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Abstract: This review paper considers the consequences of modulating tubular reabsorption proximal
to the macula densa by sodium–glucose co-transporter 2 (SGLT2) inhibitors, acetazolamide, and
furosemide in states of glomerular hyperfiltration. SGLT2 inhibitors improve renal function in early
and advanced diabetic nephropathy by decreasing the glomerular filtration rate (GFR), presumably
by activating the tubuloglomerular feedback (TGF) mechanism. Central in this paper is that the
renoprotective effects of SGLT2 inhibitors in diabetic nephropathy can only be partially explained
by TGF activation, and there are alternative explanations. The sustained activation of TGF leans on
two prerequisites: no or only partial adaptation should occur in reabsorption proximal to macula
densa, and no or only partial adaptation should occur in the TGF response. The main proximal
tubular and loop of Henle sodium transporters are sodium–hydrogen exchanger 3 (NHE3), SGLT2,
and the Na-K-2Cl co-transporter (NKCC2). SGLT2 inhibitors, acetazolamide, and furosemide are
the most important compounds; inhibiting these transporters would decrease sodium reabsorption
upstream of the macula densa and increase TGF activity. This could directly or indirectly affect TGF
responsiveness, which could oppose sustained TGF activation. Only SGLT2 inhibitors can sustainably
activate the TGF as there is only partial compensation in tubular reabsorption and TGF response.
SGLT2 inhibitors have been shown to preserve GFR in both early and advanced diabetic nephropathy.
Other than for early diabetic nephropathy, a solid physiological basis for these effects in advanced
nephropathy is lacking. In addition, TGF has hardly been studied in humans, and therefore this role
of TGF remains elusive. This review also considers alternative explanations for the renoprotective
effects of SGLT2 inhibitors in diabetic patients such as the enhancement of microvascular network
function. Furthermore, combination use of SGLT2 inhibitors and angiotensin-converting enzyme
inhibitors (ACEi) or angiotensin receptor blockers (ARBs). in diabetes can decrease inflammatory
pathways, improve renal oxygenation, and delay the progression of diabetic nephropathy.

Keywords: tubuloglomerular feedback; SGLT2 inhibitors; furosemide; diabetic nephropathy;
acetazolamide; nephrovascular unit; renal microcirculation; synchronization; oxygenation–perfusion

1. Introduction

Recent studies strongly support that sodium–glucose co-transporter type 2 (SGLT2)
inhibitors decrease cardiovascular risk [1,2]. In addition, these drugs preserve renal func-
tion, presumably by enhancing tubuloglomerular feedback (TGF) [3–6]. In this paper, we
challenge this assumption. There is a widespread belief that SGLT2 inhibition causes a
sustained increase in macula densa delivery leading to a sustained activation of TGF, which
would then sustainably lower glomerular capillary pressure (PGC). However, there are two
prerequisites for this proposition. First, adaptations in reabsorption upstream of the macula
densa should not offset the original change in reabsorption. Second, no compensation
should occur in the TGF mechanism that could offset a sustained TGF response. In this
review, we extend our focus beyond SGLT2 inhibitors and consider several substances and
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conditions regarding these two prerequisites to help elucidate how these drugs may confer
cardiovascular protection in situations where there is hyperfiltering states such as chronic
kidney disease (CKD).

SGLT2 inhibitor, acetazolamide, and furosemide are compounds that can increase mac-
ula densa delivery and activate the TGF response, and can possibly decrease hyperfiltration.
However, SGLT2 inhibitors seem to be the prototype of drugs to increase macula densa
solute delivery and activate TGF response sustainably without changing TGF responsive-
ness. In contrast, furosemide and acetazolamide have characteristics that possibly fail to
meet the prerequisites and prevent sustained increases in TGF activation. Besides the effect
of single drugs, we will explore the effect of SGLT2 inhibitors in the real-life context of
multiple medications for the treatment of diabetes mellitus and cardiovascular disease. An
example would be the combined use of SGLT2 inhibitors and angiotensin-converting en-
zyme inhibitors (ACEi) or angiotensin receptor blockers (ARBs). These latter drugs would
supposedly decrease TGF responsiveness, yet the large clinical trials showing the beneficial
effects of SGLT2 inhibitors on renal function were performed in study populations where
ACEi and ARB use was highly prevalent [7].

