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Abstract: Voltage-gated sodium channels (Navs) are critical determinants of cellular excitability.
These ion channels exist as large heteromultimeric structures and their activity is tightly controlled.
In neurons, the isoform Nav1.6 is highly enriched at the axon initial segment and nodes, making
it critical for the initiation and propagation of neuronal impulses. Changes in Nav1.6 expression
and function profoundly impact the input-output properties of neurons in normal and pathological
conditions. While mutations in Nav1.6 may cause channel dysfunction, aberrant changes may
also be the result of complex modes of regulation, including various protein-protein interactions
and post-translational modifications, which can alter membrane excitability and neuronal firing
properties. Despite decades of research, the complexities of Nav1.6 modulation in health and disease
are still being determined. While some modulatory mechanisms have similar effects on other Nav
isoforms, others are isoform-specific. Additionally, considerable progress has been made toward
understanding how individual protein interactions and/or modifications affect Nav1.6 function.
However, there is still more to be learned about how these different modes of modulation interact.
Here, we examine the role of Nav1.6 in neuronal function and provide a thorough review of this
channel’s complex regulatory mechanisms and how they may contribute to neuromodulation.

Keywords: voltage-gated sodium channel; action potential; axon initial segment; sodium currents;
channelopathies; post-translational modifications; protein-protein interactions

1. Introduction

A well-functioning and healthy brain is dependent on the ability of neurons to inte-
grate and relay impulses. These impulses are mediated by the activity of voltage-gated
sodium channels (Navs) by controlling the initiation and propagation of electrical signals,
which are fine-tuned by myriad signaling events to contribute as critical regulators of
neuronal excitability [1].

Navs exist as large complex heteromultimeric structures consisting of a pore-forming
α subunit that may be covalently or non-covalently bound to auxiliary subunits, chief
among these being β subunits (β1–4) (Figure 1) [2–4]. The Nav α subunit is comprised of
a ~2000-amino acid polypeptide chain folded into a complex tertiary structure organized
into four homologous transmembrane domains (DI-DIV), each containing six α-helical
segments (S1–S6). The S1–S4 segments comprise the voltage sensing domain (VSD) which
contains a number of positively charged lysine and arginine residues along the S4 helix
that permit the channel to sense voltage changes across the membrane and is responsible
for channel activation [5]. In proximity to the VSD are the S5–S6 segments that form the
re-entrant P-loop and constitutes the ion-selective pore of the channel [6]. Linking the
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four domains of Nav α subunits are multiple intracellular loops (L1–L3) in addition to
cytoplasmic N- and C-termini.
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In general, the activation cycle for Navs features transitions between resting, acti-
vated, and inactivated states (Figure 2). Under resting (hyperpolarized) conditions, Navs 
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that allows for sodium ion conductance, thus initiating depolarization, and corresponds 
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inactive state, thus allowing potassium and other conductances to contribute to the down-
stroke of the action potential. The third intracellular loop, L3, contains an inactivation par-
ticle consisting of hydrophobic residues (isoleucine-phenylalanine-methionine, IFM mo-
tif) that is largely responsible for channel fast inactivation [7–10]. Notably, Navs can un-
dergo various post-translational modifications (PTMs) and binding interactions with 
other regulatory proteins that impact their structure, function, and trafficking [11–13]. 

To date, there are nine described voltage-gated sodium channel α subunit isoforms 
(Nav1.1–Nav1.9) with distinct functional and pharmacological characteristics and expres-
sion patterns [14]. Sequence alignments demonstrate that the sequence homology of mam-
malian Nav α subunits is quite high, sharing more than 50% homology in transmembrane 
and extracellular domains [15]. However, Navs display greater divergence within intra-
cellular domains. Notably, the first intracellular loop (L1) varies in length between Nav 
isoforms and is often the target of extensive PTMs, including phosphorylation. The intra-
cellularly accessible regions also contain additional targets for isoform-specific regulation 
by other PTMs and protein-protein interactions [11,16–19]. 

Figure 1. Linear schematic of a voltage-gated sodium channel α subunit and an auxiliary β subunit.
L3 depicts the IFM motif (black circle) for channel fast inactivation.

In general, the activation cycle for Navs features transitions between resting, activated,
and inactivated states (Figure 2). Under resting (hyperpolarized) conditions, Navs are
in their closed state and upon depolarization transition into an open, activated state that
allows for sodium ion conductance, thus initiating depolarization, and corresponds to
the upstroke of the action potential. Subsequently, the channel again transitions into
an inactive state, thus allowing potassium and other conductances to contribute to the
downstroke of the action potential. The third intracellular loop, L3, contains an inactivation
particle consisting of hydrophobic residues (isoleucine-phenylalanine-methionine, IFM
motif) that is largely responsible for channel fast inactivation [7–10]. Notably, Navs can
undergo various post-translational modifications (PTMs) and binding interactions with
other regulatory proteins that impact their structure, function, and trafficking [11–13].

To date, there are nine described voltage-gated sodium channel α subunit isoforms
(Nav1.1–Nav1.9) with distinct functional and pharmacological characteristics and expres-
sion patterns [14]. Sequence alignments demonstrate that the sequence homology of
mammalian Nav α subunits is quite high, sharing more than 50% homology in transmem-
brane and extracellular domains [15]. However, Navs display greater divergence within
intracellular domains. Notably, the first intracellular loop (L1) varies in length between Nav
isoforms and is often the target of extensive PTMs, including phosphorylation. The intra-
cellularly accessible regions also contain additional targets for isoform-specific regulation
by other PTMs and protein-protein interactions [11,16–19].
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Figure 2. Simplified state transition model of voltage-gated sodium channels featuring closed, 
open, and inactivated states. This figure was created with BioRender.com. 
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nel Nav1.6 is a critical driver in the initiation and propagation of action potentials in neu-
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input-output properties of neurons in healthy and diverse disease states. While mutations 
in Nav1.6 may cause aberrant channel activity (i.e., channelopathies), these changes may 
also be the result of extensive regulation by various signaling events impacting Nav1.6 
activity and trafficking. In this review, we will provide an overview of Nav1.6 in neuronal 
function and a comprehensive road map into the nebulous landscape of Nav1.6 regulation 
and its impact on neuronal excitability. 

