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Abstract

Background: Thailand is currently experiencing one of its worst dengue outbreaks in decades. As in most countries where
this disease is endemic, dengue control in Thailand is largely reliant on the use of insecticides targeting both immature and
adult stages of the Aedes mosquito, with the organophosphate insecticide, temephos, being the insecticide of choice for
attacking the mosquito larvae. Resistance to temephos was first detected in Aedes aegypti larvae in Thailand approximately
25 years ago but the mechanism responsible for this resistance has not been determined.

Principal Findings: Bioassays on Ae. aegypti larvae from Thailand detected temephos resistance ratios ranging from 3.5 fold
in Chiang Mai to nearly 10 fold in Nakhon Sawan (NS) province. Synergist and biochemical assays suggested a role for
increased carboxylesterase (CCE) activities in conferring temephos resistance in the NS population and microarray analysis
revealed that the CCE gene, CCEae3a, was upregulated more than 60 fold in the NS population compared to the susceptible
population. Upregulation of CCEae3a was shown to be partially due to gene duplication. Another CCE gene, CCEae6a, was
also highly regulated in both comparisons. Sequencing and in silico structure prediction of CCEae3a showed that several
amino acid polymorphisms in the NS population may also play a role in the increased resistance phenotype.

Significance: Carboxylesterases have previously been implicated in conferring temephos resistance in Ae aegypti but the
specific member(s) of this family responsible for this phenotype have not been identified. The identification of a strong
candidate is an important step in the development of new molecular diagnostic tools for management of temephos
resistant populations and thus improved control of dengue.
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Introduction

Aedes aegypti is a major vector of dengue fever and yellow fever

viruses. Despite an effective vaccine, there are over 200,000 cases

of yellow fever each year (WHO source, 2012). With no vaccine

currently available for dengue, and no specific drug treatment,

approximately 40% of the world’s population is at risk of dengue

fever and there may be as many as 390 million dengue infections

per year [1].

Dengue is endemic in Thailand with the most severe

manifestation of dengue, dengue haemorrhagic fever first reported

in 1958 [2]. The number of dengue cases has been steadily

increasing since 2009 with over 81,000 cases already reported in

the first 7 months of 2013 and, predictions of between 100,000 and

120,000 cases for the whole year (Department of Disease Control,

Thailand Ministry of Public Health, http://www.ddc.moph.go.

th/).

Maintaining Ae. aegypti populations at low levels is crucial for

dengue control in Thailand [3]. Environmental management

including educational campaigns to remove unnecessary sources of

standing water, coupled with covering of permanent water storage

vesicles, is recommended to help reduce Aedes populations [4] but

this is supplemented by the use of chemical insecticides. In

Thailand, adult mosquitoes are predominately targeted with

pyrethroid insecticides [5], mainly through the distribution of

pyrethroid impregnated materials and the Ultra-Low-Volume

(ULV) applications of pyrethroids [6]. Larval control primarily

utilises the organophosphate insecticide, temephos, (Department

of Disease Control, Thailand Ministry of Public Health) despite

the known existence of temephos resistant populations of Ae. aegypti

in many regions of Thailand [7,8].

An understanding of insecticide resistance mechanisms is

important for the development of tools and practices that can

improve resistance management and thereby the sustainability of

control interventions. In many insect species, organophosphate

and carbamate resistance is caused by amino acid substitutions in

the target site, acetylcholinesterase (ace-1), which reduces the

sensitivity of this enzyme to the insecticide. The most common

ace-1 substitution in mosquitoes occurs at amino acid residue 119

where the wild type glycine is substituted to serine [9]. However, in
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Ae aegypti, the codon usage at Glycine 119 makes this substitution

very unlikely to occur [10]. Indeed, despite numerous reports of

temephos resistance in Ae aegypti populations across the tropics,

including at least one report of insensitive AchE [11], no target site

mutations linked to organophosphate resistance have been

detected to date. Organophosphate resistance can also be caused

by elevated levels of esterase enzymes that can both act to

sequester the insecticide, reducing the amount of active insecticide

that reaches the target site [11], or to increase the rate of turnover

of insecticide, by amino acid substitutions in the coding sequences

of one or more esterases [12].

Elevated CCE activity has been associated with temephos

resistance in several populations of Ae aegypti [13,14,15,16,17]. A

small number of studies [16,17,18] have used microarray based

approaches to detect genes associated with the resistance

phenotype. Although several transcripts of detoxification genes

were found to be evelated in temephos resistant populations

(including CCEae3a, CYP6Z8 and CYP9M9), a single clear

candidate did not emerge from these studies. The current study

provides evidence for elevated CCE activity in a temephos

resistant population from Thailand and identifies a clear candidate

gene that shows both elevated expression and amino acid

polymorphisms in temephos resistant populations. Additional

genes, potentially involved in temephos and/or permethrin

resistance in Ae aegypti larvae are identified and discussed.

