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Abstract

Background: Modeling count and binary data collected in hierarchical designs have increased the use of Generalized Linear
Mixed Models (GLMMs) in medicine. This article presents a systematic review of the application and quality of results and
information reported from GLMMs in the field of clinical medicine.

Methods: A search using the Web of Science database was performed for published original articles in medical journals
from 2000 to 2012. The search strategy included the topic ‘‘generalized linear mixed models’’,‘‘hierarchical generalized linear
models’’, ‘‘multilevel generalized linear model’’ and as a research domain we refined by science technology. Papers reporting
methodological considerations without application, and those that were not involved in clinical medicine or written in
English were excluded.

Results: A total of 443 articles were detected, with an increase over time in the number of articles. In total, 108 articles fit the
inclusion criteria. Of these, 54.6% were declared to be longitudinal studies, whereas 58.3% and 26.9% were defined as
repeated measurements and multilevel design, respectively. Twenty-two articles belonged to environmental and
occupational public health, 10 articles to clinical neurology, 8 to oncology, and 7 to infectious diseases and pediatrics.
The distribution of the response variable was reported in 88% of the articles, predominantly Binomial (n = 64) or Poisson
(n = 22). Most of the useful information about GLMMs was not reported in most cases. Variance estimates of random effects
were described in only 8 articles (9.2%). The model validation, the method of covariate selection and the method of
goodness of fit were only reported in 8.0%, 36.8% and 14.9% of the articles, respectively.

Conclusions: During recent years, the use of GLMMs in medical literature has increased to take into account the correlation
of data when modeling qualitative data or counts. According to the current recommendations, the quality of reporting has
room for improvement regarding the characteristics of the analysis, estimation method, validation, and selection of the
model.
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Introduction

Statistical modeling is a highly important tool that receives a lot

of attention in any scientific field. In health sciences, statistical

models arise as an important methodology to predict outcomes

and assess association between outcomes and risk factors as well.

Thus, one important aspect is to efficiently test the investigational

hypothesis by avoiding biases and accounting for all the sources of

variability present in data. This usually leads to complex designs

where data is hierarchically structured. Multilevel, longitudinal or

cluster designs are examples of such structure. In health sciences,

longitudinal studies probably are more common, where measure-

ments are grouped in subjects who are followed over time.

Furthermore, other possibilities are studies where measurements

are hierarchically grouped in subgroups such as schools, hospitals,

neighborhoods, families, geographical areas or place of employ-

ment.

In the classic linear model (linear regression analysis, ANOVA,

ANCOVA), the variable response is continuous and it is assumed

that the response conditioned to covariates follows a normal

distribution with maximum likelihood based approaches as the

principal estimation methods [1–3]. However, the general linear

model is not appropriate for non-continuous responses (e.g.

binary, counts) because the underlying assumptions of the model

do not hold.
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Generalized linear models (GLMs) arose as an extension of the

classic linear model that allowed for the accommodation of non-

normal responses as well as a non-linear relationship between the

expectation of the response and the covariates [2,4,5]. GLMs are

most often applied to count or binary responses in health sciences

[6], assuming Poisson, Binomial or Bernoulli as probability

distributions for the response.

Similar to the classic linear model (which is indeed a particular

type of GLM), GLMs also assume that the observations

(conditioned to covariates) are independent and identically

distributed. Regarding study designs with hierarchical structure,

the assumption of independence is usually violated because

measurements within the same cluster are correlated. The main

disadvantage of ignoring within-cluster correlation is the bias in

point estimates and standard errors. These biases might cause a

loss of statistical power and efficiency of hypothesis testing on fixed

effects [7,8]. Thus, the statistical significance could be wrongly

assessed [9] and the type I error rate could be different than that a
priori determined in hypothesis testing.

Generalized linear mixed models (GLMMs) are a methodology

based on GLMs that permit data analysis with hierarchical GLMs

structure through the inclusion of random effects in the model.

