. The total gene length covered by at least 75% of between-host
strains were compared, and the top 5% of genes in the distribution were tested for overrepre-
sentation of functional categories using a two-sided Fisher’s exact test. Genes which were not
covered by at least 75% of strains for more than half of the total gene length were excluded.
(TIF)

S3 Fig. Between-host Tajima’s D (TD) versus gene-length. Each point corresponds to a gene
in the H37Rv genome. Between-host, gene-wise values of TD are plotted against the length of
the gene that was at sufficient coverage for the calculation. Genes for which less than half of the
gene was covered by 75% of the strains have been excluded. The black dotted line marks the 5th

percentile of TD.
(TIF)
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