Materials and Methods

Study sites
Mosquito eggs were collected from four sites of Thailand

including Chiang Mai (North, 18u479250N 98u59940E, 31st

October 2011), Nakhon Sawan (central, site 1 : 15u209450N

100u299410E, 5th March 2012, site 2: 15u529520N 100u18990E,

27th March 2012) and Phatthalung (south, 7u37960N 100u49240E,

2th September 2011) (Figure S1). They were chosen based on

previous reports of temephos resistance in these districts [8,19,20].

Aedes aegypti collections
Aedes aegypti eggs from Phatthalung and Chiang Mai were

collected using modified ovitraps by entomologists from the

Department of Disease Control (Ministry of Public Health,

Thailand). Eggs from Nakhon Sawan sites were collected by

entomologists from office of Disease Prevention & Control 8

(DPC8, Nakhon Sawan). The modified ovitraps consisted of a dark

plastic cup with a piece of filter paper over the inner part of the

cup and filled with tap water. They were placed in the resting sites

of Ae aegypti such as under sinks, beds, cupboards or any cool,

humid and dark areas in and around the house. Eggs were then

sent to the Liverpool School of Tropical Medicine (LSTM) where

they were hatched in distilled water and reared in standard

insectary conditions (temperature: 28+/21uC; relative humidity:

75+/25%; photoperiod: 12 hours day/night). An insecticide

susceptible laboratory colony, New Orleans (NO) strain was used

as control in the study. This population was originally collected in

the namesake city located in Louisiana, United States.

Insecticide susceptibility tests and synergist assays
Standard WHO larval bioassays were conducted to detect the

level of susceptibility to temephos [21]. Bioassays were done on

late 3rd/early 4th instar larvae using a range of seven temephos

(Pestanal, analytic standard, diluted in ethanol) concentrations.

Concentrations of insecticides were chosen in order to cover larval

mortality range (0–100%). Three replicates of 20 larvae were used

for each concentration and 1 ml ethanol was added in control

cups. Mortality was recorded after 24 hours of exposure. Larval

bioassays using permethrin were also performed to look for any

evidence of cross resistance between insecticide classes.

Synergist bioassays were performed on the populations showing

the highest temephos resistance levels using a cytochrome P450

inhibitor, piperonylbutoxide (PBO) at 0.3 ppm (piperonylbutoxide

90%, Sigma Aldrich, Inc., Italy), a glutathione S-transferase

inhibitor, diethyl maleate (DEM) at 1 ppm (diethyl maleate .

97.0% (GC), Sigma Aldrich Chemie GmbH, Austria) and a

carboxylesterase inhibitor, S,S,S-tributylphosphorotrithioate (DEF)

at 0.5 ppm (S.S.S-tributylphosphorotrithioate 98.1%, Chem service,

Inc., USA). Inhibitors were mixed with insecticide dilutions in

ethanol and 1 ml of the mixture was added to 99 ml of water

according to the protocol of [22]. Different concentrations of

synergists were previously tested in order to establish appropriate sub-

lethal concentrations [22]. PBO was also used as a synergist in

permethrin bioassays. To determine the LC50s and confidence

intervals data were analyzed using a Probit model on R software [23].

Measurement of carboxylesterase activities
Activity levels of a esterases and b esterases were measured in

the Nakhon Sawan 2 population (NS2), which showed the highest

resistance ratio to temephos, and in Phatthalung, the population

most susceptible to temephos and permethrin. Procedures were

based on mosquito-specific biochemical assay protocols

[24,25,26]. Briefly, 15 larvae from NS2 and Phatthalung were

individually homogenized in 3 mL of 0.01 M potassium phosphate

buffer (KPO4), ph 7.2 and 100 ml of each sample homogenate

were then transferred by triplicate to a 96-well microtiter plate.

Then, 100 ml of a/b naphthyl acetate (3 mM) were added to each

well, followed by 15 minute incubation at room temperature.

Finally, 100 ml of dianizidine (4 mM) were added, followed by

4 minute incubation, and then absorbance was read at a

wavelength of 540 nm. Absorbance values where normalized by

measuring protein content using a Bradford assay according to

manufacturer’s protocol (Sigma, St Louis, MO). Data significance

was compared using a Mann-Whitney test (N = 15).