The GLMMs are also known in the literature as hierarchical

generalized linear models (HGLMs) and multilevel generalized

linear models (MGLMs) depending on the field [10–12]. For the

sake of simplicity we will use the term GLMMs throughout the

text. The first estimation method of GLMMs was introduced in

the early 1990 s [13]. Nowadays various estimation methods can

be found for GLMMs, such as the penalized quasi-likelihood

method (PQL) [14], the Laplace method [14], Gauss-Hermite

quadrature [15], hierarchical-likelihood methods [11], and

Bayesian methods based on the Markov chain Monte Carlo

technique [16,17], and, recently also based on the integrated

nested Laplace approximation [18].

Furthermore, GLMM methodology is now available in the

main statistical packages, though estimation methods as well as

statistical packages are still under development [19,20].

The increasing interest in GLMMs is reflected by the

publication of tutorials in various fields, such as ecology [19],

psychology [21], biology [22], and medicine [23–26]. Nowadays,

original articles, academic work and reports which utilize GLMMs

exist, and methodological guidelines and revisions are also

available for the analysis of GLMMs in each field [19,27–29].

However, it is not possible to find guidelines that specifically

address the appropriate reporting of population modeling studies

[30]. In addition, no reviews of the use and quality of reported

information by GLMMs exist despite an important increase in

quantitative analyses in the academic and professional science

settings.

Reporting guidelines are evidence-based tools that employ

expert consensus to help authors to report their research such that

readers can both critically appraise and interpret study findings

[30–34]. Recently, minimal rules that can serve as standardized

guidelines should be established to improve the quality of

information and presentation of data in medical scientific articles

[35]. Only Thiele [22] has made reference to GLMMs in the field

of biology and still no standardized guidelines indicate what

information is relevant to present in medical articles.

For this reason, the objective of the present study is to review

the application of GLMMs and to evaluate the quality of reported

information in original articles in the field of clinical medicine

during a 13-year period (2000–2012), while analyzing the

evolution over time, journals, and areas of publication.

Methods

This review was conducted according to the Preferred

Reporting Items for Systematic Reviews and Metanalyses

(PRISMA) Statement [36,37]. We also report the review in

accordance with PRISMA guidelines (Checklist S1).

With the objective to obtain and analyze the existing scientific

literature related to the use of GLMMs in clinical medicine, a

strategic search of original published articles in this field from 2000

to 2012 was performed using the Web of Science database.

The search strategy included the topic ‘‘generalized linear mixed
models’’, ‘‘hierarchical generalized linear models’’, ‘‘multilevel
generalized linear model’’ and as a research domain we refined

by science technology (Appendix S1).

The following fields of clinical medicine were included in the

search:

Endocrinology Metabolism, Urology Nephrology, Public envi-
ronmental occupational health, Orthopedics, Respiratory system,
Entomology, Health care sciences services, Medical laboratory
technology, Pediatrics, Pathology, Life sciences biomedicine other
topics, Hematology, Geriatrics gerontology, Gastroenterology hepa-
tology, Rheumatology, Critical care medicine, Medical informatics,
Emergency medicine, Integrative complementary medicine, Obstet-
rics gynecology, Neurosciences neurology, Cardiovascular system
cardiology, Infectious diseases, Radiology nuclear medicine medical
imaging, Transplantation, Tropical medicine, Allergy, Anesthesi-
ology, Anatomy morphology, General internal medicine, Immunol-
ogy, Research experimental medicine, Dermatology, Oncology,
Surgery.

Selection of the studies included in the review
Articles were eligible for inclusion if they were original research

articles written in English in peer-reviewed journals reporting an

application of GLMM. We excluded articles of statistical

methodology development and those that were not entirely

involved in clinical medicine (biology, psychology, genetics, sports,

dentistry, air pollution, education, economy, family and health

politics, computer science, ecology, nutrition, veterinary and

nursing).

Identification of studies
The information from Appendix S1 (Table) was extracted from

the selected articles. Data were collected and stored in a database.