2. Nav1.6 Overview 
2.1. Discovery of Nav1.6 
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and is a critical driver of action potential (AP) initiation and propagation in neurons. 
Nav1.6 was identified in the mid 1990′s by two separate groups almost a decade after the 
first cDNA clones of Navs were isolated [3,4,20,21]. Burgess et al. [21] identified the mouse 
Nav1.6 gene using positional cloning of the mouse neurological mutant for motor end-
plate disease and found this channel to be highly expressed in the brain and spinal cord, 
but not in skeletal muscle or heart. In parallel, Schaller and colleagues [20] detected a novel 
sodium channel cDNA from rat brain using RT-PCR and were the first to report the full 
sequence of rat Nav1.6. Subsequently, the gene encoding for Nav1.6, SCN8A, was mapped 
to chromosome 12q13 in humans [22]. Additional investigation revealed reduced sodium 

Figure 2. Simplified state transition model of voltage-gated sodium channels featuring closed, open,
and inactivated states. This figure was created with BioRender.com.

In the 40 years since Navs were first isolated, considerable progress has been made
toward mapping the vast regulatory landscape of these ion channels. However there
remains much we still do not understand about Nav regulation and its impact on cellular
excitability, human physiology, and disease. In the brain, the voltage-gated sodium channel
Nav1.6 is a critical driver in the initiation and propagation of action potentials in neurons.
Consequently, aberrant alterations to Nav1.6 activity can have profound effects on input-
output properties of neurons in healthy and diverse disease states. While mutations in
Nav1.6 may cause aberrant channel activity (i.e., channelopathies), these changes may also
be the result of extensive regulation by various signaling events impacting Nav1.6 activity
and trafficking. In this review, we will provide an overview of Nav1.6 in neuronal function
and a comprehensive road map into the nebulous landscape of Nav1.6 regulation and its
impact on neuronal excitability.

2. Nav1.6 Overview
2.1. Discovery of Nav1.6

The voltage-gated sodium channel isoform Nav1.6 is encoded by the SCN8A gene and
is a critical driver of action potential (AP) initiation and propagation in neurons. Nav1.6
was identified in the mid 1990’s by two separate groups almost a decade after the first
cDNA clones of Navs were isolated [3,4,20,21]. Burgess et al. [21] identified the mouse
Nav1.6 gene using positional cloning of the mouse neurological mutant for motor end-plate
disease and found this channel to be highly expressed in the brain and spinal cord, but
not in skeletal muscle or heart. In parallel, Schaller and colleagues [20] detected a novel
sodium channel cDNA from rat brain using RT-PCR and were the first to report the full
sequence of rat Nav1.6. Subsequently, the gene encoding for Nav1.6, SCN8A, was mapped
to chromosome 12q13 in humans [22]. Additional investigation revealed reduced sodium
currents and excitability in neuronal cultures of Scn8a null mice and suggested that Nav1.6
has a powerful impact in tuning APs that underlie neuronal excitability [12,23–27].
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2.2. Nav1.6 Expression and Distribution

Distinct from the other Nav isoforms, Nav1.6 is broadly expressed in the nervous
system. In the central nervous system (CNS), Nav1.6 is prominently expressed in a va-
riety of excitatory and inhibitory neuronal cell types, such as hippocampal pyramidal
and granule cells, retinal ganglion cells, cortical pyramidal neurons, motor neurons, and
cerebellar Purkinje and granule cells where it canonically contributes to electrogenesis of
excitable cells [20]. Surprisingly, Nav1.6 is also expressed in multiple glial cells within the
CNS where it has been reported to play noncanonical roles in effector functions, such as
phagocytosis, migration, proliferation, and secretion of chemokines/cytokines [12,20,28].
In the peripheral nervous system (PNS), Nav1.6 is expressed in a variety of ganglion
cells, including dorsal root ganglion and trigeminal ganglion neurons where it is critical
for peripheral sensory neuron transduction [29–31]. Additionally, Nav1.6 has also been
detected in Schwann cells of the PNS, however its role in Schwann cells is not well un-
derstood [20,28]. Apart from the CNS and PNS, Nav1.6 is also expressed at a low level
in cardiomyocytes [32,33] where it is thought to function as a Ca2+ cycling protein within
t-tubules to impact Ca2+ dynamics via electrogenic Na+-Ca2+ exchange [33]. Intriguingly,
Nav1.6 also exhibits high expression in various metastatic tumors, including cancers of
the breast, prostate, lymph node, and cervix, and is believed to contribute toward cancer
metastasis [34–36].

2.3. Nav1.6 Subcellular Localization in Neurons

Neurons are highly polarized cells and their architecture is defined by two prominent
subcellular compartments: (1) somatodendritic, which receive and integrate neuronal
synaptic inputs, and (2) axonal, which then process and transmit these inputs to postsy-
naptic targets [37]. A key determinant of this neuronal polarity is the unique subcellular
localization of Nav1.6. This channel is highly concentrated at the axon initial segment (AIS)
and at nodes of Ranvier, where it plays a critical role in the initiation and propagation
of APs, respectively [38–43]. The AIS is a highly specialized membrane domain about
10–60 µM in length (depending on cell type) located at the proximal end of the axon and
maintains neuronal polarity by functioning as a physiological and physical bridge between
somatodendritic and axonal compartments. This region is characterized by a high density
of ion channels, scaffolding proteins, kinases, and other critical proteins that orchestrate
AP initiation [44–49]. Specifically, Nav1.6 is highly concentrated in the distal half of the
mature AIS, whereas Nav1.2 is concentrated in the proximal half [43,50].