RNA extractions and labeled cRNA synthesis
The most resistant population Nakhon Sawan 2 was chosen for

the microarray experiment. Phatthalung was used as susceptible

Author Summary

Temephos is the most important insecticide used in
larviciding campaigns to reduce the risk of dengue
transmission. This organophosphate insecticide has been
in use for over 50 years and resistance to this chemical has
been reported in Aedes aegypti populations from Latin
America, the Caribbean and from Asia. In other insect
species, organophosphate resistance is typically associated
with mutations in the target site, acetylcholinesterase, that
decrease the insect’s sensitivity to the insecticide, or
increases in the activity of one or more carboxylesterase
enzymes, either by overproduction and/or amino acid
substitutions, that reduce the amount of insecticide
reaching the target site. Neither of these mechanisms
has been previously characterised at the molecular level in
dengue vectors. Here we identify an Ae aegypti carbox-
ylesterase gene with expression levels and amino acid
sequence polymorphisms correlating with temephos
resistance in Thailand. This is a key step in the develop-
ment of tools to manage resistance in this mosquito
species.
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population because of its geographical proximity (Figure S1).

Three groups of early 4th instar larvae (15 larvae each) were used

for total RNA extractions: Phatthalung (P), Nakhon Sawan 2

unexposed (NS 2 Unexp) and Nakhon Sawan 2 larvae (NS 2 Exp)

which survived a temephos bioassay inducing 60% mortality

(24 hour exposure to 0.032 ppm temephos). Surviving larvae were

left to recover in clean water for 24 hours after exposure to reduce

the impact of short term gene induction on the transcriptomic

profile. The Arcturus Picopure RNA Extraction Kit (Arcturus,

California, USA) was used according to the manufacturer’s

protocol and 100 ng total RNA per biological replicate were

amplified and labelled with Cy-5 and Cy-3 dyes with the ‘Two

colors low input Quick Amp labeling kit’ (Agilent technologies,

Santa Clara, CA, USA) according to manufacturer’s instructions.

Labelled cRNA were purified with the Qiagen RNeasy kit

(Qiagen, Hilden, Germany). Quantification and quality assessment

of labeled cRNA were performed with the Nanodrop ND-1000

(Thermo Scientific, DE, USA) and the Agilent 2100 Bioanalyser

(Agilent Technologies).

Hybridizations, data acquisition and statistical analysis
Microarray hybridizations were performed with the 15 k Agilent

‘‘Aedes microarray’’ (ArrayExpress accession number A-MEXP-

1966), containing eight replicated arrays of 60-mers oligo-probes

representing 14,204 different Ae. aegypti transcripts from AaegL1.2

Vectorbase annotation and several control probes. For each

comparison, five hybridizations were performed including two

dye-swaps in which the Cy3 and Cy5 labels were swapped between

samples. After 17 h hybridization, non-specific probes were washed

off with the Agilent microarray hybridization kit according to

manufacturer’s instructions. Slides were scanned immediately with

an Agilent G2205B microarray scanner. Spot finding and signal

quantification for both dye channels were performed using the

Agilent Feature Extraction software (Agilent Technologies). Data

were then loaded into Genespring GX (Agilent Technologies) for

normalization and statistical analyses. For each population com-

parison, only transcripts flagged ‘present or marginal’ in four of five

hybridizations were used for further statistical analysis. Mean

transcription ratios were then submitted to a one sample Student’s t-

test (N = 3) against the baseline value of 1 (equal transcription level

in both populations) with Benjamini and Hochberg’s multiple

testing correction. For each selected population, transcripts showing

a .2 fold change in either direction and a t-test P-value lower than

P,0.01 after multiple testing correction were considered signifi-

cantly differentially transcribed compared to the susceptible

population. Descriptions and GO-terms of transcript-IDs were

extracted from VectorBase (www.vectorbase.org) using BIOMART

and completed with Blast2GO software (BioBam Bioinformatics

S.L. (Valencia, Spain)). GO term Enrichment analysis was

performed on the significant up-regulated genes found in both

comparisons ‘‘NS2 exp vs P’’ and ‘‘NS2 Unexp vs P’’ using

Blast2GO software and Fisher’s exact test with FDR,0.05

according to [27]. All microarray data were uploaded to

Arrayexpress (E-MTAB-1934, www.ebi.ac.uk/arrayexpress/).

Microarray data validation by RT-qPCR
Transcription levels of six genes (four P450s, one CCE and one

ABC transporter) found significantly differentially transcribed in at

least two comparisons were validated by reverse transcription

followed by real-time quantitative PCR (RT-qPCR) as described

in [28]. As a secondary control, the susceptible New-Orleans (NO)

population was included. Two micrograms of total RNA per

biological replicate were treated with DNAse I (Invitrogen,

Carlsbad, CA, USA) and used for cDNA synthesis with superscript

III and Oligo-dT20 primer (Invitrogen) according to manufactur-

er’s instructions and resulting cDNAs were diluted 50 fold. Real

time quantitative PCR reactions of 25 mL were performed on a

MX3005P qPCR machine (Agilent technologies, CA, USA) using

Brilliant III ultrafast SYBR green mastermix (Agilent technologies,

CA, USA), 0.3 mM of each primer and 5 mL of diluted cDNAs. A

melt curve analysis was performed to check for the unique

presence of the targeted PCR product. Quantification of

transcription level was performed according to the DDCt method

taking into account PCR efficiency [29] and using two

housekeeping genes for normalization: the ribosomal proteins L8

(AAEL000987) and S7 (AAEL009496). Results were expressed as

mean transcription ratio (695% confidence intervals) between

Nakhon Sawan 2 and the susceptible populations New Orleans

and Phatthalung. All primer sequences are included in supple-

mentary table S5.

