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Abstract: The measurement of night sky quality has become an important task in night sky
conservation. Modern measurement techniques involve mainly a calibrated digital camera or a
spectroradiometer. However, panchromatic devices are still prevalent to this day, even in the absence
of determining the spectral information of the night sky. In the case of multispectral measurements,
colour information is currently presented in multiple ways. One of the most frequently used metrics
is correlated colour temperature (CCT), which is not without its limitation for the purpose of
describing especially the colour of natural night sky. Moreover, visually displaying the colour
of the night sky in a quantitatively meaningful way has not attracted sufficient attention in the
community of astronomy and light pollution research—most photographs of the night sky are
post-processed in a way for aesthetic attractiveness rather than accurate representation of the night
sky. The spectrum of the natural night sky varies in a wide range depending on solar activity and
atmospheric properties. The most noticeable variation in the visible range is the variation of the atomic
emission lines, primarily the green oxygen and orange sodium emission. Based on the accepted
models of night sky emission, we created a random spectral database which represents the possible
range of night sky radiance distribution. We used this spectral database as a learning set, to create
a colour transformation between different colour spaces. The spectral sensitivity of some digital
cameras is also used to determine an optimal transformation matrix from camera defined coordinates
to real colours. The theoretical predictions were extended with actual spectral measurements in
order to test the models and check the local constituents of night sky radiance. Here, we present
an extended modelling of night sky colour and recommendations of its consistent measurement,
as well as methods of visualising the colour of night sky in a consistent way, namely using the false
colour enhancement.

Keywords: light pollution; imaging radiometry; colorimetry; night sky colour; colour analysis; false
colour enhancement

1. Introduction

In the last few decades, urbanisation and decreasing energy cost caused a dramatic increase
in the extent of artificial lights at night (ALAN) [1]. Light pollution not only hinders astronomical
observations, but also influences the natural behaviour of nocturnal animals, affecting foraging,
reproduction, communication, and other critical behavioral patterns [2–6]. The mechanism of the effect
of light pollution on a cellular level is also widely researched, revealing that increased illumination at
night change the circadian rhythm and inhibits melatonin production causing adverse health issues
in non-nocturnal species [7–10]. Humans are not an exception either, the latest studies show direct
correlation between the colour of public lighting and tumour formation, e.g., in breast, prostate,
and colorectal cancers [11]. In addition, overillumination implies a waste of energy, which, in turn,
means unnecessary carbon emission (see for example [12] for method of using artificial light as a
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proxy for energy consumption). It is though not impossible to find and optimum between light
requirements and minimal environmental impact, as we demonstrated in the areas of Zselic and
Bükk starry sky parks in Hungary, where the whole lighting system of two settlements has been
reconstructed in a pilot project based on a special new design of LED lamps [13]. To reliably measure
light pollution, the knowledge on measurement techniques and the spectral monitoring of natural
night sky is essential.

A frequently used device, the Sky Quality Meter (SQM), is a single-channel instrument that
is able to measure sky brightness in and around the zenith in one channel of intensity with wide
bandwidth. This method has several drawbacks for measuring light pollution. The SQM (e.g., [14])
possess an arbitrary filter that is generally not calibrated for any astronomical or photopic band,
and it is excessively sensitive around the blue wavelengths. It does not use an SI-traceable unit,
the intensity displayed based on the calibration of a stellar spectrum that has a different level at
different wavelengths. Recently, Bará et al. [15] worked out a method for general measurement and
an absolute radiometric calibration of SQM sensors and described the parameters that define the
absolute radiance scale of AB magnitudes per square arcsecond, for their specific photometric bands.
Nonetheless, measurements with an SQM lack the extra information obtained from a multi-channel
method and, thus, are not directly comparable with those of other instruments, e.g., digital single
lens reflex (DSLR) cameras or spectroradiometers. In addition, the angular sensitivity of the SQM’s
optics is inconsistent across units, and the characterisation of one unit is, thus, possibly not applicable
to another.