Interestingly, the localization of Nav1.6 at the AIS is developmentally controlled. Stud-
ies have shown that Nav1.2, but not Nav1.6, is clustered at the developing AISs and nodes
of mice up through postnatal day 10, after which a developmental switch promotes the
predominant expression of Nav1.6 in these subcellular compartments starting in the second
postnatal week and into adulthood [51–53]. In mature AIS, Nav1.6 primarily controls
orthodromic AP initiation in the distal AIS down the axon, while Nav1.2 contributes to
antidromic backpropagation of APs into the soma and dendrites [43]. Although expression
of Nav1.6 is predominantly localized to the AIS and nodes, the channel is also expressed in
somatodendritic compartments, albeit to a lesser degree. Using a highly sensitive electron
microscopic immunogold technique, Lorincz and Nusser [42] determined that Nav1.6
expression is approximately 35–80 times higher at the AIS than at the soma or proximal and
distal dendrites. Indeed, patch-clamp, sodium imaging, and similar immunogold labeling
techniques in pyramidal neurons have demonstrated a sodium conductance density as high
as 2500–3000 pS/µm2 at the AIS [42,54] versus approximately 40 pS/µm2 in dendrites [55].

The ability of Nav1.6 to localize to the AIS and axonal nodes is dependent on protein-
protein interactions with AnkyrinG (AnkG); a submembranous scaffolding protein and
major structural orchestrator of the AIS and nodes [56]. Specifically, studies have shown
that Nav1.6 contains the targeting motif |(V/A)P(I/L)AXXE(S/D)D| located in the second
intracellular loop (L2) that allows channels to bind AnkG and concentrate Nav1.6 within
these axonal compartments [57–61]. This targeting strategy is not unique to Nav1.6 and
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also localizes Nav1.2, voltage-gated potassium channels, cell adhesion molecules, and other
regulatory proteins to the AIS [56,62–64]. To this end, Nav localization to the AIS may
be sensitive to post-translational modulation. A previous study has shown that casein
kinase II (CK2) may phosphorylate key serine residues within the AnkG binding motif of
Nav1.2 and regulate insertion of Nav1.2 at the AIS in neurons [64,65]; however, this specific
regulatory tripartite protein interaction has yet to be directly identified for Nav1.6 channels.
However, Nav localization may be governed by additional mechanisms, as the localization
of Nav1.6 to somatodendritic compartments does not appear to rely on AnkG binding [66].

The importance of Nav1.6 in neuronal excitability is underscored by Scn8a null mice
that display significantly attenuated excitatory properties due to decreased surface mem-
brane clustering of Nav1.6 at the AIS and nodes [49]. Although expression of Nav1.6
at the AIS and nodes is crucial for the initiation and propagation of signals down the
axon, its expression within dendritic compartments also impacts synaptic transmission.
Nav currents have been detected in numerous hippocampal and neocortical dendrites
where they function to integrate synaptic inputs and contribute to local dendritic spike
generation [67–70]. Patch-clamp experiments have also demonstrated that the axonal and
dendritic Nav currents differ in their biophysical properties [71,72], which might suggest
different Nav isoform expression at these subcellular compartments. However, several
studies have detected Nav1.6 as the prominent dendritic Nav at postsynaptic membranes
in cerebral and cerebellar cortices [38,42,73], indicating that the same Nav isoform may
dominate in adult axons and dendrites. Thus, it is likely that the activity of Nav1.6 at the
AIS/nodes and dendrites may be differentially regulated by other mechanisms, like post-
translational modifications (PTMs) and protein-protein interactions [72]. Dendritic Nav1.6
activity has also been shown to contribute to the generation of dendritic spikes where
it is thought to promote Ca2+ entry in spines, essentially acting as an AP booster at the
synapse [73–78] to indirectly engage Ca2+ signaling machinery. Thus, Nav1.6 appears to be
the predominant Nav localized to axonal and dendritic compartments, thereby providing
exquisite control over input-output properties of neurons.

2.4. Unique Biophysical Properties

Nav1.6 displays unique biophysical properties that enable the channel to exert pow-
erful tuning capabilities of neuronal signals. The first functional characterizations of
Nav1.6 α subunits in heterologous cells revealed that Nav1.6 currents inactivated faster
than other Nav isoforms and displayed distinct sodium currents, including persistent
and resurgent currents [24,79,80]. While fast-inactivating transient sodium currents are
traditionally described as producing the rising phase of the AP [81], Navs can also give
rise to a noncanonical subtype of non-inactivating sodium currents termed persistent
sodium current [24,29,82,83] (Figure 3A). In cerebral and cerebellar neurons, persistent
current is predominantly generated by Nav1.6 and has been reported to be approximately
five-fold higher than that generated by Nav1.2 [84]. Although these currents are typi-
cally small (0.5–2% of peak amplitude; [85]), when summated persistent sodium currents
can amplify subthreshold neuronal inputs under physiological conditions [54,77]. Conse-
quently, persistent sodium current has been shown by modeling and electrophysiology
studies to lower the threshold for AP initiation and mediate repetitive AP firing in neu-
rons [80,83,86]. Additionally, elevated persistent currents have been shown to increase the
likelihood of premature firing in neurons [87] and can undergo extensive regulation by
various protein-protein interactions and PTMs [11,88,89]. The physiological importance
of persistent currents is highlighted by mutational studies that either decrease or increase
Nav1.6 persistent current generation [79,80,87,90–92]. For example, while cerebellar Purk-
inje neurons isolated from Scn8a null mice display a 35% decrease in the transient sodium
current, they display an even larger 70% reduction in the persistent current in addition to
reduced repetitive firing capabilities compared to WT littermates [80]. Conversely, trans-
genic mice harboring mutations that increase persistent Nav1.6 sodium current exhibit
neuronal hyperexcitability, spontaneous seizure activity, and even sudden unexplained
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death [87,91,92]. Thus, persistent currents generated by Nav1.6 can significantly impact
the initiation and propagation of APs in synaptic transmission [87,90,93–95].
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Figure 3. Persistent and resurgent sodium currents. (A) Schematic of persistent sodium current
traversing the channel due to incomplete, or impaired, inactivation. (B) Resurgent sodium current
schematic of channel conformations that have undergone open channel block (B, blocking particle;
I, inactivation particle). C, closed. O, open. B, block. I, inactivated. Figure was created with
BioRender.com.