Then, data were checked to find discrepancies between the two

reviewers. Discrepancies were solved by consensus after reviewing

again the conflictive articles.

Figure 1 uses the PRISMA flowchart to summarize all stages of

the paper selection process [37]. In the first review phase, 462

articles were identified, nineteen of which were duplicates.

After inspection of the abstracts, we excluded the articles that

were non-original articles (reviews, short articles or conferences)

and those articles that did not have a GLMM as a key word in the

abstract or in the title of the article.

In the second review phase, of the 428 articles, only 129

pertained to the aforementioned medical fields. Thus, 299 articles

were excluded because they belonged to other fields, such as

ecology, computer science, air pollution or statistical methodology.

In the third review phase, we obtained full text versions of

potentially eligible articles. Two articles were excluded due to

inconsistency in the specification of the model applied because in

the full text version they were not a GLMM as it was stated in the

abstract. We then conducted a detailed review of the 127 articles

and we excluded 19 articles because they were not published in an

indexed journal included in Journal Citation Reports (JCR).

A Systematic Review of GLMMs in Clinical Medicine
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Finally, 108 articles were included in the final review (Appendix

S2). Figure 1 summarizes the numbers of articles identified and

the reasons for exclusion at each stage.

Information collected from the selected articles
Based on Thiele’s and Bolker’s works [22,38], a list of relevant

information and basic characteristics of the study that should be

reported in an article with GLMM analysis was suggested

(Appendix S1).

Figure 1. Flow chart of the selection of reviewed articles.
doi:10.1371/journal.pone.0112653.g001
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Study characteristics
Regarding the study design, we refer to different aspects of each

study, such as hierarchical structure of data and sample size. The

hierarchical structure was used to differentiate between the

different study designs that are not mutually exclusive, such as

longitudinal, repeated measurements, and multilevel studies.

Longitudinal data consist of outcome measurements repeatedly

taken on each experimental unit over time. Longitudinal analysis

is distinct from cross-sectional analysis as it addresses dependency

among measurements taken on the same experimental unit [39].

The studies with repeated measurements usually involve only one

level of clustering, where the repeated measurements are

interchangeable (replicates).

Finally, multilevel studies present various levels of clusters,

potentially providing hierarchical structure in each cluster, as seen

in longitudinal or repeated measurement studies. We also took

note of whether the probability distribution of the variable

response was mentioned or easily deducible. Regarding sample

size, the number of clusters, individuals or experimental units were

collected.

Inferential issues
This section includes information regarding the GLMM model,

as seen in Appendix S1 (Table).

The mixed models are characterized by including fixed and

random effects in the linear predictor. Random effects are usually

related to the cluster variable. Therefore, it is important to provide

information about the cluster variable in the model.

It is also important to report the estimation method of the study

and the software applied because they can influence the validity of

the GLMM estimates [6,20,38]. Furthermore, the software

implementations differ considerably in flexibility, computation

time and usability [20].

Concerning the computational issues, the macro GLIMMIX

from SAS (1992) was the first available software to fit GLMMs

using penalized quasilikelihood (PQL) estimation method. The

first production version of PROC GLIMMIX for SAS was first

released in 2005 and became the standard procedure in version

9.2 in 2008 [40]. Nowadays, there are other available softwares to

fit GLMMs. Among them the lme4 package was first implemented

for R in 2003 [41]. Moreover, in R software, we can find other

packages to fit GLMMs such as glmmML [42], MASS (with the

glmmPQL function) [43] or gar (with the repeated function)

[44,45]. Concerning SAS software besides the aforementioned

PROC GLIMMIX, the PROC NLMIXED is also able to fit

GLMMs [46]. Additionally, it is also possible to use ASReml [47],

MLwiN [48] and STATA software (which uses the functions

xtmixed and gllamm [22,28,49,50]) [22,28,49,50]. The SPSS

(starting with SPSS 19) software now also includes a GLMM

obtained in the GENLINMIXED procedure [51,52].