Multi-channel measurements provide not only intensity, but spectral information on the night
sky, which enables a more complex sky quality analysis and light pollution measurements [16].
Digital cameras, such as DSLR and mirror-less (MILC) cameras that can save images in raw format,
can be used to measure sky radiance after calibration, and various representations of the distribution
of sky brightness (such as false colour images) are possible [17–21]. One of the methods for all-sky
measurements is to use a fish-eye lens equipped on a digital camera, which can provide sufficient
resolution in the area near the zenith and above the horizon. However, they are not appropriate
for measurements around the horizon where the resolution and precision become poor, which is
unfortunate, because these are the most interesting areas for light pollution research. This drawback
can be solved without changing our device if we rotate the camera by 90 degrees and take two or
multiple fish-eye images in the vertical plane [22]. The best way to achieve the highest precision and
resolution at dark locations and under clear sky conditions is to use a robotic panorama head with a
24 mm or 35 mm rectilinear lens on a full-frame digital camera [23]. With this set-up, 28 individual
images are enough to cover the whole sky and some of the ground and environment with high spatial
resolution. The images are taken at different pointing direction, using 6–10 s of exposure time and
ISO between 5000 and 10,000. Because of the short exposure time, the movement artefacts (like star
trails) caused by the apparent rotation of the sky do not disturb the measurement. Astrometry-based
corrections of the images can also be made during post-processing [23].

It is important to use an appropriately calibrated device for measurement, to have knowledge on
the natural sky spectrum and to use an SI-traceable unit for dark sky characterization in order to reliably
monitor light pollution. The most frequently used measurement devices are differently calibrated using
different reference targets. Different research groups use different metrics and units and these units
are not necessarily fully compatible with the standard definitions. For calibration, the application of a
standard source or a separate device is the most common, the spectral characteristics of which differ
from the spectral response of the measurement device. DSLR cameras are calibrated by astronomical or
standard CIE photometry [24]. Previously, we have suggested a measurement method that is based on
the calibration of DSLR cameras with known narrow-band light sources and a spectroradiometer with
which the natural sky spectrum could be precisely determined [23]. We introduced the dark sky unit
(dsu), which is a new SI-traceable unit (nW/m2/sr/nm) for measuring sky brightness and it can be
separately determined for the three colour channels of the digital camera. The natural changes in the
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sky radiance, like airglow, the natural emission of the molecules, and atoms in the upper atmosphere,
are also included in the measurement method.

For sky quality analysis, information regarding the natural dark sky is essential to be able to
separate the spectral components that are caused by light pollution from those caused by natural
phenomena. Even the clear natural night sky spectrum with no light pollution can be very different
based on various factors such as geographical location, atmospheric and meteorological conditions,
etc. (typical spectrum of night sky can be found in e.g., [25]. However, readers should be noted that
apart from visible light spectrum it also covers from UV to microwave, which is beyond the scope of
this article). The natural emission of the molecules and atoms in the upper atmosphere (airglow) is
the most important dynamic component of night-sky radiance, especially at places with negligible
light pollution. For example, oxygen primarily emits in the green spectral line, while sodium emits
in the orange. Clouds and aerosols add another factor to sky brightness by reflecting light to the
scattered light causing the radiation reaching the surface [26,27]. The contribution of clouds to sky
brightness near urban areas are measured and explained in [28], the elevated level of brightness
could be measured by all-sky photometry while using a fish-eye lens several kilometers from the city.
Night sky brightness is often characterized by the correlated colour temperature (CCT). Under clear
sky, due to the Milky Way, the CCT in the zenith can reach 4700 K which decreases towards the horizon.
Under overcast sky the maximum CCT is around 3000 K [27]. Although CCT representation is useful
to distinguish clear sky from cloudy sky and to detect various sources of light pollution, it does not
characterize well the real colour of the sky. The colour channels of DSLR cameras are usually calibrated
based on the CIE 1931 colour space and based on that the CIE XYZ colour representation describe the
sky colour better than the CCT value. Another advantage of CIE XYZ is that it can be easily converted
to other colour spaces (e.g., Adobe RGB), where light polluting sources are easier to separate from the
natural sky brightness.

In this paper, we present a method to determine the real colour of the night sky while using
all-sky images taken by a digital DSLR or MILC camera based on the method in [23]. In our previous
paper, we provided recommendations to an SI traceable metric for the measurement of night sky
radiance. The introduced camera-based band-averaged radiance can be measured in nW/m2/sr/nW
units abbreviated as dsu (Dark Sky Unit); it is a natural choice as the non-polluted sky has radiances in
the order of 2–3 dsu. In this paper, we extend this recommendation, defining a colour space that is
based on normalised band-averaged radiance values and the possible conversion between different
colour spaces. Here, we show how different the various night skies (light-polluted and natural) can be
in different colour spaces.