Nav1.6 also displays a unique resurgent current [96]; a distinct subtype of sodium
current that is a voltage- and time-dependent property of Nav1.6 and occurs after depo-
larization at intermediate repolarizing potentials to elicit a small, transient current [97]
(Figure 3B). Specifically, resurgent currents occur after depolarization and channel open-
ing in which a subset of channels can undergo a blocked state that is faster than and
distinct from traditional fast inactivation. While the endogenous blocking particle may
vary between neuronal subtypes, β sodium channel subunits are postulated to be key
orchestrators in the generation of resurgent current [88,98–102]. Upon repolarization, the
blocking particle unbinds, subsequently allowing for a resurgence of transient sodium
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current through the pore [98]. First described in cerebellar Purkinje neurons [79,80], resur-
gent currents are thought to contribute to spontaneous firing and multi-peaked APs. In
these studies, cultures from Scn8a null mice displayed dramatically reduced resurgent
currents and attenuated repetitive AP firing in cerebellar Purkinje neurons. Modeling and
electrophysiology studies also demonstrate the importance of resurgent currents in neu-
ronal physiology [26,91,100,101,103], revealing that aberrant resurgent current generation
by Nav1.6 contributes to altered neuronal excitability. Together, these reports suggest that
Nav1.6 is largely responsible for the unique sodium currents necessary for repetitive AP
firing in neurons.

Apart from the channel’s distinct sodium current properties, Nav1.6 α subunits are
also known to exhibit fast activating and fast inactivating kinetics. Additionally, Nav1.6 is
known to display a hyperpolarized shift in the voltage-dependence of activation compared
to other neuronal Navs [24,29], indicating that Nav1.6 is activated earlier during depolar-
ization. As previously mentioned, Nav1.6 is highly concentrated at the AIS in neurons and
is thought to determine firing threshold [43,50]. In cultured hippocampal neurons of Scn8a
null mice, there is a 5 mV depolarizing shift in the voltage-dependence of activation in
addition to a 60% and 75% reduction in persistent and resurgent current [49]. Furthermore,
neurons isolated from these mice appear to display an 8 mV depolarizing shift in the
spike threshold, making the cells less excitable. Additional studies have demonstrated
that the activation threshold in the distal AIS where Nav1.6 concentrates is hyperpolarized
by approximately 12 mV compared to the proximal AIS near the soma (−55 mV distal,
−43 mV proximal [43]), consistent with a role for Nav1.6 in lowering the threshold for AP
initiation. In total, the unique biophysical characteristics and subcellular localization of
Nav1.6 provide flexible and complex determinants for controlling neuronal excitability.

2.5. Pathophysiology

As a critical driver of APs in neurons, it is no surprise that dysfunction in Nav1.6 may
lead to aberrant neuronal activity. Mutations in Nav1.6 are often associated with various
neuropsychiatric disorders characterized by hyperexcitability, such as pain, epilepsy, and
other neurodevelopmental disorders [14,27,92,104–106]. The role of Nav1.6 in human dis-
ease was first examined in patients displaying ataxia, dystonia, tremor, and intellectual dis-
ability, phenotypes that closely resembled the defects in Scn8a mutant mice [21,90,107,108].
However, it was not until 2012 that the first de novo mutation (N1768D) was discovered
in Nav1.6 using whole genome sequencing of a child with severe early-onset epileptic
encephalopathy, thus directly linking channel dysfunction to pathological phenotypes [87].
Notably, Nav channel dysfunction has been increasingly linked to pathogenic changes
that contribute to seizure onset in epilepsy; a debilitating neurological disorder that affects
approximately 1% of the world population [109]. Over 150 distinct mutations in the SCN8A
gene have since been identified in patients with epilepsy and account for up to 1% of epilep-
sies [105]. Interestingly, the majority of Nav1.6 mutations that have been characterized
display gain-of-function effects on channel biophysical properties, including premature
activation, incomplete inactivation, and increased transient, persistent, and resurgent
currents; characteristics that can contribute to hyperexcitability and increased neuronal
activity [27,87,91,103–105,110,111]. However, loss-of-function mutations in Nav1.6 do exist
and are thought to contribute to intellectual disability [27,107].

Unfortunately, a disproportionate number of SCN8A-associated epilepsies remain
refractory to antiepileptic treatments [27,109]. Because of high sequence homology between
Nav isoforms, designing Nav1.6-selective drugs remains a challenge. One of the first Nav1.6-
selective inhibitors, XEN901, has been recently reported to inhibit Nav1.6 by binding to the
channel’s voltage sensor, thus inhibiting its recovery from inactivation [112]. While XEN901
represents a promising Nav1.6-selective drug, this compound has only gone through Phase
I clinical trials and is still in development [113]. Interestingly, several compounds exist
that have been shown to selectively target pathological currents produced by Nav1.6.
For instance, cannabidiol and GS967 (otherwise known as Prax330) have been shown to
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preferentially reduce aberrant persistent and resurgent currents over transient sodium
currents, however these compounds do not appear to be selective for Nav1.6 and can
target currents in other isoforms, like Nav1.2 [91,114–116]. More recently, anti-epileptic
compound screens in zebrafish models of epilepsy revealed two novel blocking compounds,
MV1312 and MV1369 [117]. Although MV1312 showed a 5–6 fold selectivity of Nav1.6
over Nav1.1–Nav1.7, this compound displays a comparable blocking affinity for Nav1.8, a
major PNS isoform involved in pain sensation. Similarly, while M1369 also showed higher
selectivity for Nav1.6, this compound also blocked Nav1.2. Thus, identifying alternative
molecular determinants, such as those involved in isoform-specific Nav modulation, may
provide promising mechanisms for targeting SCN8A-associated pathologies.

