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Hepatocellular carcinoma (HCC) is a disease with unique management

complexity because it displays high heterogeneity of molecular phenotypes.

We herein aimed to characterize the molecular features of HCC by the

development of a classification system that was based on the gene expres-

sion profile of metabolic genes. Integrative analysis was performed with a

metadata set featuring 371 and 231 HCC human samples from the Cancer

Genome Atlas and the International Cancer Genome Consortium, respec-

tively. All samples were linked with clinical information. RNA sequencing

data of 2752 previously characterized metabolism-related genes were used

for non-negative matrix factorization clustering, and three subclasses of

HCC (C1, C2, and C3) were identified. We then analyzed the metadata set

for metabolic signatures, prognostic value, transcriptome features, immune

infiltration, clinical characteristics, and drug sensitivity of subclasses, and

compared the resulting subclasses with previously published classifications.

Subclass C1 displayed high metabolic activity, low a-fetoprotein (AFP)

expression, and good prognosis. Subclass C2 was associated with low meta-

bolic activities and displayed high expression of immune checkpoint genes,

demonstrating drug sensitivity toward cytotoxic T-lymphocyte-associated

protein-4 inhibitors and the receptor tyrosine kinase inhibitor cabozantinib.

Subclass C3 displayed intermediate metabolic activity, high AFP expression

level, and bad prognosis. Finally, a 90-gene classifier was generated to

enable HCC classification. This study establishes a new HCC classification

based on the gene expression profiles of metabolic genes, thereby furthering

the understanding of the genetic diversity of human HCC.
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1. Introduction

Hepatocellular carcinoma (HCC) is one of the most

prevalent malignancies worldwide and the second lead-

ing cause of cancer-related deaths. On the basis of

annual projections, more than 1 million patients will

die from HCC in 2030 according to the World Health

Organization estimation (Karb and Sclair, 2019).

Despite the current new treatments and diagnostic

methods for HCC, its prognosis is still dismal (Hos-

hida et al., 2014). It is critical to unravel the underly-

ing molecular mechanisms of HCC diversity to

develop targeted therapies (de Bono and Ashworth,

2010). In recent years, genome-wide analyses of

mRNA expression profiles have been devoted to this

purpose (Boyault et al., 2007; Chiang et al., 2008; Hos-

hida et al., 2009; Lee et al., 2004). Although clinical

samples were stratified in each transcriptome study,

the correlations between the molecular and clinico-

pathological features have not been elucidated

thoroughly.

Gene expression patterns of HCC are generally clas-

sified into two subclasses (Hoshida et al., 2010; Llovet

et al., 2015; Zucman-Rossi et al., 2015), proliferative

HCCs and nonproliferative HCCs, each representing

50% of tumors. Proliferative HCCs can exhibit specific

characteristics by activating TGF-b, MET, AKT, and/

or IGF2 pathway. In comparison, nonproliferative

HCCs are usually well-differentiated, less aggressive,

and present a lower serum a-fetoprotein (AFP) levels,

TP53 mutations, and better prognosis (Boyault et al.,

2007; Hoshida et al., 2009; Lee et al., 2004; Makowska

et al., 2016), and they tend to preserve the zonation

program of distributing metabolic functions along the

portocentral axis in normal liver (Ng et al., 2017). The

metabolic distinctions between proliferative HCCs and

nonproliferative HCCs suggest the possibility to clas-

sify HCCs from the metabolic perspective to identify a

certain subclass performing metabolic functions as

normal livers with good outcome. Hence, 2752 meta-

bolic genes encoded all human metabolic enzymes and

small molecule transporters were obtained after litera-

ture screening in this study for unsupervised clustering.