2. Materials and Methods

The spectral measurements were obtained with a Konica Minolta CS–2000 Spectroradiometer.
The device was used with the maximum possible aperture. The exposition is set to automatic resulting
in the maximum exposure time (2 min.). The sensitivity of this spectroradiometer makes it possible to
obtain sky spectra, even at natural sky conditions. Usually, we take 5–10 spectra at the same location
and direction to improve the signal-to-noise ratio of the measurement.

All of the all-sky measurements presented in this paper were acquired by Sony ILCE 7SII cameras
equipped with Samyang 24 mm T1.5 VDSLR ED AS IF UMC II lens. The camera was attached to
a robotic panorama head (GigaPan EPIC Pro). At a given location, we took 28 or 35 images with
the motorized head to cover the whole sky and the portion of terrain close to the horizon with
high resolution. The standard exposure setup for the measurements: ISO: 6400, exposure time: 6 s,
F/1.4 (T1.5) aperture.

The individual images are processed to calibrated radiance distributions of the sky in dsu units.
Then the images were stitched to each other to generate hemispheric images in spherical projection.
All of the image processing besides the stitching of the images was performed by our DiCaLum library
written in GNU Octave.
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The synthetic data used in this paper originate from the web-page of the Advanced Cerro Paranal
Sky Model [29]. We separated the different components of the model spectra by cutting the different
spectral ranges and also by fitting the standard emission profiles matching the bandwidth of our
spectroradiometer. Our measurements by the spectroradiometer provided additional sky spectra with
(twilight and zodiacal light). The details of these fits are presented in the next section.

3. The Spectral Information of the Night Sky Colour

The spectrum of the night sky contains the fingerprints of the different light sources.
Therefore spectroradiometry provides the most complete information about sky radiance.

We performed an extended spectral survey in the Zselic Dark Sky Park, Hungary. In [23],
we already demonstrated that the spectrum can be perfectly fitted by the natural sky model and
the spectrum of the light sources in the neighbouring settlements. A fit with the components of the
natural sky spectrum and the typical artificial light sources (blue and orange components of white
LED, compact fluorescent lamp, and high-pressure sodium lamp) model the observed spectrum well.
We created a spectrum catalogue based on the spectra of the common public lighting sources and the fit
to the local measurements based on the “Advanced Cerro Paranal Sky Model” [29]. Figure 1 displays
the major components of the natural sky radiance and Figure 2 shows a sample of the typical sources in
the Zselic region. The continuous part, which consists of the zodiacal light, scattered starlight, and the
residual continuum of the airglow, is an approximately flat curve at 2 nW/m2/sr/nm.

L
Continous

Oxygen at 558 nm

Sodium at 589 nm

Oxygen at 630 nm

 400  450  500  550  600  650  700  750

λ [nm]

OH emission

Figure 1. Components of the natural sky spectrum used to fit the observations. From top to bottom:
continuous component, 558 nm (green) oxygen emission, 589 nm sodium emission, 630 nm (red) oxygen
emission, OH emission.

As a starting point, we selected a low and high standard value of the natural sky radiance based
of the Paranal Sky model corresponding to 60 sfu and 120 sfu monthly averaged solar radio flux. In our
standard measurements survey, we use dark sky unit (dsu) as a metric for sky glow measurement.
Thus, we parameterized the spectral sequence LG with this unit. Table 1 lists the main components
of the natural sky radiance and our accepted radiance limits for the standard low (L) and high (H)
values. Please note that, especially the oxygen and sodium emission, can significantly exceed even the
normal high values. We refer to this range of radiance as the standard sky. We selected random sets of

parameters uniformly distributed between the L(L)
G [dsu] and L(H)

G [dsu] limits.
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Figure 2. Samples of the used light source spectrum database to fit night time spectra. CFL: compact
fluorescent lamp; HPS: high pressure sodium, LED-1: cold white LED; LED-2: warm white LED; LED3:
phosphor converted amber LED.

Table 1. Components of the natural sky radiance.