In addition to mutations in the SCN8A gene, non-genetic modifications in Nav1.6
expression and function may also contribute to excitability disorders, such as neuropathic
pain [31,118,119], autism-spectrum disorders [106,120], ischemia [121], and stress-induced
disorders [122,123] in addition to epilepsy [12,27,124]. Importantly, changes in Nav1.6
expression have been linked to non-genetic models of acquired epilepsy, in which seizures
are induced by transient brain insult or chemoconvulsants [124,125]. Following seizure
onset, Nav1.6 expression and persistent current have been reported to increase within
hippocampal regions [124,125], whereas reduction in Nav1.6 activity has been shown to
decrease seizure susceptibility [126–128], suggesting an early role for Nav1.6 in the devel-
opment of seizures. Indeed, a recent study has also demonstrated that reducing the SCN8A
transcript by 25–50% can delay seizure onset in SCN8A models of epilepsy [129], indicating
that a general reduction in Nav1.6 activity may reduce seizure susceptibility. Notably,
many of the pathological changes in Nav1.6 function and expression are significantly in-
fluenced by various intracellular mediators including second messengers, protein-protein
interactions, and PTMs. Therefore, it is critical to understand the extensive regulatory land-
scape contributing to Nav1.6 modulation and how these processes may impact neuronal
excitability.

3. Nav1.6 Regulation by Protein-Protein Interactions

Sodium channels, including Nav1.6, are subject to extensive regulation by various
auxiliary proteins and second messengers. These regulatory processes are quite powerful,
displaying developmental, spatial, and temporal specificity which can be mediated by
many diverse stimuli and signaling pathways. Here we will highlight several protein-
protein interactions by which Nav1.6 is regulated and how they contribute to neuronal
function.

3.1. Sodium Channel β Subunits

Sodium channel β subunits (β1–β4) are small single-transmembrane auxiliary pro-
teins that can function as cell-adhesion molecules and modulate Nav surface expression
and function [130]. These subunits interact with Nav α subunits non-covalently (β1 and
β3) and through covalent disulfide bonds (β2 and β4) [1]. Notably, several studies have
implicated β subunit regulation of Nav1.6 in neuronal function. Studies of β1 null mice
(Scn1b−/−) indicate that the interaction between β1 and Nav1.6 is important for Nav1.6
function at the AIS and for neurite outgrowth [131]. Nav1.6-expressing cerebellar neu-
rons of β1 null mice also display striking reductions in resurgent sodium current [131].
Moreover, the β4 subunit has also been implicated in the generation of Nav1.6-mediated
resurgent current in Purkinje and DRG neurons [99,101,132]. These reports suggest that
the C-terminal portion of β subunits may act as an open channel blocker to mediate Nav1.6
resurgent current. Indeed, intracellular application of a peptide mimicking this sequence,
amino acids 154–167 of the β4 subunit, has been shown to recapitulate resurgent currents
in heterologous expression systems lacking endogenous open channel blockers [99,100].
Interestingly, the co-expression of Nav α subunits with the full-length β4 subunit is not suf-
ficient to produce resurgent current in heterologous expression systems [84,132], indicating
that other modulatory accessory proteins, or perhaps cellular background, over-ride this
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function. To this end, several studies have demonstrated that various PTMs on β subunits
impact β subunit interactions with Nav α subunits. For instance, phosphorylation and
palmitoylation have both been implicated in β subunit regulatory properties [133,134] and
suggest a complex crosstalk between Nav auxiliary proteins and PTMs on Nav α subunit
function.

3.2. Fibroblast Growth Factor Homologous Factors

Fibroblast growth factor homologous factors (FHF1-4 also known as FGF11-14) are
a family of intracellular auxiliary proteins that, contrary to their FGF counterpart, are
not secreted and do not directly stimulate FGF receptors [135–137]. While these signal-
ing molecules have multiple interacting partners to modulate various cellular param-
eters [136–138], FHFs can also bind to the C-terminus of Nav channel α subunits and
influence both current density and gating properties [66,139–143]. Each member of the FHF
family has at least two splice variants (A and B) with distinct N-terminal sequences [144],
and their interaction with Navs produce isoform-specific changes in channel function. For
example, FHF4B, which contains a unique 69 amino acid N-terminus compared to other
FHFs [144,145], suppresses Nav1.6 sodium currents and may regulate localization of the
channel to the AIS in neurons [146,147], whereas FHF4A has no effect [146]. Several studies
have also shown that FHF2A and FHF2B interactions with Nav1.6 differentially regulate
channel activity. FHF2B has been shown to increase Nav1.6 current density, produce a de-
polarizing shift in channel availability, and positively regulate resurgent currents [102,148].
In contrast, FHF2A binding to Nav1.6 has been shown to negatively regulate resurgent
current, enhance long-term inactivation, slow the kinetics of the recovery from inactiva-
tion, and produce an even larger depolarizing shift in availability in addition to increased
current density [102,146,149].

Differential modulation of Nav1.6 resurgent currents by FHFs has been identified as a
potential mechanism underlying nociception and pain. Painful sensations often arise from
increased excitability of peripheral dorsal root ganglia (DRG) neurons which are known to
express Nav1.6-mediated resurgent currents [96]. In DRG neurons isolated from animals
with radicular pain, FHF2A expression has been shown to be acutely downregulated fol-
lowing inflammation, whereas FHF2B expression is upregulated [102]. Notably, enhanced
expression of FHF2B in pain models has been shown to contribute to increased resurgent
currents in DRG neurons and mediate hyperexcitability. Interestingly, application of a
peptide that mimics the FHF2A long-term inactivation particle, which negatively regulates
resurgent currents, was found to reduce hyperexcitability associated with pain [102]. Im-
portantly, these studies demonstrate that FHF-Nav1.6 interactions dynamically contribute
to altered neuronal excitability associated with nociception and pain.