With respect to statistical inference, the hypotheses concerning

fixed and random effects (or their variances) are tested in separated

form. Thus, testing the hypotheses for fixed effects is commonly

assessed by the Wald score tests. On the other hand, hypotheses

concerning random effects variances can be tested using the

likelihood ratio test [19] or by comparing the goodness of fit of the

models using the Akaike’s Information Criterion (AIC) or the

Bayesian Information Criterion (BIC) [19].

Validation model
Similar to GLMs, validation of GLMMs is commonly based on

the inspection of residuals to determine if the model assumptions

are fulfilled.

An important point is related to the so-called scale parameter

when it is fixed to a specific value because of the probability model

assumed. For example, the scale parameter for Poisson and

Binomial distribution should be equal to 1. A parameter different

from 1 implies that the probability distribution of the responses

conditioned to covariates is not correctly specified and the model is

not valid. This phenomenon is known as over or underdispersion

and causes incorrect standard errors that can produce different

clinical conclusions [53]. Thus, it is relevant to evaluate the

presence of over- or underdispersion and report the results of this

analysis.

Finally, information on the use of a concrete strategy to select

the variables in the model and its criterion was obtained. Variable

selection strategy usually consist of stepwise selection of variables

(forward or backward) [19]. Concerning the criterion, it can be

based on entropy as the aforementioned AIC and BIC, or

hypotheses testing (likelihood ratio test or Wald test). However, it is

possible to find studies with no need of variable selection, for

example confirmatory analysis where a particular hypothesized

model is fit. This hypothesized model may be based on theory

and/or previous analytic research [54,55]. In this latter case, the

selection variable strategy was considered appropriately reported.

Results

The evolution of the use of GLMMs in medical journals of the

443 articles selected in the first phase is described in Figure 2. The

remaining results (Tables 1, 2, 3 and Appendix S3 and S4) make

reference to the 108 articles included in the final in-depth review.

Of these, 92 (85.2%) were defined as GLMMs, 14 (13.0%) as

HGLMs, and 2 (1.9%) as MGLMs.

Most of these articles were found in the following journals:

American Journal of Public Health, which had 7 publications;

PLoS ONE, Cancer Causes & Control, BMC Public Health,
Annals of Surgery, and Headache, which had 3 publications each.

Twenty-two articles pertained to environmental and occupational

public health area, 10 articles pertained to clinical neurology, 8 to

oncology, and 7 to infectious diseases and pediatrics (Appendix

S3).

Forty-five articles (41.7%) were written by an author who was

part of a biometric or statistical department and some co-authors

(53.3%) were affiliated with a public health department.

Of the 108 selected articles, 59 (54.6%) declared to be

longitudinal studies, whereas 56 (58.3%) and 29 (26.9%) were

defined as repeated measurements and multilevel design, respec-

tively (Table 1). It is important to note that over 8% of the articles

were unclear when reporting the cluster design. Twenty-seven

articles (25%) involved confirmatory analysis whereas 81 (75%)

were declared as exploratory analysis. Ninety-five of the articles

stated their sample size, which ranged from 20–785,385 with a

median of 2,201 (Q1 = 408; Q3 = 25000). One random effect in

the intercept was used in 61 articles, and two or more random

effects were used in 36 articles. Of these, 61.1% of the articles had

a random effect that pertained to a multilevel model. The size of

the random effect or cluster, as the number of levels of random

effects or the number of clusters, was clearly described in only 33

articles, which ranged from 9–16,230 clusters with a median of

167 (Q1 = 55; Q3 = 1187). The cluster was principally the

individual (subject, patient, participant, etc) (n = 46), hospital

(n = 15), center (n = 10), geographical area (n = 9) and family

(n = 3).

The type of study design was described as cross-sectional

(n = 31), cohort (n = 26), clinical trial (n = 18), case-control (n = 2)

and cross-over (n = 1). Eight articles did not mention study design

A Systematic Review of GLMMs in Clinical Medicine
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and 18 articles only described the characteristics of the study

design (i.e. experimental, prospective, multicenter, etc) without

specifying which study design was used (Table 1).