Source L(L)
G [dsu] L(H)

G [dsu]

Scattered starlight and zodiacal light 0.93 1.28
Airglow/residual continuum 0.55 1.10

558 nm oxygen emission 0.13 0.53
589 nm sodium emission 0.05 0.12
630 nm oxygen emission 0.02 0.07

After extreme solar activity, like high extreme UV radiation, the level of airglow can increase
by a factor of 5–10. Airglow emission is also effected by atmospheric conditions, like gravity waves.
Thus, the real airglow level has a larger variability. In addition, here we demonstrate how differential
spectroscopy help in separating faint components of night sky spectrum. Figure 3 shows that
differentiating sky spectrum for different times during a night removes the ALAN components and
most of the natural airglow. The resulting curve is a good approximation of the twilight components.
The colour of the twilight sky is frequently misinterpreted. The Rayleigh-scattering alone cannot—give
a bluish tint. The ozone absorption in the upper atmosphere is the crucial mechanism—the dip
in the whole central part of the visible spectrum is the Chappuis absorption band of ozone [30].
The CIE colour coordinates of the twilight component are x,y = 0.22,0.22, indicating a clear blue
colour. However, it is mixed with the other components of the sky; therefore, it is shifted to the
orange direction. Please note that here we provided the twilight spectrum for completeness of night
sky information at first. In the following sections, we first concentrate on the sky colour during the
astronomical night. Therefore the twilight spectrum is not included in these calculations, as for light
pollution measurement we restrict the observing time for the astronomical night. However, for a
general image processing scenario, we later extend the learning set by a twilight component.

Figure 4 shows another demonstration of differential spectroradiometry. Here, the difference
between the spectra taken at different directions removes the ALAN and natural components and the
remaining part provides an estimate of the zodiacal light.
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Figure 3. Top panel: the spectrum of the sky at a fixed location during astronomical night (black curve)
and during twilight (blue curve). The lower panel displays the difference of the two above curves,
the twilight component. Components of the natural sky spectrum used to fit the observations.
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Figure 4. Top: Night sky spectrum with the zodiacal light (blue) and at a close sky location (black).
The features of the light polluted sky is clearly visible, but the difference of the two spectra (lower
panel, blue curve) emphasize only the zodiacal light and some components from airglow. The lower
panel also displays the model of zodiacal light with black curve (Advanced Cerro Paranal Sky Model,
see in Section 4).

4. Sky Colour Modelling

We generated a sequence of spectra with different combination of its components in order to
demonstrate the effect of different natural phenomena and the light pollution on the colour of the night
sky the observable quantities. The spectra of the natural components are based on the “Advanced
Cerro Paranal Sky Model” (https://www.eso.org/sci/software/pipelines/skytools/skymodel) [29].
We use two extreme models. The low radiance model is calculated at the ecliptic pole, with “Monthly
Averaged Solar Radio Flux” of 60 sfu during the middle third of the night in December/January.
The effect of moonlight is neglected. We calculated the high radiance model with doubled (120 sfu)
radio flux, for April/May conditions. The other parameters are the same. The seasonal change and
the increased solar activity provide a significant increase in the natural background (e.g., LG increases

https://www.eso.org/sci/software/pipelines/skytools/skymodel
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from 1.7 dsu to 3.1 dsu). In the table, we present the theoretical continuous and the emission line
contribution separately for the extreme cases.

A model spectrum can be calculated based on the spectral components that are provided in
Table 1 and in Figures 1 and 2, with any relative ratio of the different components. Subsequently,
we followed a standard procedure to calculate the CIE xy colours for a given spectral distribution
S(λ), i.e., We integrated the products of S(λ) and the CIE 1931 colour matching functions to obtain
the XYZ tristimulus values, and then we got the colour coordinates in the CIE 1931 xy chromaticity
diagram. It would also be possible to generate the colour coordinates in the CIE L∗a∗b∗ colour space,
but, according to our experience, it does not provide additional information on sky quality and colour.
However, we apply our results to digital camera measurements; thus, it is straightforward to use
camera based colours. The measurements provide the RGB band-averaged radiances: LR, LG and
LB. From this triplet, we define the camera-based colour coordinates as `R = LR/(LR + LG + LB)

and `G = LG/(LR + LG + LB). Then the triplet (LG, `R, `G) fully describes the measurement for
a given pixel. These values can be calculated from synthetic spectra similarly to the derivation of
CIE xy coordinates, but this time the camera RGB spectral sensitivity curves are integrated with a
given spectrum.