A proteogenomic characterization published recently

classified hepatitis B virus-related HCC patients into

three subgroups, namely metabolism subgroup (S-Mb),

microenvironment dysregulated subgroup (S-Me), and

proliferation subgroup. S-Mb enriches in proteins

involving cancer metabolism and has the best progno-

sis. S-Me enriches in proteins involving immunity and

inflammation and has worse prognosis compared with

S-Mb (Gao et al., 2019). This research suggested the

possibility to classify HCC from the metabolic

prospective. It appears that human cancer mutations

and cancer genes constantly affect metabolism pro-

cesses including aerobic glycolysis, glutaminolysis, and

one-carbon metabolism which produces amino acids,

nucleotides, fatty acids, and other substances for cell

growth and proliferation (Fiehn et al., 2016). Cancer is

thought of as a metabolic disease due to metabolic dis-

order (Boroughs and DeBerardinis, 2015). In this

study, two HCC cohorts were merged into a metadata

set of 602 patients for clustering based on metabolic

genes. Additional processed microarray data of 221

HCC samples were used for external validation. The

unsupervised transcriptome analysis identified 3 sub-

groups of HCC, namely C1, C2, and C3. We evaluated

the prognosis value, transcriptome features, correla-

tions with metabolic signatures, immune infiltration,

clinical characteristics, and drug sensitivity of the

HCC subclasses, and compared them with previous

classifications. Finally, a 90-gene classifier was gener-

ated to determine the HCC classification.

2. Materials and methods

2.1. Patients and samples

Multiple data repositories, including the International

Cancer Genome Consortium (ICGC, www.icgc.org),

the Cancer Genome Atlas (TCGA, http://cancerge

nome.nih.gov/), Gene Expression Omnibus (GEO,

http://www.ncbi.nlm.nih.gov/geo/), and Genomics of

Drug Sensitivity in Cancer (GDSC, https://www.cancer

rxgene.org/), were searched for available data for

HCC. Datasets without enough samples (< 200) or

clinical information were excluded. RNA sequencing

data (raw counts) of 371 and 231 HCC human sam-

ples with available clinical information were retrieved

from TCGA-LIHC cohort and LIRI-JP cohort,

respectively, and raw counts were transformed into

transcripts per kilobase million values for subsequent

analysis. Next, two RNA-seq datasets were merged

into one metadata set, and the combat function in the

SVA R package (R Core Team, R Foundationfor Statis-

tical Computing, Vienna, Austria) was applied to

remove the batch effects. Figure S1 showed the princi-

pal component analysis before and after batch effect

correction. Additional processed microarray data of

221 HCC samples from GSE14520 (based on

GPL3921 platform) were used for external validation.

In total, 823 HCC patients were enrolled in this study,

and the patients’ clinical characteristics are shown in

Table 1. Gene somatic mutation data (MAF files) of

LIHC and LIRI-JP cohorts were achieved from
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TCGA and ICGC databases, respectively. Besides,

copy number data of GISTIC2 for LIHC cohort were

accessed from the GDAC FireBrowse (http://fireb

rowse.org/), and predicted neoantigens of LIHC

cohort were achieved from previous analysis of the

TCGA dataset (Rooney et al., 2015). To investigate

drug sensitivity, 16 hepatocarcinoma cell lines and 12

renal cell carcinoma cell lines with both gene expres-

sion data and drug sensitivity data (IC50 values) were

also included in the analysis (Yang et al., 2013).

2.2. Identification of HCC subclasses

A previously published list of 2752 metabolism-relevant

genes encoding all known human metabolic enzymes and

transporters was achieved for subsequent non-negative

matrix factorization (NMF) clustering (Possemato et al.,

2011). Before performing NMF, a filtering procedure

was conducted. First, candidate genes of low median

absolute deviation (MAD) value (MAD ≤ 0.5) across all

the HCC patients were excluded. Then, Cox regression

assessing the associations of all the candidate genes with

overall survival (OS) was conducted using R package

‘survival’. Eventually, genes with high variable

(MAD > 0.5) and significant prognostic value (P < 0.05)

were used for sample clustering. Subsequently, unsuper-

vised NMF clustering methods were performed using

NMF R package on the metadata set (Gaujoux and

Seoighe, 2010), and this method was also applied to

GSE14520 by using the same candidate genes. The val-

ues of k where the magnitude of the cophenetic correla-

tion coefficient began to fall were chosen as the optimal

number of clusters (Brunet et al., 2004). Class mapping

(SubMap) analysis (Gene Pattern), a method to evaluate

similarity of molecular classes between independent

patient cohorts based on their expression profiles, was

then used to determine whether the subclasses identified

in the two above datasets were correlated. T-distributed

stochastic neighbor embedding (t-SNE)-based approach

was then used to validate the subtype assignments using

the mRNA expression data of above metabolic genes.