The response variable (‘clinical’) of the study differed in each of

the reviewed articles, and thus there was no common illness or

pathology. Available software can fit different response variables

Figure 2. Number of reviewed articles by year of publication.
doi:10.1371/journal.pone.0112653.g002

Table 1. Characteristics of the study design in the reviewed articles.

N = 108

Longitudinal study:

NO 40 (37.0%)

Unclear 9 (8.30%)

YES 59 (54.6%)

Repeated measures:

NO 34 (31.5%)

Unclear 11 (10.2%)

YES 56 (58.3%)

Multilevel (nested design):

NO 79 (73.1%)

YES 29 (26.9%)

Type of analysis

Exploratory 81 (75.0%)

Confirmatory 27 (25.0%)

Design

Case-control 2 (2.30%)

Case-crossover 1 (1.10%)

Cluster Random Trial 18 (16.7%)

Cohorts 26 (24.1%)

Cross-sectional 31 (28.7%)

NR 8 (7.40%)

Unclear 22 (20.4%)

NR: Not reported.
doi:10.1371/journal.pone.0112653.t001
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for exponential family, such as Poisson, binomial, Gamma, and

Inverse Gaussian, though Poisson and Binomial (or binary) are the

most used in medicine. The distribution of the response variable

was reported in 88% of the articles, and the most common was

binomial (n = 64), Poisson (n = 22), negative binomial (n = 1) and

multinomial (n = 2).

Furthermore, the estimation method for each model was

reported in only 21 articles (19.4%), and the following estimation

methods were used: maximum likelihood (n = 3), penalized quasi-
likelihood (n = 8), pseudo-likelihood (n = 2), restricted maximum

likelihood (n = 2), adaptative quadrature likelihood approximation
(n = 1), and Markov chain Monte Carlo (MCMC; n = 5). It is

important to mention that over 90% of the articles did not report

the test used for the fixed nor random effects, which implies that

the section on statistical methods was insufficiently described

(Table 2).

The most used statistical software packages were SAS (n = 57),

R (n = 13), Stata (n = 12), and HLM (n = 6). For SAS, the use of

macro GLIMMIX was reported in 24 articles and the macro

NLMIXED with PROC MIXED to fit the GLMM was used in

five articles. For R, different packages were used to fit the GLMM,

such as lme4 (n = 2), glmmPQL (n = 4), glmmML(n = 1), BayesX

(n = 2) or repeated (n = 1). For Stata, the gllamm (n = 2) and

xtmixed functions were also used (n = 1).

Overdispersion for models with counts or binary response which

assume a Poisson or Binomial distribution was evaluated in 10

articles. Of these, different approaches were proposed to fit as

alternatives (GEE, Negative Binomial, Quasi-Poisson, Zero-

Inflated). For the articles that used Poisson or Binomial

distribution of probability, 90.7% did not state if under-over-

dispersion was evaluated, 99.1% did not report the magnitude of

the scale parameter, and 92.6% did not suggest alternatives for

possible under-overdispersion. Variance estimates of random

effects were described in only 10 articles (9.3%). With respect to

the fixed effects, the standard error and confidence interval were

reported in 20% and 71.3%, respectively, whereas in the variance

components, they were reported in 3.7% and 2.8%, respectively.

The model validation, the method of covariate selection and the

method of goodness of fit were reported in 6.5%, 35.2% and

15.7% of the articles, respectively (Table 3).

Discussion

The articles selected in this review showed that the number of

bibliographical references that use GLMMs in medical journals

increased from the year 2000 to 2012.

Our review also indicated that there is room for improvement in

quality when basic characteristics about the GLMMs are reported

in medical journals.

A predominance of the articles reviewed were in the fields of

environmental and occupational public health. Furthermore, for

45 of the articles (41.7%) at least one of the co-authors was

associated with a biometrics or statistical department. This result is

consistent with the systematic review of Diaz-Ordaz that showed

that trials having a statistician as co-author was associated with a

increase in the methodological quality of the analyses [56].