Figure 5 displays the CIE 1931 colour coordinates of the spectra in the database. Contrary to
the usual impression of bluish night sky colour, in reality the sky is in the orange to green range.
Blue colour only appears during twilight hours, due to ozone absorption.
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Figure 5. CIE 1931 colour diagram of the model spectra (small dots) used for the colour conversion
definition. The rectangle shown in the left figure is enlarged in the right box. The large symbols
represents the spectral database used for the models: A: 4900 K LED; B CFL; C: 2900 K LED; D: 2400
K LED, E: HPS; F: Amber LED; a: continuous natural component, b: green oxygen emission, c: sodium
emission, d: red oxygen emission, e: OH emission.

Figure 6 shows the quality of the fit of the colour transformation for the green channel of the data
presented in Figure 5. For the given set of data, the error of the green channel conversion is within 2%.
For the blue channel, we found a similar error, however the red colour has more variability and the
error of the fit reaches 10%. The better precision in the blue and green channels suggests that these two
colours are better choices for representing the colour of the sky.
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Figure 6. The quality of the colour conversion for the green channel. Left box: the fitted versus original
`g coordinates, right box: the error of the fit. The dots represent the actual colours.

5. Conversion between Colour Spaces

We used our spectral database as a learning set, and fitted the colour transformation matrix.
The real RGB colours (in standard sRGB colour-space) were calculated from the CIE xy coordinates by
the published colour matrix (the CIE xy coordinates are obtained in the standard CIE procedure from
the spectra).

Subsequently, we used the camera RGB colour response to calculate the corresponding dsu colour
values. We normalized the colours to LR + LG + LB = 1. We used this training set to fit the colour
transformation matrix from the dsu based colours to the sRGB colour space.

The 3 × 3 colour correction matrix provides the transformation from the camera LRGB values to
corrected colours:

R = 1.38 LR + 0.02 LG + 0.18 LB (1)

G = −0.32 LR + 1.40 LG − 0.19 LB (2)

B = −0.06 LR − 0.42 LG + 1.37 LB (3)

Please note that this transformation is not a unique one, it depends on the learning set of different
spectra. However, the final colours do not change significantly when the learning set is modified.
We use this transformation throughout this paper.

In addition to the standard colour conversion, it is possible to fit the correlated colour temperature
(CCT) based on the training spectrum data set. However, one should use at least a quadratic fit to the
colours, to get a satisfactory result. Additionally, the error of the fit is relatively large, as demonstrated
in Figure 7. In addition, spectra with similar camera based colours may have different CCT values.
Therefore, we recommend to use the colour coordinates representing the images instead of the
approximated CCT of the sky.
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Figure 7. The error of the quadratic fit of correlated colour temperature (CCT) to the camera
band-averaged spectral radiance.

6. Application to Image Processing

Astrophotographers usually set the white balance manually to achieve bluish-gray night sky
colour. Another option to shift the hue of the image is to set the colour temperature of the white
balance setting to lower values (3000–4000 K). This setup automatically produces neutral or blue colors.
However, the right colour of the sky is not neutral or bluish, as was demonstrated in the previous
sections. Based on the colour transformation defined in Section 5, we can convert the raw camera
images to dsu scale and then produce the images in colours close to the real spectral radiance of the sky.

Here, we present some basic case studies on the application of our colour transformations.
The most straightforward one is the image processing of the natural sky with no light pollution.
This provides the basis for further studies where some of the emission sources (natural or artificial)
exceed the others. It gives a possible reference point. The next example is a location with low light
pollution (dark sky park in Hungary); it demonstrates the effect of light pollution on colours. The third
demonstration is the processing of aurora images. Here, the correct colour processing is essential,
since the source of the emission is then predictable from the colours. In contrary, the erroneous
processing of the images may predict incorrect physical process behind the emission. In a forthcoming
paper, we analyse additional night sky scenarios, for example, observations with intensive airglow
in the oxygen or sodium lines. We are performing a long term light pollution survey in Hungarian
national parks and some other locations—when a sufficient amount of data will be collected, we will
analyse these data with the same methodology.