2.3. Gene set variation analysis

Gene set variation analysis (GSVA) is a nonparametric

and unsupervised gene set enrichment method that can

estimate the score of certain pathway or signature based

on transcriptomic data (Hanzelmann et al., 2013). The

115 metabolism-relevant gene signatures and seven HCC

progression-relevant signatures were achieved from previ-

ously published studies (Desert et al., 2017; Rosario

et al., 2018), and by using GSVA R package, each sample

received 120 scores corresponding to 115 metabolism sig-

natures and seven progression-relevant signatures. Subse-

quently, differential analysis was conducted based on the

113 metabolism scores using LIMMA package in R soft-

ware, and the signatures with an absolute log2 fold

change (FC) > 0.2 (adjusted P < 0.05) were defined as

differentially expressed signatures.

2.4. Estimation of immune infiltration

Microenvironment cell population-counter (MCP-

counter), a methodology based on gene expression

Table 1. Clinical characteristics of TCGA, ICGC, and GEO sets.

BCLC, Barcelona Clinic Liver Cancer; N/A, not available.

Variable

TCGA set ICGC set GEO set

(n = 371) (n = 231) (n = 221)

Age

≤ 55 years 125 25 152

> 55 years 245 206 69

Gender

Female 121 61 30

Male 250 170 191

Viral infection

HBV 95 N/A 221

HCV 49 N/A 0

HBV/HCV 7 N/A 0

No infection 103 N/A 0

Alcohol consumption

Yes 115 N/A N/A

No 103 N/A N/A

Child-Pugh score

A 216 N/A N/A

B/C 22 N/A N/A

Tumor size

> 5 cm N/A N/A 80

≤ 5 cm N/A N/A 140

Histologic grade

G1 55 36 N/A

G2 177 105 N/A

G3 122 71 N/A

G4 12 19 N/A

TNM stage

I/II 257 N/A 170

III/IV 90 N/A 49

BCLC stage

0/A N/A N/A 168

B/C N/A N/A 51

AFP level

Low 212 N/A 118

High 66 N/A 100

Vascular invasion

None 206 N/A N/A

Micro 93 N/A N/A

Macro 16 N/A N/A

Family history

No 208 143 N/A

Yes 112 73 N/A
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profile data, was used to evaluate absolute abundance

of eight immune and two nonimmune stromal cell

populations (immune cell populations: T cells,

CD8 + T cells, natural killer cells, cytotoxic lympho-

cytes, B-cell lineage, monocytic lineage cells, myeloid

dendritic cells, and neutrophils; stromal cell popula-

tions: endothelial cells and fibroblasts) (Becht et al.,

2016). Besides, another approach for the estimation of

immune infiltration used in this study was single-sam-

ple GSEA (ssGSEA), which computed an enrichment

score representing the degree to which genes in a par-

ticular gene set were coordinately up- or downregu-

lated within a single sample (Barbie et al., 2009).

Using the GSVA R package, additional 6 immune cell

populations, including regulatory T cells (Treg), T

helper cell 1 (Th1), T helper cell 2 (Th2), T helper cell

17 (Th17), central memory T cell, and effective mem-

ory T cell (Tem) were estimated. In addition, immune

scores and stromal scores were calculated by applying

the ESTIMATE algorithm, which can reflect the

enrichment of stromal and immune cell gene signatures

(Yoshihara et al., 2013).

2.5. Characterization of HCC subclasses

The differentially expressed genes (DEGs) among HCC

subclasses were identified using LIMMA package in R on

normalized count data. The genes with an absolute log2

FC > 1 (adjusted P < 0.01) were defined as DEGs. The

gene set files of ‘c2.cp.kegg.v6.2.symbols’ and

‘h.all.v6.2.symbols’, downloaded from the Molecular

Signatures Database, were employed for the functional

and pathway enrichment analysis using the CLUSTERPRO-

FILER R package, and the significance threshold was set

at an adjusted P < 0.05. Prediction of previously pub-

lished HCC molecular classifications was also per-

formed using nearest template prediction (NTP)

analyses (Gene Pattern modules), and the prediction

results were then compared with our classification.