In any scientific paper, the validity of the conclusions is linked to

the adequacy of the methods used to generate the results. Thus, it

is important to adequately describe the statistical methods used in

the analysis. Hence, the reader is able to judge whether the

methods used are appropriate, and by extension whether the

conclusions are correct.

In the case of GLMM’s, as we observed in the results section,

the majority of the useful and relevant information about GLMMs

that is proposed by Bolker [19] and Thiele [22] was not reported.

Therefore, the main consequence is the difficulty to assess the

reliability of the results and the validity of the conclusions. For

example, the majority of the articles did not mention the

estimation method or software that was used. The inferential

issues (hypothesis testing, confidence interval estimation) and

model validation are closely linked to the estimation method (for

instance, bayesian or frequentist). As a consequence, the lack of

reporting of the estimation method (or software) used makes it

complicated to evaluate the adequacy of the approaches used to

inference purposes. Furthermore, the estimation method may have

important flaws depending on the situation. For example, PQL

yields biased parameter estimates if the standard deviations of the

random effects are large, especially with binary data [19].

Additionally, an important deficit regarding the inference of

fixed and random effects was observed. Such inference may consist

of : 1) hypothesis testing of a set of parameters; 2) competing

models using entropy measures; 3) confidence interval of

parameters. Here again the validity of the conclusions drawn

from the analysis depends on the appropriateness of the

procedures used in the inference. For example, the likelihood

ratio test is only applicable to nested models. Another example

arises when testing the existence of a random effect. This question

could be solved by a common hypothesis testing using a null

hypothesis whose variance is zero. However, the null hypothesis is

set to the boundary of the parameter domain (variance must be

positive). Therefore, it is necessary to modify the probability

distribution function under the null hypothesis otherwise the p-

value obtained is incorrect [57]. Additionally, as we mentioned

above, the inferential procedures must be coherent with the

estimation technique used.

Furthermore, the validity and model selection as proposed by

Bolker and Thiele [19,22] were also not reported in most cases.

Once again, the results of the inference and the conclusions of the

study will be valid when the assumptions made on the model and

estimation method are fulfilled. This is the aim of the validation

and, thus, it is essential that the researchers report the results of

such a validation and how it was made.

Therefore, in our opinion the methodological information

reported in articles using GLMMs could be improved.

We also think that standardized guidelines to report GLMM

characteristics in medicine could be beneficial, even though they

would not imply by themselves a direct improvement on quality of

the articles. As stated by Cobo [35] and Moher [58], it is necessary

that both authors and reviewers are aware of recommendations to

improve the quality of the manuscripts.

Limitations of the study
One of the limitations of our study could be that the number of

identified articles was not high, despite the 13-years review.

Nonetheless, the only similar existing review by Thiele [22] in the

field of ‘‘invasion biology’’ included only 50 articles. One possible

explanation for this number of articles that use GLMMs in health

sciences is that medical literature frequently uses models with fixed

effects in a hierarchical structure, even though the use of GLMMs

is well known in statistical literature [6,59].

Another possible limitation of our review is the potential bias to

disregard articles that use a GLMM but do not specify the term as

a topic. However, we could assume that articles that use GLMM

as topic are more sensitive to this methodology. Thus, it is

expected that if this bias existed, the reporting quality would be

even better in those potential articles that applied GLMM and

used it as a topic.

A Systematic Review of GLMMs in Clinical Medicine
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There could be also a trend on the estimation methods

according to the names given to GLMMs in the articles. Bayesians

usually prefer the term hierarchical models instead of mixed effects

models whereas frequentists are more likely to use mixed models,

which seems to be consistent with our results (Appendix S4).

Conclusions

During recent years, the use of GLMMs in medical literature

has increased to take into account the correlation of data when

modeling binary or count data. Our review included articles from

indexed medical journals included in JCR that mainly consisted of

longitudinal studies in a medical setting.