6.1. General Night Sky Images

We selected a location with no light pollution and minimal airglow activity (some aurora activity
close to the horizon) in Canada (coordinates: 48.2259◦, –82.4393◦) on 9 March 2019 at 02:30 UT.
For comparison, we included an image from a mildly light polluted location (Zselic Starry Sky Park,
Hungary (coordinates: 46.2903◦, 17.6840◦) Figures 8 and 9 display four different versions of the same
image, taken at a light pollution free and a moderately light polluted location. From top to bottom,
the following are shown: (a) the real colour image calculated from the dsu conversion of the raw
camera image, (b) image with white balance set to 3800 K in order to get neutral colours of the sky,
(c) image with manual post-processing often applied by photographers to further enhance bluish
glow of the sky and the stars, and (d) image with false colour enhancement (FCE) to visualize light
pollution better. We defined the FCE colour conversion matrix with the following procedure: starting
from the CIE x–y coordinates, we defined a shifted x–y colour pair for all the spectra of the learning
set. The shifted x–y pairs are defined by the following constraints: the mean natural sky is shifted to
the white point of the sRGB colour space; distance from the white point is doubled. The following
conversion satisfies the above criteria well:

xFCE = 0.42 + 2 (x − 0.42) (4)

yFCE = 0.39 + 2 (y − 0.39) (5)
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The above formula is not a unique one. We tested several alternatives and selected the one with
optimal differences in colour representations of different emission scenarios we have. The first idea
was to use for projection point the centre of the triangle in the `R − `G plots. However, it resulted in
an orange scent for most of the possible colours. Subsequently, we selected xc = 0.42 and yc = 0.39
as the central projection point based in a manual trial and error procedure. We note that with an
extended database of imaging sky radiance observations, a different and more optimal transformation
can be derived. To obtain the extended (FCE) sRGB coordinates from camera data, we estimated the
conversion matrix by applying the standard CIE x-y to sRGB conversion matrix. Then we fitted the
final dsu colour (`R, `G, `B) to sRGB transformation on the learning set. For the natural sky, it provides
an image that is close to the astrophotographer approach, but by further colour enhancement. It should
be noted that it is a false colour representation of the night sky, but with a well defined procedure.
In contrast to FCE, the manual colour enhancement used by astrophotographers does not have an
exact definition and it varies from image to image.

Figure 8. Different representations of the same photo taken at a light pollution free location in Ontario,
Canada (the coordinates are presented in the text). (a) real colours (b) 3800 K white balance setup,
(c) manual additional processing, and (d) false colour enhancement.
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Figure 9. Different representations of the same photo taken at a moderately light polluted location
at the Zselic Landscape Protection Area, Hungary. (a) real colours (b) 3800 K white balance setup,
(c) manual additional processing, (d) false colour enhancement.

6.2. Aurora and Related Events

In 2016, a new upper atmospheric phenomenon, named STEVE (Strong Thermal Emission Velocity
Enhancement), caused big surprise to auroral researchers. On digital photographs, STEVE looked
like an elongated auroral arc. Although its colours resembles to aurora, researchers assume that
the origin of the two phenomena is not related [31]. In the lower atmospheric region, another
phenomenon, the Picket Fence, produced similar colourful jet, but there is no evidence of its physical
relation to STEVE. For the first time, Gillies et al. [32] measured the spectrum of the two phenomena
while using a Transition Region Explorer Spectrograph (TREx), which is a very sensitive imaging
spectrograph sensitive between the 400 and 800 nm region. TREx is usually used for airglow and
aurora measurements on the night sky under very low luminosities. The spectral mesurements of
STEVE proved that it is basically different from the spectrum of aurora or Picket Fence [32].

In photographs, STEVE often has deep purple or reddish colour. In Figure 10, different colour
representations of STEVE are shown in a light pollution free area (Ontario, Canada, coordinates
49.5681◦, –81.4215◦). In real colour or dsu based colour representation, the phenomenon is not
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as bright and purple as photographers usually illustrate applying different colour enhancements,
although the structures become also less visible. However, the real colour representation clearly shows
the coexistence of red and green oxygen emission.

Figure 10. Different representations of the same photo taken of Strong Thermal Emission Velocity
Enhancement (STEVE) at a light pollution free location. (a) real colours (b) 3800 K white balance with
additional processing.