3.3. Ca2+ and Calmodulin

Intracellular Ca2+ is a ubiquitous second messenger critical to many aspects of neu-
ronal function. A rapid change in the internal Ca2+ concentration (from 50–100 nM up to
~20 µM) is coupled to neuronal depolarization and is central to synaptic transmission [150].
Detection of this Ca2+ concentration change depends on Ca2+-binding proteins capable
of translating the signal. To this end, a predominant intracellular receptor for Ca2+ is
calmodulin (CaM), a highly conserved Ca2+ sensor that provides complex opportunities
to functionally modulate target proteins and provide feedback for membrane excitability.
The refined ability for CaM to sense Ca2+ is reflected in its unique structure [151–154]. This
~17 kDa protein consists of two lobes, an N-terminal (N-lobe) and C-terminal (C-lobe) lobe,
and are connected by a flexible linker. Each lobe has two Ca2+-binding EF-hands, which
can coordinate binding of one Ca2+ ion for a total of four Ca2+ ions. Interestingly, the C-lobe
of CaM binds Ca2+ with a six-time higher affinity than the N-lobe, thereby providing CaM
with the ability to sense Ca2+ across a dynamic concentration range [155]. Moreover, CaM
undergoes a conformational change following Ca2+ binding that can increase or decrease
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the affinity of CaM to its target protein [156,157], thus allowing CaM to display a wide
range of binding and regulatory properties.

Interestingly, Ca2+ regulation of Navs was suspected soon after the primary amino
acid sequence was determined, noting that the C-terminus of Navs contained features that
resembled an EF-hand Ca2+ binding motif [158]. Subsequent yeast two hybrid screens
using the Nav CTD as bait identified CaM as a binding partner [159], leading to the
identification of two CaM binding motifs in the C-terminus of Navs: (1) an “IQ” motif
([I/L/V]QXXXRGXXX[R/K]) [160] and (2) a basic amphipathic α helix, both C-terminal to
the EF-hand motif. The presence of both a potential Ca2+ binding site and CaM binding sites
in the Nav CTD suggested that Nav α subunits may be sensitive to both Ca2+-dependent
and –independent modes of regulation. However, the ability for Ca2+ to directly bind the
EF-hand motif of Navs and modulate channel activity remains controversial [161–164].
Studies suggest that Ca2+-dependent regulation of channel activity instead occurs through
associated CaM [164,165] and that the structural conformation of the EF-hand motif may
dictate the binding mode of CaM to the nearby IQ motif [166]. Indeed, several studies have
demonstrated that CaM is able to bind to the IQ motif and modulate current density and
gating properties of various Nav isoforms in an isoform-dependent manner and revealed
Ca2+-dependent and -independent modes of Nav regulation [161,167–173]. Notably, Nav1.6
displays a higher affinity toward Ca2+/CaM than apo-CaM (Ca2+-free) binding at the chan-
nel’s IQ motif (amino acids 1902–1912; [174]), suggesting that Nav1.6 may be differentially
modulated by CaM depending on intracellular Ca2+. To this end, Ca2+/CaM binding has
been shown to delay Nav1.6 channel inactivation by up to 50%, whereas apo-CaM binding
enhances the rate of inactivation [168]. Incidentally, the Ca2+/CaM-dependent slowing
of inactivation kinetics could potentially prolong AP duration by enhancing neurotrans-
mitter release at the synapse, thus contributing to increased excitability. Furthermore,
apo-CaM has also been shown to differentially modulate Nav1.6 sodium currents, reveal-
ing reduced transient and persistent currents with decreased and increased CaM binding,
respectively [89,168]. These data reveal that Navs can be dynamically modulated via Ca2+-
dependent and -independent mechanisms. Recent studies suggest that CaM also interacts
with the N-terminal domain of Nav1.5, suggesting that multiple CaM binding domains
may shape the Nav response to Ca2+ signaling [175]. Whether CaM binding to the channel
may be regulated by PTMs or serve as an intermediate effector between Nav1.6 and down-
stream Ca2+/CaM-dependent targets, like the Ca2+/calmodulin-dependent protein kinase
II (CaMKII), remains to be determined. Intriguingly, CaM interactions with the cardiac
isoform Nav1.5 may be influenced by CaMKII phosphorylation of the channel. Specifically,
CaM binding to Nav1.5 has been shown to decrease following CaMKII phosphorylation
at S1938 and S1989 within the CTD of the channel [176]. This suggests that the temporal
order of phosphorylation events on the cardiac isoform Nav1.5 could potentially act as a
switch to specify regulation. However, such a complex mechanism for CaMKII-dependent
regulation of CaM binding to Nav1.6 has not yet been identified.

4. Post-Translational Regulation of Nav1.6

In addition to being regulated by various protein-protein interactions, Nav1.6 is
also extensively modulated by post-translational modifications (PTM). PTMs are protein
modifications that occur after mRNA translation into a protein and are critical for protein
maturation and function. These processes can be mediated by many diverse enzymes
and signaling pathways, resulting in an attachment of a biochemical group (methylation,
acetylation, phosphorylation), fatty acids (palmitoylation), polypeptide (ubiquitination,
SUMOylation), or more complex molecules (glycosylation) that can produce either stable
or reversible changes to a protein. Importantly, PTMs display precise coupling between
known interaction sites of the modifying enzyme and a given amino acid sequence on
the target/substrate protein, resulting in highly specific spatial and temporal control that
allows neurons to fine tune the properties of a protein, like Nav1.6, depending on the
cellular environment and contribute to the regulation of neuronal excitability.
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4.1. Glycosylation

A common PTM of transmembrane proteins is glycosylation, which is the attach-
ment of glycans (carbohydrate) to a protein. Early studies indicated that glycosylation
of Navs, particularly Nav1.2, Nav1.4, Nav1.5, Nav1.6, and Nav1.7, is a crucial step for the
biosynthesis, folding, and trafficking of sodium channels [177–183]. Nav gating properties
can also be influenced by glycosylation, altering the voltage-dependence of activation
and inactivation in addition to recovery kinetics [184–187]. Mice with a single amino
acid deletion within DIVS6 of Nav1.6 (Ile1750del) exhibit defects in glycosylation due to
alterations at an adjacent glycosylation site, resulting in chronic movement disorders due
to reduced channel activity and defective localization at the AIS and nodes [183]. There-
fore, glycosylation is an important modification influencing the subcellular localization of
Nav1.6 and may contribute to alterations in neuronal excitability. Future studies will be
useful to determine whether similar defects in glycosylation contribute toward pathogenic
mechanisms associated with patient mutations.