Another aspect of this is that while SGLT2 inhibitors were originally reported to specif-
ically diminish the diabetic hyperfiltration of early diabetic nephropathy before anatomical
injury to the glomerulus, they also exert preventative properties in more advanced diabetic
nephropathy with segmental or global glomerulosclerosis. We will review the proximal
tubular reabsorption and TGF dynamics in early versus more advanced diabetic nephropa-
thy. Taken together, given what we know about SGLT2 inhibitors, TGF activation might be
a component of the beneficial renal effects of SGLT2 inhibitors in diabetic nephropathy, but
other mechanisms are likely and will be discussed.

2. Autoregulation

Kidneys stabilize RBF (renal blood flow), GFR, and PGC in parallel in response to fluc-
tuations in blood pressure by adjustments in afferent arteriolar resistance by employing two
mechanisms: the rapid myogenic response (MR) and the slower TGF. This autoregulation
process stabilizes renal function and protects the glomeruli from injury [8].

MR is a universal response in all microvascular beds: a rise in wall tension, generally
due to an increase in blood pressure, results in arteriolar vasoconstriction to stabilize tissue
perfusion [9–14]. In the kidneys, the transmission of an increase in arterial pressure to
the renal microvasculature leads to afferent arteriolar vasoconstriction, increased renal
preglomerular resistance, and the stabilization of RBF, PGC, and GFR [8,14]. Calcium
channel blockers can impair MR and decrease the gain of RBF autoregulation [11,15]. TGF
is the second mechanism participating in RBF autoregulation [8–10,16]. Any residual
increase in PGC and single nephron GFR (SNGFR) after compensation by MR will lead to
an increase in the filtered load. Although a higher filtered load increases solute reabsorption
in the proximal tubule and loop of Henle (glomerulotubular balance) [17], this still leads to
an increase in solute delivery to the macula densa. This is sensed by the macula densa and
results in the release of adenosine and adenosine triphosphate (ATP), which will lead to
the constriction of the afferent arteriole of the same nephron. This, in turn, reduces single
nephron GFR and RBF back to baseline, and eventually stabilizes the solute delivery to the
macula densa [13,18–20]. Inhibiting TGF reduces RBF autoregulation efficacy, but does not
abolish it [8,18]. TGF saturation is defined as the macula densa delivery, where any further
increase would not result in any further activation of TGF and, consequently, a further
decrease in SNGFR. Full TGF deactivation is defined as the macula densa delivery at which
there is no influence of TGF on SNGFR. TGF responsiveness is defined as the maximum
decrease in SNGFR elicited by the full activation of TGF. A sustained TGF response means
that the depression of SNGFR by TGF activation upon a change in macula densa delivery
remains the same over time. TGF blockade is the situation where a high concentration of
furosemide is fully blocking how the macula densa can sense sodium, which is via the
NKCC2 channel.
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MR and TGF interact synergistically [14,21]. It was demonstrated that with the influ-
ence of TGF, the afferent arteriole has a lower diameter and a further decrease in afferent
arteriole diameter due to MR being markedly enhanced [14,17,21]. MR, in combination
with TGF, is needed for an optimal RBF autoregulation and MR with its higher frequency
acts as a dampening system, whereas TGF with its lower frequency modulates MR and
represents a fine-tuning stabilization of renal function [22].

As mentioned in the introduction, compounds that decrease solute reabsorption
upstream of the macula densa can sustainably increase macula densa delivery. However,
partial compensation in reabsorption in segments proximal to the macula densa or resetting
or saturation of the TGF system could offset this initial response. The overall thought is
depicted in Figure 1.
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Figure 1. Compounds and conditions that sustainably activate the tubuloglomerular feedback (TGF)
mechanism. Compounds that decrease solute reabsorption in the proximal tubule/loop of Henle can
sustainably increase macula densa (MD) delivery unless there is a compensation in the reabsorption
in segments proximal to the macula densa (left). Sustained increase in macula densa delivery would
lead to sustained activation of the TGF system unless there is a compensation in the TGF response
(right). Sustained activation of the TGF mechanism would result in sustained alteration of single
nephron hemodynamics and presumable enhancement of synchronization among nephrovascular
units (NVUs) (center).