CCEae3a gene copy number analysis
Three different groups of 4th instar larvae were used: P, NS2

unexposed and NS2 exposed mosquitoes. NS2 exposed mosquitoes

were survivors of a temephos bioassay inducing more than 80%

mortality after 24 hours. Genomic DNAs were extracted from 8

individual larvae per group using DNeasy Blood and Tissue Kit

according to manufacturer’s instructions (Qiagen, Hilden, Ger-

many) and were treated with RNAse A (Qiagen, Hilden, Germany)

to remove any RNA contaminants. DNA quantities were assessed

on a Nanodrop ND-1000 spectrophotometer. Quantitative PCR

reactions were performed as described above on CCEae3a gene

(same primers used above) with AAEL000987 (RPL8) and

AAEL012167 (Elongation factor) (see table S5 for primer sequences)

as housekeeping genes. The relative copy number fold-change was

calculated using the 22DDCt method.

CCEae3a cDNA sequencing
To identify any amino acid polymorphisms that might be

associated with temephos resistance, sequencing of CCEae3a

cDNA sequence was performed on Nakhon Sawan 2 larvae

which survived a concentration of temephos inducing 90%

mortality and on unexposed Phatthalung larvae. Total RNAs

from 10 individual larvae were extracted using Trizol according to

the manufacturer’s instructions (Invitrogen, Carlsbad, USA) and

total RNA quantities were assessed using a Nanodrop ND-1000

(Thermo Scientific). Genomic DNA contaminants were then

digested using DNase I (Invitrogen) and total RNAs were reverse

transcribed according to the same protocol used for qPCR

validation. Primers were designed (Table S1) to amplify the whole

CCEae3a sequence available on Vectorbase (AAEL005112-RA,

www.vectorbase.org). PCR amplification was carried using Phu-

sion High-Fidelity DNA Polymerase (Thermo Scientific) using the

following conditions: Initial denaturation at 98uC for 30 seconds

followed by 35 cycles of 10 sec denaturing at 98uC, 20 sec

annealing at 66uC and one minute extension at 72uC. Last

extension step 72uC last during 10 min. PCR products were

visualized on a 1% agarose gel and purified using a GeneJET Gel

Extraction Kit (Fermentas, Vilnius, Lithuania). The PCR products

were cloned into DH5 competent cells using pJET 1.2/blunt

Cloning Vector kit (Fermentas, Vilnius, Lithuania). Plasmids were

extracted using GeneJET Plasmid Miniprep Kit, (Fermentas) and

sequenced (Macrogen, Amsterdam, the Netherlands) using pJET

primers and two internal primers (Table S5).

In silico structure prediction of CCEae3a
The secondary structure and three-dimensional structure of the

different polymorphic variants of CCEae3a were predicted by the

Temephos Resistance in Aedes aegypti in Thailand
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Protein Homology/analogY Recognition Engine (PHYRE2)

(Structural Bioinformatics Group, Imperial College, London).

This method uses structural alignments of homologous proteins

of similar three-dimensional structure in the structural classifica-

tion of protein databases to obtain a structural equivalence of

residues. The top 20 highest scoring matches of the query to

known template structures are used to construct 3D model of the

query.

Results

Insecticides susceptibility tests and synergist assays
The Phatthalung (P) populations showed the lowest LC50 to

temephos and resistance ratios were calculated compared to this

population, and according to the standard laboratory susceptible

New Orleans (NO). NS 2 showed the highest resistance to

temephos (RR at LC50 = 5.9 –9.85 fold) followed by NS 1 (RR at

LC50 = 3.3–5.5 fold) and CM (RR at LC50 = 2.1–3.5 fold)

(Table 1). Larval bioassays using permethrin showed much higher

LC50s in both NS1 and NS2 populations compared to P (RR at

LC50 = 29.1 and 31 fold respectively) and intermediate LC50 in

the CM population (RR = 8.2 fold) (Table 1). Although permeth-

rin larval bioassays were not performed on a standard lab

susceptible strain in this study, two previous studies have reported

lab susceptible LC50 for permethrin as approximately

0.0007 ppm [8,30] which is similar to the 0.0005 value obtained

for the P population in the current study.