4.2. Uniquitination

Ubiquitination is a powerful PTM for modulating trafficking and cell surface expres-
sion of Navs. Mediated by ubiquitin ligases, this process refers to the covalent addition of
an ubiquitin protein, a ~8.5 kDa polypeptide of 76 amino acids, to the lysine residues of a
targeted protein [188]. Proteins destined for internalization through this pathway are either
degraded or recycled [189–191], and in some instances can alter protein function. Most
Navs possess a PY motif (PPXY) usually found in the C-terminus and/or L1 of channels,
with the exception of Nav1.4 and Nav1.9, which allow ubiquitin ligases to bind [192,193].
Nav1.6 contains multiple PY motifs and undergoes ubiquitin-dependent modulation. In
mouse hippocampal neurons, p38 phosphorylation of Nav1.6 promotes Nedd4-induced
ubiquitination and internalization of the channel [122,194]. Specifically, the ubiquitin ligase
Nedd4-2 has been shown to interact with two PY motifs on Nav1.6; the Pro-Ser-Tyr1945

motif in the CTD and the Pro-Gly-Ser553-Pro motif in L1 of the channel [194]. Both motifs
were found to be necessary for Nav1.6 modulation by p38, which is a mitogen activated
protein kinase (MAPK) implicated in relaying stress responses [194,195]. Furthermore,
abrogating Nedd4-2 interactions with Nav1.6 was found to block channel internalization
and resulted in stress-mediated increases in Nav1.6 currents [194]. Together, these studies
highlight a complex interaction between p38 MAPK phosphorylation and ubiquitination
of Nav1.6 and suggest that crosstalk between these different PTMs may limit neuronal
excitability in response to stress-induced stimuli.

4.3. Palmitoylation

S-palmitoylation is a reversible PTM that involves the addition of a 16-carbon palmitic
fatty acid chain to the thiol group of an intracellular cysteine of the substrate protein
through thioester linkage. Palmitoylation is known to dynamically regulate diverse
proteins, impacting cell surface expression, trafficking, structural conformation, protein-
protein interactions, and function [178,196,197]. Palmitoylation also plays crucial roles in
ion channel regulation and is involved in various phases of the ion channel life cycle, in-
cluding synthesis, maturation, trafficking, subcellular localization, and internalization [196].
The first characterization of S-palmitoylation of voltage-gated sodium channels identified
this process to regulate the early stages of protein biosynthesis [178]. Recently, Nav1.6 was
identified as a novel target for regulation by S-palmitoylation [198]. This study identified
two palmitoylation sites (C1169, C1170) in L2 of the channel that appear to be responsible
for modulating voltage-dependence of inactivation, and one site in the C-terminus (C1978)
exclusive to Nav1.6 that enhances Nav1.6 current density [198]. Further characterization of
these sites revealed a novel role of Nav1.6 palmitoylation in regulating neuronal excitabil-
ity [198], showing that the ablation of C1169, C1170, and C1978 results in a substantial
reduction in Nav1.6-mediated excitability of DRG neurons, indicating that targeting Nav1.6
palmitoylation may represent a potentially useful strategy to reduce neuronal excitability.
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4.4. Phosphorylation

Phosphorylation is a crucial PTM that affects up to 30% of proteins in cells at any
given time [199]. Catalyzed by protein kinases, this PTM is characterized by the reversible
covalent addition of a negatively charged (−2) phosphate group onto a serine, threonine,
or tyrosine residue of a target protein:

MgATP1− + protein-O:H→ protein-O:PO3
2− + MgADP + H+.

Phosphorylation is perhaps the most extensively studied Nav PTM and has been
shown to target multiple regions of sodium channels [11,16–19]. Nav phosphorylation
is carried out by diverse kinases that can modulate various aspects of channel function.
This kinase diversity represents multiple signaling pathways that enable Nav modulation
in concert with other pathways, or distinctively by different second messengers, thus
providing a trove of potential regulation of neuronal activity. For example, sodium channels
from the CNS (Nav1.1 and Nav1.2), PNS (Nav1.7 and Nav1.8), cardiac tissue (Nav1.5),
and skeletal muscle (Nav1.4) are modulated by the cAMP-dependent protein kinase PKA
and/or PKC, which can be activated by Ca2+/lipid hydrolysis, producing differential effects
on channel activity [13,200]. While PKC appears to consistently attenuate sodium currents
across most isoforms [201–206], the effects of PKA phosphorylation are more diverse,
resulting in attenuated tetrodotoxin-sensitive (TTX-S) sodium currents [202,207–209] while
potentiating TTX-resistant (TTX-R) sodium currents [202,210–212], and producing shifts in
voltage-dependent gating properties. The PKA phospho-sites S573 and S687, and the PKC
phospho-site S576, for example, have been shown to contribute to the functional modulation
of Nav1.2 sodium currents [206,208,213,214]. Interestingly, despite carrying homologous
PKA and PKC phospho-sites, Nav1.6 appears to be largely resistant to modulation by these
kinases in neurons [84], suggesting that Nav1.6 modulation may be targeted through a
different signaling pathway.