3. Tubular Solute Reabsorption Proximal to the Macula Densa

The reabsorption of sodium together with other solutes such as glucose, amino acids,
chloride, and bicarbonate in the proximal tubule and loop of Henle ultimately determines
the solute concentrations of fluid reaching the macula densa and the activation of TGF. In
this section, we will further discuss the main sodium transporters in this context—NHE3,
SGLT2, and the Na-K-2Cl co-transporter, NKCC2—and how they are regulated.

The three isoforms of the sodium–hydrogen exchanger (NHE1, NHE2, and NHE3)
in the proximal tubule and descending and ascending loop of Henle [23,24] are mainly
responsible for the reabsorption of sodium and bicarbonate. In a series of micropuncture
studies in male Wistar rats, luminal amiloride, which inhibits NHE, significantly decreased
NaCl and bicarbonate reabsorption in the proximal tubule [25,26]. Of the NHEs, the
inhibition of NHE3 in the superficial nephrons of anesthetized rats reduced sodium and
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fluid reabsorption markedly [27]. Consequently, it is suggested that NHE3 is responsible
for the reabsorption of a substantial proportion of sodium and bicarbonate in S1 and
S2 segments of the proximal tubule, with concomitant paracellular water and chloride
reabsorption [5].

NHE3 is regulated by several stimulatory and inhibitory hormones at transcriptional
and post-translational levels, including changes in protein phosphorylation and traffick-
ing [28]. Insulin and glucocorticoids increased NHE3 activity by increasing NHE3 transcrip-
tion in opossum kidney cells [29,30]. Parathyroid hormone (PTH) decreased NHE3 activity
in opossum kidney cells by phosphorylating NHE3 at various serine sites and decreasing
surface NHE3 [31]. Angiotensin II (ANG II) increased NHE3 function by changing NHE3
phosphorylation [32–34]. In addition, it has been demonstrated that NHE3 and SGLT2
interact functionally in the proximal tubule as the inhibition of SGLT activity in rats by
both empagliflozin and phlorizin significantly decreased NHE3 activity [35,36]. As such,
compounds and hormones that directly or indirectly affect NHE3 regulation and activity
can markedly affect the solute concentration of fluid reaching the macula densa and might
affect other transporters.

Under physiological conditions, the sodium–glucose co-transporters (SGLTs) SGLT1
and SGLT2 in the proximal tubule reabsorb almost all of the filtered glucose [5]. This is
achieved by the low-affinity/high-capacity SGLT2 in the early proximal tubule and the
high-affinity/low-capacity SGLT1 in the late proximal tubule [6,37]. SGLT2 reabsorbs
sodium and glucose on a 1:1 ratio, while SGLT1 reabsorbs two sodium ions along with one
glucose molecule [38]. Moreover, like NHE3, SGLT2 participates in paracellular Cl and
water reabsorption by creating an osmotic gradient [5].

SGLT2 is upregulated at the transcriptional and post-translational level by ANG II,
insulin, and hepatocyte nuclear factor (HNF-1α) [39,40]. The increased transcription of
the transcription factor HNF-1α in diabetic rats was associated with increased binding
of HNF-1α into the SGLT2 promoter region, which then likely caused increased SGLT2
expression [41]. Additionally, the phosphorylation of SGLT2 by activating protein kinase A
and C in human embryonic kidney 293T cells increased the reabsorption of sodium and
glucose markedly [42].

In the loop of Henle, 25–30% of filtered Na-Cl is reabsorbed via NKCC2 across the
apical membrane of the water impermeable thick ascending limb (TAL) [43,44]. Ninety
percent of reabsorbed potassium via NKCC2 is secreted back into the lumen through
inward-rectifying K channels in the apical membrane. The secretion of potassium to lumen
and the absorption of chloride from the basolateral membrane to the circulation via chloride
channels generates a lumen-positive transepithelial potential difference. This mediates
the paracellular reabsorption of sodium, magnesium, and calcium [44–46]. Unlike TAL,
the thin limb of Henle generally has low permeability to sodium and does not contribute
significantly to sodium reabsorption [47–49].