Synergist bioassays were performed on both NS 1 and NS 2

populations. The use of temephos + PBO or DEM had no

significant effect on NS 1 and NS 2 compared to temephos

treatment alone. However, the DEF treatment significantly

improved the toxicity of temephos by 3.14 fold in NS 1 and

2.48 fold in NS 2 compared to temephos alone. Finally the use of

PBO+permethrin in combination showed an improved efficacy by

more than two fold in NS 2 larvae compared to permethrin alone.

Measurement of carboxylesterase activities
Comparison of constitutive detoxification enzyme activities

between the susceptible population Phatthalung and the most

insecticide-resistant population NS 2 revealed increased a- and b-

carboxylesterase activities in NS 2 compared to P (2.9 fold and 3.8

fold with P,0.05) (Figure 1).

Microarray analysis
By using a microarray approach, we detected 2484 transcripts

significantly differentially regulated between NS2 Exp and

Phatthalung, 2508 between NS2 Unexp and P and 0 between

NS2 Exp and NS2 Unexp (RC) (Absolute change .2 fold,

corrected P-value,0.01). Validation of microarray data on six

selected genes by RT-qPCR revealed an acceptable correlation

between transcription patterns obtained by the two techniques

(mean R2 = 0.92) except for CYP6Z9 for which transcription

pattern among comparisons was not confirmed (Table S1).

Between the comparisons ‘‘NS2 Exp vs P’’ and ‘‘NS2 Unexp vs

P’’, 2088 transcripts were commonly found differentially regulat-

ed, including 962 up- and 1126 down-regulated transcripts

(Figure 2). Among these up-regulated transcripts, GO term

Enrichment analysis revealed 8 GO terms over represented

compared to the whole microarray (FDR,0.05), all linked with

P450 activities (Figure 3a). Within the 962 up regulated transcripts

found in both comparisons (Table S2), 42 CYPs were detected, 18

of which belong to the CYP9J family (Table S3).

Larvae from NS2 are resistant to both temephos and

permethrin. In an attempt to prioritise genes putatively involved

in temephos resistance we applied an additional layer of filtering to

Figure 1. Comparison of esterase activities between Phatthalung and Nakhon Sawan 2 populations. Absorbance values were measured
after 4 minutes and were normalized according to the amount of proteins. (*** P-val,0.05, Mann-Whitney).
doi:10.1371/journal.pntd.0002743.g001
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derive our candidate gene list. We specifically looked for genes

whose fold change compared to the susceptible P population were

higher in the NS2 surviving temephos exposure than in the

unexposed NS2 vs P comparison. By using an arbitrary ratio

threshold of 1.25, the candidate list was reduced to 122 transcripts

(Table S4). This threshold was chosen in order to be within the

range of differential detection of the microarray technology (in line

with recommendations from Agilent Techonologies). These

candidates are highlighted in the volcano plot (Figure 4) which

also shows all transcripts significantly upregulated in Nakhon

Sawan Unexp compared to Phatthalung. Interestingly, among the

most overtranscribed genes figured one carboxylesterase CCEae3a

(AAEL005112) which was overtranscribed around 60 fold in

Nakhon Sawan Unexp compared to Phatthalung and 91 fold in

Nakhon Sawan Exp compared to Phatthalung (ratio RS/

RC = 1.33). Two other esterases were also found more upregu-

lated in RS comparison compared to CS: CCEae6A

(AAEL015264-RA) (29 fold upregulated in RS, 22 fold in CS)

and CCEglt1K AAEL006097-RA (4.2 fold in RS, 2.5 fold in CS).

Four cytochrome P450s were also present in the candidate genes

list: CYP6Z8 (AAEL009131-RA), CYP9M9 (AAEL001807-RA),

CYP6AH1 (AAEL007473-RA) and CYP4H28 (AAEL003380-RA).

Multiple transcripts coding for cuticular proteins were also found

significantly overtranscribed among the 122 transcripts, including

6 paralogous genes belonging to the CPLC group.

CCEae3a gene copy number analysis
Quantitative PCR showed a significantly higher CCEae3a gene

copy number in NS 2 unexposed (.165 fold, Pval,0.01) and NS2

Exposed (.350 fold, Pval,0.01) compared to Phatthalung strain

(Figure S2).