To this end, Nav1.6 has been recently identified as a target for modulation by CaMKII
(Figure 4) [11]. CaMKII is a multifunctional Ser/Thr protein kinase highly concentrated
in the brain and is implicated in the physiological and pathophysiological regulation of
excitability [215]. Acute CaMKII inhibition has been shown to produce loss-of-function
effects in Nav1.6 activity, including decreased transient and persistent Nav1.6 sodium
currents in Purkinje neurons in addition to a depolarized shift in the voltage-dependence
of activation in cells heterologously expressing Nav1.6. Further modeling the effects
of CaMKII inhibition on Nav1.6 activity in Purkinje neurons has shown significantly
reduced spontaneous and evoked excitability, suggesting that this mechanism may be
important in regulating neuronal function [11]. Importantly, CaMKII modulation of Nav1.6
is mediated by phosphorylation of the channel at two distinct sites in the L1 region,
including S561 and T642. This is consistent with previous reports identifying L1 as a
hotspot for Nav PTMs and regulation [16,18,19,216–218]. Notably, the CaMKII-dependent
phosphorylation sites S561 and T642 in Nav1.6 display homologous sites of regulation in
other Nav isoforms (Figure 5). To date, Nav1.6 appears largely resistant to modulation
by PKA [84]. While phosphorylation of S573 in Nav1.2 has been shown to mediate PKA-
dependent reductions in Nav1.2 sodium currents [208], phosphorylation of S561 in Nav1.6
has been implicated in CaMKII-dependent modulation of the voltage-dependence of
activation [11]. Moreover, CaMKII phosphorylation of Nav1.6 at T642 has been implicated
in sodium current regulation, while CaMKII phosphorylation at the equivalent T594 site in
Nav1.5 has been shown to regulate channel gating properties [11,18]. Together, these studies
stress the intricacies underlying isoform-selectivity of CaMKII modulation and further
highlight the diverse functional responses to phosphorylation of Navs at homologous sites
by the same kinase or distinct signaling pathways. The possibility for CaMKII-dependent
modulation of Nav1.6 is a fascinating nexus between a kinase implicated in synaptic
plasticity and a channel critical for the initiation and propagation of APs. Additional
studies investigating this relationship will be important to determine how this mechanism
regulates neuronal excitability in physiology and disease.
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As discussed above, Nav1.6 is also modulated by p38 mitogen-activated protein kinase
(MAPK). This kinase is classically linked to environmental stressors, including cell injury
and hypoxia. Several TTX-S (Nav1.6 and Nav1.7) and TTX-R (Nav1.8 and Nav1.9) Navs can
be subject to phosphorylation by these pathways and modulate aspects of their function
and surface expression [119]. Phosphorylation of Nav1.6 by activated p38 occurs within
L1, specifically at S553, which results in a reduction of Nav1.6 current [122]. As previously
mentioned, p38 phosphorylation of Nav1.6 promotes Nedd4-induced ubiquitination of
the channel to reduce Nav1.6 sodium current [194]. Two other major kinases included in
the MAPK family are c-Jun N-terminal kinases (JNKs) and extracellular signal-regulated
kinases (ERKs). Direct modulation of Nav1.6 by either of these kinases has yet to be
identified; however, indirect modulation of Nav1.6 by JNK has been observed and is
thought to contribute to Alzheimer’s disease (AD) pathogenesis [219]. In models of AD,
the amyloid precursor protein (APP) has been shown to upregulate Nav1.6 expression
and activity, which may contribute to membrane depolarization and increased spike
frequency, thereby resulting in neuronal hyperexcitability [219–222]. The reciprocal has also
been shown, whereby APP knockdown can reduce Nav1.6 expression and activity [222].
Interestingly, the ability of APP to modulate Nav1.6 sodium currents is mediated by
activation of JNK, which in turn enables APP to upregulate Nav1.6 cell surface expression
and enhance sodium current [219]. Together, these studies indicate that Nav1.6 modulation
through MAPK pathways is complex and may be a critical player in pathophysiological
neuronal excitability.
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Several studies have also identified a role for glycogen synthase kinase-3 (GSK3)
in regulating Nav1.6 activity. Beyond regulation of glycogen metabolism, this kinase
plays important roles in the regulation of neuronal development and function, including
synaptic plasticity and neuronal excitability [223–225]. A previous report demonstrated
that pharmacological inhibition and genetic silencing of GSK3β produces loss-of-function
effects on channel activity, resulting in decreased transient and persistent Nav1.6 sodium
currents in addition to a leftward shift in channel availability [226]. In this work it was
shown that GSK3β phosphorylates T1936 in the Nav1.6 CTD and that the interaction is
important in regulating excitability of medium spiny neurons in the nucleus accumbens,
implicating this mechanism in the dopamine reward pathway. A recent study suggests that
FHF4 binding with the Nav1.6 CTD may be regulated by GSK3β phosphorylation of either
FHF4, Nav1.6, or potentially both [227,228]. In particular, inhibiting GSK3β was found
to decrease FHF4:Nav1.6 complex formation, which subsequently suppressed neuronal
excitability and suggests that multiplexed signaling pathways are major determinants
underlying Nav1.6 regulation and neuronal function [228–230].

5. Conclusions

Significant progress has been made toward understanding the intricate regulation of
Nav1.6 in neuronal function, however the picture is far from complete. Navs undergo re-
markably complex and extensive modes of regulation by many different auxiliary proteins
and post-translational mechanisms, each of which are subject to regulation themselves
by diverse signaling pathways. Although this review examined several aspects of Nav1.6
regulation, it is likely that Nav1.6 is sensitive to additional protein-protein interactions and
PTMs that have yet to be identified. Furthermore, considerable crosstalk occurs between
different modes of regulation, making it difficult to predict how a particular ensemble
of modifications may impact channel properties and neuronal excitability. Overall, the
studies reviewed here expand our current knowledge of Nav1.6 regulation and highlight
important modulatory mechanisms mediating changes in neuronal excitability associated
with health and disease.
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