Several hormones modulate the NaCl reabsorption in TAL by regulating NKCC2
activity. NKCC2 is stimulated at the post-translational level mainly via increasing intra-
cellular cyclic adenosine monophosphate (cAMP) levels by stimulatory hormones such as
vasopressin, PTH, and calcitonin. cAMP enhances NKCC2 activity by stimulation insertion
into the cell membrane and presumably also by phosphorylation [43]. The stimulation
of NKCC2 by phosphorylation was shown in cultured TAL cells from rabbits and in rats
with diabetes insipidus after administrating vasopressin agonists [50]. Conversely, nitric
oxide (NO), atrial natriuretic peptides (ANP), endothelin, and prostaglandin E2 (PGE2)
inhibit NKCC2 mainly via cyclic guanosine monophosphate (cGMP) by decreasing its
trafficking [43,44]. It was also shown that Ang II increased NaCl transport in rats TAL by
blunting the NO-induced inhibition of NKCC2, which increased NKCC2 activity [51,52].
Furthermore, the administration of indomethacin and diclofenac, prostaglandin inhibitors,
in rats decreased solute reabsorption in the loop of Henle by upregulating NKCC2, while
misoprostol, a PGE2 analog, reset this effect [53]. From the above, it is clear that NKCC2
activity is modulated by many factors.
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4. Effects of Early and Late Diabetic Nephropathy on Macula Densa Solute Delivery
and the TGF Response

In the early phase of diabetic nephropathy, proximal tubular reabsorption is increased,
resulting in decreased solute delivery to the macula densa and deactivation of the TGF
response [54], hyperfiltration, and the progression of glomerular damage. This, in turn,
could change solute reabsorption upstream of the macula densa and alter the TGF response
in a variety of ways. We will discuss how macula densa solute delivery and the TGF system
are affected in early and advanced diabetic nephropathy (Figure 2).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 5 of 13 
 

 

while misoprostol, a PGE2 analog, reset this effect [53]. From the above, it is clear that 
NKCC2 activity is modulated by many factors. 

4. Effects of Early and Late Diabetic Nephropathy on Macula Densa Solute Delivery 
and the TGF Response 

In the early phase of diabetic nephropathy, proximal tubular reabsorption is in-
creased, resulting in decreased solute delivery to the macula densa and deactivation of 
the TGF response [54], hyperfiltration, and the progression of glomerular damage. This, 
in turn, could change solute reabsorption upstream of the macula densa and alter the TGF 
response in a variety of ways. We will discuss how macula densa solute delivery and the 
TGF system are affected in early and advanced diabetic nephropathy (Figure 2). 

Figure 2. Macula densa (MD) solute delivery and the tubuloglomerular feedback (TGF) response in 
early and advanced diabetic nephropathy. (A) Shows intact, hypertrophied nephrons in early dia-
betic nephropathy, which would result in increased solute reabsorption proximal to the macula 
densa and deactivation of the TGF system and hyperfiltration. (B1) Shows intact hypertrophied 
nephrons in advanced diabetic nephropathy and how the macula densa salute delivery and the TGF 
response might be changed based the extent of sclerosis in nearby nephrons (dashed curve shows 
normal TGF curve). (B2) Shows focally sclerosed, hypertrophied nephrons in advanced diabetic 
nephropathy, which would result in decreased GFR and macula densa salute delivery and deacti-
vation of the TGF system. (B3) Shows globally sclerosed nephrons and how they might affect nearby 
intact nephrons [55]. Scale bars indicate 50 μm. 