7. Discussion

Hollywood movies and astrophotographs usually visualize the night sky in a dark bluish colour
that adds a spectacular glare to the apparent airglow. The reason for the former is that these movies
are captured in daylight and the night effect is added during the post-processing of the cinema,
astrophotos, however, are manually enhanced to obtain more vivid colours. Actually, our colour
(photopic) vision is not working under very low luminance at night; thus humans cannot see the real
colour of the night sky. In this paper, we demonstrated a method with which we could visualize the
real night sky colour based on digital camera measurements and with the same colour conversion
technique, we defined FCE in order to highlight the sources of light pollution and any enhanced natural
sources. It is clear that the usually applied astrophotography style of image processing provides a
false colour representation of night sky colour. Besides, it is an arbitrary procedure, with subjective
steps. The FCE method provides a repeatable, measurement-based enhancement of night sky images.
Therefore, when the image processing is performed not only for aesthetic purposes, but for scientific
analysis of the sky imagery, FCE provides an optimal solution.

In the sky glow measurement literature, the colour of the night sky is usually characterized by
the correlated colour temperature (CCT) of the sky. Figure 11 displays the normalized green colour
(`g), as a function of CCT. Especially in the case of high CCT, different colours are possible with the
same calculated CCT. A single parameter cannot specify the colour of the sky. In addition, please note
that the green colours are not compatible with black-body radiation. Thus, we recommend using
two colour coordinates instead of correlated colour temperature when representing the colour of the
night sky.

We extended the range of possible spectra with the twilight spectrum of the sky. Besides,
we increased the possible range of artificial light by a factor of two. Figure 12 displays the colour-colour
diagrams for this set. The comparison of the CIE x-y and the dsu based (`R–`G) diagram demonstrated,
the camera-based colours with the use of band-averaged spectral radiance is equally useful to represent
sky colours. Thus, we can eliminate colour transformation errors with SI traceable colour coordinates.

The well-defined triangle structure in the `R–`G diagram is the consequence that the visual
radiation of the night sky is composed of three main components: the bluish twilight spectrum of
the solar radiation, the green oxygen airglow, and a combination of different orange and red spectra.
This third component includes the sodium and red oxygen airglow and most of the light pollution
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sources. These three primaries span the possible colour range of the night sky colours; thus shifts from
the central “mean” natural colours of the sky indicates and excess in any of these components.

Continuous night sky quality surveys with comparable devices will provide a data mine for
atmospheric studies, including the effect of natural airglow variations and the impact of aerosols
on sky brightness and colour. A network of all-sky measurement cameras is under development in
Hungary. In parallel, a portable system with higher resolution is used to add additional data coverage
to the fixed system. The colour processing system that is defined in this paper will be a fundamental
tool in the data processing pipeline.

 0.3

 0.4

 0.5

 2500  3000  3500  4000  4500

ℓ g

CCT [K]

Figure 11. Correlated colour temperature (CCT)-colour diagram of the learning set: `G as a function of
CCT. The dots represent the actual colours.
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Figure 12. Colour-colour diagrams for an extended dataset. Left: CIE x-y colours, Right: `R − `G colour
space. The dots represent the actual colours; grey dots: natural spectra only.

8. Conclusions

Based on realistic models of night sky spectra and spectral observations, we determined the
possible range of colours of natural sky emission during moonless astronomical night. The most
possible natural sky colour lays in the following regions in different colour schemes:

• in CIE L*a*b*: −5 < a* < 20 and 15 < b* < 35.
• in CIE xyY: 0.36 < x < 0.41 and 0.35 < y < 0.41.
• in camera LG`R`G: 0.34 < `R < 0.44 and 0.31 < `G < 0.39

We defined colour transformations from camera-based band-averaged radiances to different
colour schemes while using a learning set defined by the possible spectra of the night sky. In addition
to real colour representation, which provides the correct colour of the sky, we present a false colour



J. Imaging 2020, 6, 90 14 of 15

enhancement (FCE) colours. The FCE representation cannot be used to reproduce the real colours
of the night sky, but it provides an image representation of astrophotography which separates the
different physical scenarios behind the emission of the sky. This method can be applied to light
pollution surveys to help the interpretation of measurements. We provide such applications in a
forthcoming paper.
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The following abbreviations are used in this manuscript:

CCT Correlated colour temperature
dsu Dark sky unit
FCE False Colour Enhancement
sfu Solar flux unit
STEVE Strong Thermal Emission Velocity Enhancement
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