CCEae3a cDNA sequencing
Sequencing of the cDNA sequence of CCEae3a (AAEL005112-RA)

revealed the presence of non synonymous mutations between the

sequences from Vectorbase, Phatthalung and the resistant popula-

tion NS2. The derived amino acid sequence of NS2 had amino acid

substitutions AAT positions 373 (GAA to GAC, leading to the

change of an aspartic acid to glutamic acid), 374 (AAT to GAT,

asparagine to glutamic acid), 538 (CGA to CAA, arginine to

Figure 2. Summary of the genes differentially transcribed in the comparisons Nakhon Sawan 2 Unexp and Exp vs Phatthalung. The
Venn diagram shows the number of genes found significantly (P value,0.01) over- or under-transcribed (.2 fold in either direction) in one or both
comparisons. Upward arrows indicate over- transcribed in Nakhon Sawan 2 compared to Phatthalung, downward represent under-transcribed.
doi:10.1371/journal.pntd.0002743.g002

Figure 3. GO term enrichment analysis conducted on transcripts found upregulated in both comparisons ‘‘NS 2 Exp vs P’’ and NS 2
Unexp vs P’’. GO-term categories represented were found significantly enriched compared to the reference set (all transcripts present on the
microarray) after a Fisher’s exact (Pval,0.01) with multiple testing correction. Test set percentage indicates the percentage of up regulated genes
belonging to a GO term category compared to all up-regulated genes used in the GO-term analysis while the reference set percentage indicates the
percentage of a particular GO-term category compared to all genes with GO-terms on the microarray.
doi:10.1371/journal.pntd.0002743.g003
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glutamine) and 541 (GAA to GAC, glutamic acid to aspartic acid)

compared to Vectorbase and Phatthalung sequences (Figure 5).

In silico structure prediction of CCEae3a
The models for Nakhon Sawan, Phatthalung, Vectorbase and

mutated Vectorbase (Vectorbase sequence with the NS mutations

at the positions 373, 374, 538 and 541) sequences were generated

using PHYRE2 web server in the intensive mode. For all of them,

99% of the residues were modelled at more than 90% confidence

in the final model and the best ranked match was the

carboxylesterase aE7 from the Australian sheep blowfly Lucilia

cuprina (LcaE7) with 34% identity. The in silico models enabled the

polymorphic residues of the analysed variants (E373D, N374D,

R538Q and E541D) to be localised and to identify those residues

involved in the active site by homology with LcaE7. The most

interesting difference between resistant and susceptible forms was

found more than 20 Å away from the polymorphic residues and

involved residues that belong to the putative substrate-binding site

(Y283-G293) (Figure 6).

Discussion

Previous studies have reported temephos resistant populations of

Ae aegypti from Thailand [8,19]. The objective of the current work

was to identify the mechanism(s) responsible for this resistance.

Bioassays were conducted on four populations of Thai mosquitoes

and a susceptible laboratory population. Larvae from the P

population from the southern Phatthalung province were fully

susceptible to temephos with a lower LC50 than the New Orleans

laboratory strain. Full susceptibility to temephos was also reported in

the neighbouring province of Songkhla in 2005 [19]. Two other

populations, NS1 and CM, showed low levels of temephos resistance

(according to classifications in [31]) and one population, NS2, from

central Thailand, showed medium levels of resistance, with RR from

6–10 fold. An earlier study also found the highest levels of temephos

resistance in the Nakhon Sawan province [19] and the RRs obtained

in the current study are similar to those reported from this province

in a 2005 study, despite the use of different lab susceptible

populations [8]. Although the current study did not directly assess

the impact of the observed resistance on the field efficacy of

temephos, earlier studies in Brazil clearly demonstrated an impact of

resistance levels of similar magnitudes to the NS2 population on the

duration of temephos efficacy in simulated field assays [32]. Hence it

is likely that temephos resistance is compromising dengue control in

central Thailand but, as noted by others [19], insecticide resistance

in Ae aegypti appears to be very focal (note the marked differences in

the Temephos LC50 between NS1 and NS2, separated by a distance

of 60 Kms).

Permethrin resistance was also detected in Ae aegypti larvae from

Chiang Mai and from both populations from Nakhon Sawan

province. Again this agrees with earlier bioassays data from Thailand

[8]. Pyrethroids are not directly applied as larvicides in Thailand but

contamination of breeding sites may occur by the use of pyrethroids

as aerial sprays to control dengue epidemics. Alternatively, the co-

occurrence of both temephos and permethrin resistance in the same

population may be caused by cross-resistance as was proposed

following a temephos selection experiment in Cuba [33]. Possible

mechanisms for this putative cross resistance are discussed below.

Figure 4. Significant up-regulated probes commonly found in NS2 Exp vs P and NS2 Unexp vs P. Colored probes correspond to the
transcripts with fold changes 1.25 fold higher in NS 2 (exposed) vs Phatthalung compared to NS 2 (Unexposed) vs Phatthalung comparison.
doi:10.1371/journal.pntd.0002743.g004
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The data from enzyme inhibitors suggests that temephos

resistance in the Nakhon Sawan province is linked to carbox-

ylesterase activities. Conversely, the cytochrome P450 inhibitor,

PBO, had the biggest impact on permethrin resistance in the NS2

population. However, even after addition of PBO, NS2 remained

moderately resistant to permethrin suggesting that pyrethroid

target site resistance may be present in the population: two sodium

channel mutations associated with permethrin resistance, V1016G

and F1534C are known to be widespread in Thailand [34,

35,36,37].