In diabetes mellitus, the glomerular-filtered load of glucose is increased. Nephrons 
become hypertrophied and SGLT2 expression increases in the proximal tubule [6]. In-
creased reabsorption by SGLT2s would result in the decreased solute concentration of 
fluid reaching the macula densa, deactivation of TGF, and hyperfiltration. That hyperfil-
tration was a response to increased transport by SGLT2 was shown in streptozotocin-in-
duced type 2 diabetic mice and Akita mouse models of type 1 diabetes: hyperfiltration did 
not occur if diabetes was induced in SGLT2 knockout mice [56]. Additionally, in early 
diabetes, the turning point of the TGF curve can be shifted upward (TGF is reset upward), 

Figure 2. Macula densa (MD) solute delivery and the tubuloglomerular feedback (TGF) response
in early and advanced diabetic nephropathy. (A) Shows intact, hypertrophied nephrons in early
diabetic nephropathy, which would result in increased solute reabsorption proximal to the macula
densa and deactivation of the TGF system and hyperfiltration. (B1) Shows intact hypertrophied
nephrons in advanced diabetic nephropathy and how the macula densa salute delivery and the
TGF response might be changed based the extent of sclerosis in nearby nephrons (dashed curve
shows normal TGF curve). (B2) Shows focally sclerosed, hypertrophied nephrons in advanced
diabetic nephropathy, which would result in decreased GFR and macula densa salute delivery and
deactivation of the TGF system. (B3) Shows globally sclerosed nephrons and how they might affect
nearby intact nephrons [55]. Scale bars indicate 50 µm.

In diabetes mellitus, the glomerular-filtered load of glucose is increased. Nephrons
become hypertrophied and SGLT2 expression increases in the proximal tubule [6]. In-
creased reabsorption by SGLT2s would result in the decreased solute concentration of fluid
reaching the macula densa, deactivation of TGF, and hyperfiltration. That hyperfiltration
was a response to increased transport by SGLT2 was shown in streptozotocin-induced
type 2 diabetic mice and Akita mouse models of type 1 diabetes: hyperfiltration did not
occur if diabetes was induced in SGLT2 knockout mice [56]. Additionally, in early diabetes,
the turning point of the TGF curve can be shifted upward (TGF is reset upward), which
can exacerbate the hyperfiltration [57]. Furthermore, plasma and kidney ANG II levels
are increased in diabetes mellitus [58]. This was also shown in several type 1 and type 2
animal models as derived from increased angiotensinogen levels [59–61]. Increased ANG
II levels in diabetes can modulate the TGF system in several ways. As mentioned, ANG II
enhances solute reabsorption in the proximal tubule and loop of Henle. Therefore, macula
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densa solute delivery decreases and TGF is deactivated, which could exacerbate hyperfil-
tration [62,63]. However, ANG II resets the turning point of the TGF curve to a lower level
so that, potentially, SNGFR does not change in response to increased ANG II [64]. Taken
together, in early diabetic nephropathy, increased solute reabsorption by SGLT2s would
result in hyperfiltration, while increased ANG II might exacerbate hyperfiltration slightly.

In advanced diabetic nephropathy, nephrons can display at least three different pheno-
types: intact nephrons, segmentally sclerosed nephrons, and globally sclerosed nephrons.
The intact, often hypertrophied nephrons might display enhanced reabsorption due to the
same mechanisms as in early diabetes. Increased ANG II levels and the increased activity
of SGLT2 transporters will contribute to deactivation of the TGF and cause hyperfiltration.

Additionally, some nephrons can become segmentally sclerosed, which can result in
decreased filtration, decreased macula densa delivery, and the deactivation of TGF. In these
partially sclerosed nephrons, GFR might or might not be increased based on the extent
of glomerular sclerosis. If there is an adequate glomerular surface, GFR would increase.
Otherwise, GFR would remain low.

Finally, some nephrons are globally sclerosed and there is no filtration and TGF activity.
This would contribute to an overall decrease in GFR. These globally sclerosed nephrons
no longer consume oxygen. As further explained below, such nephrons can also disturb
microvascular network dynamics in two ways. First, they can cause anatomical disruption.
Second, they disrupt the oxygenation of nearby intact nephrons, which can result in
decreased solute reabsorption, increased macula densa solute delivery, the activation of
TGF, and a decrease in SNGFR in nearby intact nephrons.

Additionally, volume expansion in advanced diabetic nephropathy might affect mac-
ula densa delivery and the TGF system. Volume expansion decreases ANGII levels [65].
This would lead to decreased reabsorption and TGF responsiveness [66] in the intact and
partially sclerosed nephrons, which would result in decreased GFR.