Table 2. Characteristics of inference and estimation methods reported in the review articles.

N = 108

Test for fixed effects:

NR 103 (95.4%)

t-value 1 (0.90%)

Wald F test 4 (3.7%)

Test for random effects:

LRT 3 (2.80%)

NR 105 (97.2%)

Variance estimates of random effects:

NR 98 (90.7%)

YES 10 (9.30%)

Statistical software:

SAS 57 (52.8%)

R 13 (12.0%)

Stata 12 (11.1%)

WinBugs 2 (1.90%)

S-plus 3 (2.80%)

HLM 6 (5.60%)

Statistical Analysis System 1 (0.90%)

SPSS 2 (1.90%)

SEER*Stat 1 (0.90%)

MLwiN 1 (0.90%)

NR 10 (9.30%)

Estimation method:

Adaptative Quadrature likelihood Approximation 1 (0.90%)

Maximum Likelihood 3 (2.80%)

NR 87 (80.6%)

Penalized Quasi- likelihood 8 (7.50%)

Posterior mean 5 (4.60%)

Restricted Maximum Likelihood 2 (1.90%)

Pseudo likelihood 2 (1.90%)

Statistical software function or macro:

PROC GLIMMIX 24 (22.2%)

glmmPQL 4 (3.70%)

Gllamm 2 (1.90%)

BayesX 2 (1.90%)

Xtmixed 1 (0.90%)

PROC MIXED/NLMIXED 5 (4.70%)

lme4 2 (1.90%)

glmmML 1 (0.90%)

Repeated 1 (0.90%)

NR 66 (61.1%)

NR: No reported; MCMC: Markov chain Monte Carlo.
doi:10.1371/journal.pone.0112653.t002
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According to the current recommendations, the quality of

reporting has room for improvement regarding the characteristics

of the analysis, estimation method, validation and selection of the

model.

After analyzing and reviewing the quality of the publications, we

believe it is important to consider the use of minimal rules as

standardized guidelines when presenting GLMM results in

medical journals.

Table 3. Characteristics of the specification, validation and construction of the model for the reviewed articles.

N = 108

Variable response distribution:

2 distributions: Binomial, Poisson 1 (0.90%)

2 distributions: Binomial, Multinomial 1 (0.90%)

Binomial 64 (59.2%)

Binomial count 1 (0.90%)

Negative Binomial with offset 1 (0.90%)

NR 11 (10.2%)

Poisson 22 (20.4%)

Poisson with offset 2 (1.90%)

Multinomial 2 (1.90%)

Ordinal 1 (0.90%)

Unclear 2 (1.90%)

Overdispersion evaluation:

NR 98 (90.7%)

YES 10 (9.20%)

Overdispersion measurement:

NR 107 (99.1%)

Pearson residuals 1 (0.90%)

Proposed alternative for overdispersion:

GEE 2 (1.90%)

Negative Binomial 2 (1.90%)

NR 100 (92.6%)

Quasi-Poisson 1 (0.90%)

Variogram 1 (0.90%)

Dscale-adjusted 1 (0.90%)

Zero-inflated 1 (0.90%)

Method of variable selection:

Backward 3 (2.80%)

Forward 1 (0.90%)

Forward stepwise 1 (0.90%)

NR 70 (64.8%)

Unnecessary (Confirmatory analysis) 27 (25.0%)

Stepwise 6 (5.60%)

Method of goodness of fit comparison model:

AIC 12 (11.1%)

BIC 3 (2.80%)

DIC 1 (0.90%)

NR 91 (84.3%)

Pseudo R-squared 1 (0.90%)

GLMM Validation:

NR 101 (93.5%)

YES 7 (6.50%)

NR: No reported; MCMC: Markov chain Monte Carlo; GEE: Generalized estimating equation;
DIC: Deviance information criterion; AIC: Akaike information criterion; BIC: Bayesian information criterion; df: freedom degree.
doi:10.1371/journal.pone.0112653.t003
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