Further support for a key role for carboxylesterases in

conferring temephos resistance is provided by biochemical assays

using alpha- and beta-naphtylacetate as substrates. Significantly

higher levels of esterase activity were detected in the NS2

population compared to the susceptible population from Southern

Thailand (P). Again, this mimics findings from other temephos

resistant populations [14,15]. Although both changes in gene

expression and allelic variation in individual CCE proteins has

been associated with organophosphate resistance [38,39] the latter

is typically associated with a decrease in esterase activity, as

Figure 5. Partial alignment between three translated CCEae3a sequences: Two sequences from the susceptible strain Phatthalung
and Vectorbase and one from the resistant strain Nakhon Sawan 2. Grey highlight shows the amino acid changes between the resistant and
susceptible populations. Catalytic triad is highlighted by the symbol..
doi:10.1371/journal.pntd.0002743.g005
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measured with general esterase substrates [40,41,42]. We there-

fore hypothesised that one or more up-regulated carboxylesterase

genes were responsible for the temephos resistance and thus used a

microarray platform to identify transcripts that were upregulated

in the resistant NS2 population compared to the susceptible

Phatthalung population.

Phatthalung was used as a susceptible population, as opposed to

a standard laboratory susceptible population, in an attempt to

reduce the impact of extended laboratory colonisation and

geographical differences on the transciptome data. It was therefore

surprising to find over 2000 transcripts significantly differentially

transcribed between the two Thai populations. In a three way

comparison we compared both NS2 unexposed to insecticides and

a subset of NS2 population that had survived temephos exposure

and been sacrificed 24 hours after insecticide exposure with the

Thai susceptible population. We did not observe any significant

differences between the NS2 exposed and unexposed populations

but we used these three data sets to filter our candidate list in two

steps. Firstly we discarded genes that were only upregulated in the

NS2 population in one of the comparisons (Figure 2) focusing

initially on the subset of 962 transcripts that were commonly

upregulated in the NS2 exposed vs P and the NS2 unexposed vs P.

Interestingly, this subset of transcripts contained a large number of

cytochrome P450 genes. This was confirmed by the enrichment

analysis which showed a clear enrichment of GO terms linked with

P450 activities in the overtranscribed genes compared to the whole

microarray. Over half of the upregulated P450s belonged to the

CYP9J family (Table S3). CYP9Js have been widely implicated in

pyrethroid resistance in Ae aegypti populations across the globe

[27,43,44], and several of these have been biochemically

characterized and been shown to metabolize pyrethroids [45].

Further confirmation of the role of this P450 family in pyrethroid

resistance comes from transgenic expression of CYP9J28 in

Drosophila melanogaster which conferred an elevated level of

resistance to pyrethroids [46].

To further refine our list of candidate genes responsible for

temephos resistance, we hypothesised that genes putatively confer-

ring this phenotype would exhibit a higher fold change differential

in transcript levels in the NS2 exposed versus susceptible

comparison than the NS2 unexposed vs susceptible. We therefore

reduced our candidate list from 962 to 122 transcripts by dividing

the fold changes in ‘‘NS2 Exp vs P’’ comparison by fold changes in

‘‘NS2 Unexp vs P’’ comparison and using an arbitrary cut off of .

1.25. Only four cytochrome P450s remained in this refined

candidate list (CYP6Z8, CYP9M9, CYP6AH1, CYP4H28), none of

which belonged to the CYP9J family, perhaps indicating that the

over expression of the CYP9J genes in NS2 contributes to the

permethrin resistance phenotype but has a negligible role in

conferring temephos resistance. CYP6Z8 has recently been shown

to metabolize the 3-phenoxybenzoic alcohol (PBAlc) and 3-

phenoxybenzaldehyde (PBAld), common metabolites produced by

carboxylesterases [47], and it is possible that elevated levels of this

enzyme is an important secondary resistance mechanism.