In summary, in early diabetic nephropathy, the solute concentration of fluid reaching
the macula densa decreases and TGF is deactivated, which would result in hyperfiltration.
In advanced diabetic nephropathy, the changes in reabsorption and the TGF response are
difficult to predict due to segmental or global glomerulosclerosis and potential volume
expansion (Figure 2).

5. Effects of SGLT2 Inhibitors on Macula Densa Solute Delivery and TGF Response

Clinically, SGLT2 inhibitors have been shown to be effective in reducing cardiovascular
events and in preventing CKD progression in mild, but also more advanced, diabetic as
well as non-diabetic CKD [1,2,67]. SGLT2 inhibitors directly and indirectly (via NHE3)
inhibit the reabsorption of sodium in the proximal tubule, resulting in an immediate in-
crease in solute delivery to the macula densa [36,47]. Chronically, this is partially offset
by an increase in the function of SGLT1 in the proximal tubule as well as an increase
in loop of Henle solute reabsorption [4]. In a series of micropuncture studies assessing
acute and chronic effects of the SGLT2 inhibitor, dapagliflozin, on proximal tubular re-
absorption in streptozotocin-induced diabetic rats, it was concluded that the inhibitory
effect of dapagliflozin on proximal reabsorption is partially compensated by an increase
in the loop of Henle solute reabsorption [4]. Additionally, the inhibition of SGLT2 in mice
showed an increase in glucose reabsorption by SGLT1 from 3% to 50–60% of total glucose
reabsorption [68]. Besides this, the turning point of the TGF curve can be shifted during
chronic SGLT2 inhibition. An increase in the solute concentration of fluid reaching the
macula densa in the mouse renal cortex can lead to the generation of nitric oxide [69]. This
has been shown to offset the TGF response in mice and rats [70–72].

Nevertheless, SGLT2 inhibitors can sustainably increase the solute concentration of
fluid reaching the macula densa, and lead to a sustained TGF activation, afferent arteriolar
vasoconstriction, and a decline in SNGFR and whole-kidney GFR. However, in the only
available study on this subject, the sustained response was 50% of the acute response [4–6].
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Besides the different phases of diabetic and non-diabetic CKD, an area of great uncer-
tainty is whether other concomitant treatments could offset the beneficial effects of SGLT2
inhibitors. An example is ACE inhibitor therapy. It has been documented by us [73,74] and
others [75–77] that the acute administration of ACE inhibitors decreases the TGF maximum
response and increases the tubular fluid flow, exerting a half-maximum TGF response in
experimental animals. Nevertheless, we are only aware of one study from our own group
demonstrating that after prolonged ACE inhibition, the TGF response returns [78]. Whether
a TGF response is present and of normal magnitude in humans during prolonged ACE
inhibition is entirely unknown. Similar considerations would apply to intensive treatment
with calcium channel blockers and loop diuretics; these medications could also modify
TGF responsiveness and modulate the response to SGLT2 inhibition, but information in
both experimental settings and in humans is lacking.

The available literature about the mechanistic aspects of the positive effects of SGLT2
inhibitors in early diabetic nephropathy is based on a relatively small number of studies in
rats and mice supporting the idea that these compounds increase the solute concentration
of fluid reaching the macula densa sustainably and activate TGF sustainably, reducing
hyperfiltration and thereby preserving renal function. The literature is lacking a solid basis
for how SGLT2 inhibitors exert their actions in more advanced diabetic and non-diabetic
CKD. In addition, TGF is difficult to assess and has hardly been studied in humans, and
whether TGF is the central mediator of positive effects of SGLT2 inhibitors in human
diabetic and non-diabetic CKD patients remains elusive.