Three carboxylesterase genes were present within final candidate

list. One of these (AAEL006097-RA) encodes a putative glutactin

which, although potentially catalytically active as it contains the

Figure 6. Analysis of CCEae3a 3D models. (A) CCEae3a_Nakhon Sawan (green) and CCEae3a_Phatthalung (blue) model superimposition shows
no significant differences in the protein overall fold between resistant and susceptible alleles due to the polymorphic residues despite variations on
the substrate binding site. (B) Close-up view of conformational differences at the substrate binding site between CCEae3a_Nakhon Sawan (green)
and CCEae3a_Phatthalung (blue) revealed that F286, involved in the substrate recognition by homology with LcaE7 (orange), could be the key to
explain both CCEae3a_Phatthalung and CCEae3a_vectorbase (cyan) susceptibility.
doi:10.1371/journal.pntd.0002743.g006
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catalytic triad and oxyanion hole, is not thought to be involved in

xenobiotic detoxification. The two remaining carboxylesterases

(CCEae3a (AAEL005112) and CCEae6A (AAEL015264)) belong to

the alpha esterase clade, a group typically associated with dietary or

xenobiotic detoxification functions. CCEae3a was overtranscribed

more than 90 fold in NS2 exposed compared to Phatthalung and

more than 60 fold in NS2 unexposed compared to P. To verify that

this did not simply reflect an exceptionally low level expression in

the southern Thai population, we also included the lab susceptible

New Orleans in the qPCR. There was no significant difference in

the expression of CCEae3A in the two susceptible populations

(Table S1). CCEae6A was also highly over expressed in NS2

compared to the P population (29 fold in exposed, 22 fold in

unexposed). Of these two alpha esterases, CCEae3a appears a

particularly strong candidate for temephos resistance, as this gene is

known to be overexpressed in temephos resistant populations from

Martinique [16,48] and Brazil [17]. Interestingly, the copy number

of CCEae3a was much higher in the NS2 resistant strain than the

susceptible P strain, and also elevated in the subset of the NS2 strain

surviving temephos exposure compared to the general NS2

population. This suggests that the overtranscription of CCEae3a

may at least be partly due to gene amplification, similar to the

mechanism observed in Culex pipiens [11].

In Martinique Island, both CYP6Z8 and CCEae3a were found

upregulated together in pyrethroid and organophosphate resistant

populations of Aedes aegypti [16,48] supporting the possible coordinated

role of CYP6Z8 and CCEae3a in insecticide detoxification [47].

In addition to the over expression of CCEae3a cDNA sequence,

several non-synonymous mutations were found between the

sequences from Phatthalung compared to Nakon Sawan 2. In

silico structure predictions of CCEae3a, based on the carboxylester-

ase aE7 from the Australian sheep blowfly Lucilia cuprina (LcaE7)

[49] predicted that the polymorphic residues were not adjacent to

the insecticide binding site. Nevertheless, the resistant variants

lacked the hairpin loop between Y283 and G293 which was found

in the susceptible population. It is possible that this loop displaces

the F286 residue (homolog to F309 in LcaE7) that seems to be

essential in stabilizing OPs in the LcaE7 active site. Further work

is needed however to determine whether the allelic variants differ

in their enzymatic activity and if either or both forms are capable

of sequestering and/or metabolising temephos.

Temephos is one of the key insecticides for dengue control

across the tropics but operationally significant levels of resistance

are being increasingly reported [18]. Carboxylesterases have long

been suspected to play a key role in mediating this resistance but to

date no clear candidates had been identified. The identification of

strong candidate genes has now laid the foundations for the

development of molecular diagnostics to assess the correlation

between the overexpression of these genes and temephos resistance

across the distribution of Ae aegypti.

Supporting Information

Figure S1 Sampling sites of Aedes aegypti mosquitoes in
Thailand. Eggs were collected from four different sites were

used: Chiang Mai (CM) (Oct 2011), Nakhon Sawan 1 (NS 1)

(March 2012), Nakhon Sawan 2 (NS 2) (March 2012), Phatthalung

(P) (September 2012).

(TIF)

Figure S2 CCEae3a gene copy number analysis. qPCR

was conducted on three batches of 8 individual 4th instar larvae

gDNA from NS 2 unexposed, NS2 Exposed (larvae survivors of a

temephos bioassay inducing more than 80% mortality after

24 hours) and Phatthalung (P). 95% confidence intervals were

calculated for qPCR fold changes and a Mann-Whitney test was

performed.

(TIF)

Table S1 Microarray validation by RT-qPCR. Validation

was performed on six transcripts found significantly up- and down-

regulated by microarray in the two comparisons NS 2 Unexp vs P

and NS2 Exp vs P. 95% confidence intervals were calculated for

qPCR fold changes. Significant fold changes between NS2 and P

are marked with ¥ and significant fold changes between NS2 and

NO are marked with ¤.

(XLSX)

Table S2 List of significant transcripts commonly found
in ‘‘NS 2 Exp vs P’’ and NS 2 Unexp vs P’’ comparisons.
(XLSX)

Table S3 List of CYPs commonly found in both RS and
CS comparisons.
(XLSX)

Table S4 List of transcripts significantly commonly
found in both RS and CS comparisons with fold changes
higher than 1.25 times in RS compared to RC fold
changes.
(XLSX)

Table S5 List of primers used for PCR and qPCR.
(XLSX)
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