6. Effects of ACTZ on Macula Densa Solute Delivery and TGF Response

Acetazolamide reduces proximal tubular reabsorption by inhibiting bicarbonate reab-
sorption via decreasing carbonic anhydrase activity and NHE3 [79]. This initially increases
macula densa solute delivery. Despite a compensatory increase in proximal tubular and
loop of Henle solute reabsorption due to an increase in ANG II levels [80], acetazolamide
can increase the solute concentration of fluid reaching the macula densa sustainably, and
initially reduces GFR by activating TGF and potentially increasing the proximal tubu-
lar pressure [81,82]. However, TGF does not remain activated due to the upward and
rightward resetting of the turning point of the TGF curve, possibly due to increased NO
levels [83–85]. In a study assessing autoregulation, increased renal plasma pressure resulted
in an immediate afferent arteriolar vasoconstriction followed by a moderate decline of
afferent arteriolar vasoconstriction (sustained response). Acetazolamide administration
enhanced the initial vasoconstriction, but it did not alter the sustained response. The
inhibition of NO enhanced both the initial and sustained constrictor response to acetazo-
lamide [86]. Consequently, acetazolamide did not sustainably change single nephron and
whole-kidney hemodynamics due to the compensation occurring in the TGF response (TGF
resetting). Of note, acetazolamide would have been an interesting control in studies about
SGLT2 inhibitors since it sustainably decreases proximal tubular reabsorption, but does not
sustainably activate TGF, and both compounds are diuretics.

7. Effects of Furosemide on Macula Densa Solute Delivery and TGF Response

Furosemide reduces sodium reabsorption in the thick ascending limb of the loop of
Henle by inhibiting NKCC2, which would initially increase the solute concentration of
fluid reaching the macula densa. While this can be compensated by increasing the solute
reabsorption in the proximal tubule due to the activation of renin-angiotensin system (RAS)
and the sympathetic nervous system, furosemide can increase the solute concentration
of fluid reaching the macula densa sustainably [87]. That said, the effect of furosemide
on the TGF system is less clear. One scenario is that furosemide would activate and then
saturate the TGF response, effectively eliminating TGF dynamics on renal autoregulation.
Another option is that furosemide can (partially) inhibit the sensing step of the TGF system
since this is formed by NKCC2 in the macula densa. This would also prevent a sustained
activation of the TGF response. It is suggested that the tubular concentration of furosemide
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is the determinant of the balance between these two opposite responses [87]. Consequently,
while furosemide can sustainably increase the solute concentration of fluid reaching the
macula densa, it is not clear whether it can sustainably alter TGF activation.

8. Alternative Explanations for the Beneficial Effects of SGLT-2 Inhibitors in
Diabetic Nephropathy

Although the data in the literature are sparse, there are other explanations for the
positive effects of SGLT2 inhibitors in diabetic nephropathy. SGLT2 inhibitors could en-
hance the network function among nephrons by activating the TGF system. In addition, the
combination use of SGLT2 inhibitors and ARBs/ACEi can reduce fibrosis, inflammatory
pathways, and glomerular injury in diabetes and thereby preserve renal function. Fur-
thermore, SGLT2 inhibitors and ARBs/ACEi decrease tubular reabsorption. This reduces
oxygen demand and renal hypoxia, which are known cause of fibrosis and microvascular
injury [88].

Recognition of the complexity of the kidney’s microvascular physiology and anatomy
has altered the idea that each nephron is responsible for its own autoregulation. We and
others have suggested that nephrovascular units (NVUs), which consist of a nephron
and its afferent and efferent arteriole, communicate with each other in a network, and
explain renal autoregulation and perfusion in the kidneys better [89]. TGF generates
oscillations within each NVU, and oscillatory systems with similar frequencies can entrain
and become synchronized [90–92]. This synchronization among NVUs, which increases
RBF autoregulation efficacy, could prevent a discrepancy between metabolic demand and
oxygen delivery as each NVU’s tubule is perfused by four or five nearby NVUs [89].
Consequently, one theory explaining the renoprotective effects of SGLT2 inhibitors is that
they can enhance network dynamics among NVUs to activate the TGF response sustainably.

Moreover, TGF-generated oscillations can be transmitted to upstream vascular branch
points through endothelial gap junctions formed by connexin proteins (mainly connexin
40) [89]. This upstream “electrical cable” enables communication between NVUs at vascular
branch points and optimizes network among them. It was shown that treating mice with
the metabolic syndrome with SGLT2 inhibitors prevented the decline in connexin 40 in
these animals [93]. Consequently, SGLT2 inhibitors can also directly affect the transmission
of TGF oscillations to upstream microvasculature, and thereby enhance network function
amongst them.

Another explanation for the beneficial effects of SGLT2 inhibitors could be the com-
bined use of SGLT2 inhibitors and ACEi or ARBs in diabetic patients. Increased luminal
glucose by SGLT2 inhibitors inhibits urate transporter 1, which would increase uric acid
excretion substantially. This in turn would reduce reactive oxygen species (ROS), inflam-
mation, and renal damage induced by uric acid [70]. SGLT2 inhibitors can also reduce
the mRNA expression of proinflammatory mediators such as nuclear factor-κB and inter-
leukin 6 (IL-6) levels in the kidney [94,95]. Moreover, it was shown that ACEi can prevent
tubulointerstitial fibrosis, tubular apoptosis, and renal oxidative stress in animal stud-
ies [96,97]. Furthermore, the combined use of SGLT2 inhibitors and ACE inhibitors reduces
tubular reabsorption additively, which can further decrease hyperfiltration. Moreover, this
reduces oxygen demand and would improve renal oxygen levels [88]. Consequently, a
combination of SGLT2 inhibitors and ARBs/ACEi could have synergistic effects to decrease
inflammatory pathways, improve renal oxygenation, and delay the progression of dia-
betic nephropathy. Nevertheless, ambiguity remains about the combination of SGLT2 and
ARBs/ACEi, since acute administration of ARBs/ACEi decreases TGF responsiveness in
rats and thereby could attenuate the TGF activation by SGLT2 inhibitors [78]. There are
no data available about TGF responses in humans, and no accurate method is currently
available for assessment. Further studies to elucidate the mechanism on the effects of
SGLT2 inhibitors on diabetic, but also non-diabetic, nephropathy are clearly needed.
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9. Conclusions

In summary, two prerequisites are necessary to make a compound effective to sus-
tainably activate the TGF system and sustainably alter renal hemodynamics. First, macula
densa delivery should increase sustainably without any significant compensation in reab-
sorption in the segments upstream of the macula densa. Second, no compensation should
occur in the TGF response. SGLT2 inhibitors seem to be an example of compounds that
can activate the TGF system sustainably, which is one of the explanations for the positive
effects of SGLT2 inhibitors in advanced diabetic nephropathy, as they decrease glomerular
hyperfiltration by sustainably activating the TGF system. Moreover, SGLT2 inhibitors
can enhance network dynamics among NVUs and decrease ROS, which can delay the
progression of diabetic nephropathy. Finally, in diabetic patients, the combination use of
SGLT2 inhibitors and ARBs/ACEi could contribute to the enhancement of renal hemo-
dynamics. However, many questions remain regarding the exact mechanism of action of
SGLT2 inhibitors.
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ACEi Angiotensin-converting enzyme inhibitor
ANG II Angiotensin II
ANP Atrial natriuretic peptide
ARB Angiotensin II receptor blocker
ATP Adenosine triphosphate
cAMP Cyclic adenosine monophosphate
cGMP Cyclic guanosine monophosphate
CCB Calcium channel blocker
Cl Chloride
CKD Chronic kidney disease
GFR Glomerular filtration rate
HNF-1α Hepatocyte nuclear factor
IL-6 Interleukin 6
K Potassium
MR Myogenic response
Na Sodium
NaCl Sodium chloride
NHE Sodium–hydrogen exchanger
NHE1 Sodium–hydrogen exchanger 1
NHE2 Sodium–hydrogen exchanger 2
NHE3 Sodium–hydrogen exchanger 3
NKCC2 Na-K-2Cl co-transporter
NO Nitric oxide
NVU Nephrovascular unit
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PGE2 Prostaglandin E2
PTH Parathyroid hormone
RAS Renin–angiotensin system
RBF Renal blood flow
ROS Reactive oxygen species
SGLT Sodium glucose co-transporter
SGLT1 Sodium glucose co-transporter 1
SGLT2 Sodium glucose co-transporter 2
TAL Thick ascending limb of loop of Henle
TGF Tubuloglomerular feedback
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