2.6. Generation of the classifier and performance

validation

The statistically significant differential genes were

defined as adjusted P < 0.01 and absolute log2

FC > 2. Only genes with significant differences in

expression in all three possible comparisons were con-

sidered subclass-specific genes. The top 30 genes with

the largest log2FC value (only genes with log2 FC > 0

were chosen) in each subclass were further selected for

the development of the prediction model, and thus, 90-

gene classifier was generated. Then, the subclass pre-

diction was repeated with the 90-gene signature on

GSE14520 using NTP algorithm, and the result was

compared with previous classification based on NMF

algorithm.

2.7. Prediction of the benefit of each subclass

from immunotherapy and targeted therapy

The available data from melanoma patients treated with

immunotherapies were used to indirectly predict the

immunotherapy’s efficacy of our subclasses by measur-

ing similarity of gene expression profiles between our

subclasses and melanoma patients based on SubMap

analysis (Gene Pattern) (Roh et al., 2017). Besides, the

drug sensitivity of two HCC-targeted drugs, sorafenib

(for first-line treatment) and cabozantinib (for second-

line treatment), was also investigated using SubMap

analysis on data derived from GDSC. Specifically, cell

lines were ranked from low to high according to IC50

value, and cell lines in the top one-third were defined as

drug sensitivity, while cell lines in the last one-third

were drug resistance. Notably, considering all hepato-

carcinoma cell lines have the same high IC50 value of

sorafenib, we chose renal cell carcinoma cell lines for

the prediction of sorafenib sensitivity.

2.8. Statistical analysis

All the computational and statistical analyses were

performed using R programming (https://www.r-projec

t.org/). Unpaired Student’s t-test was used to compare

two groups with normally distributed variables, while

Mann–Whitney U-test was used to compare two

groups with non-normally distributed variables. For

comparisons of three groups, one-way analysis and

Kruskal–Wallis tests of variance were used as paramet-

ric and nonparametric methods, respectively. Contin-

gency table variables were analyzed by chi-square test

or Fisher’s exact tests. Survival analysis was carried

out using Kaplan–Meier methods and compared by

the log-rank test. A univariate Cox proportional haz-

ards regression model was used to estimate the hazard

ratios for univariate analyses. A two-tailed P value

< 0.05 was statistically significant.

3. Results

3.1. NMF identifies three subclasses in HCC

A flow chart was developed to systematically describe

our study (Fig. 1A), and clinical characteristics of

patients from different cohorts are shown in Table 1.

Previously reported 2752 metabolism-relevant genes
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Fig. 1. Identification of HCC subclasses using NMF consensus clustering in the metadata set. (A) Flow chart of the study. (B) NMF

clustering using 816 metabolism-associated genes. Cophenetic correlation coefficient for k = 2–5 is shown. (C) t-SNE analysis supported

the stratification into three HCC subclasses. (D). OS and RFS of three subclasses (C1, C2, and C3) in metadata set, independent TCGA or

ICGC cohort, and GSE14520 cohort. The statistical significance of differences was determined by log-rank test.
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were chosen as the basis of NMF analysis. After screen-

ing, a total of 816 candidate genes were identified

(Table S1), and the metadata set comprising 602 HCC

samples from TCGA and LIRI-JP was clustered

according to the expression profile of above-mentioned

816 candidate genes using NMF consensus clustering.

Cophenetic correlation coefficients were calculated to

determine the optimal k value, and k = 3 was eventu-

ally chosen as optimal number of clusters after compre-

hensive consideration (Fig. 1B, three subclasses were

designated C1, C2, and C3). When k = 3, the consensus

matrix heatmap still keeps sharp and crisp boundaries,

suggesting stable and robust clustering for the samples.

To validate the subclasses’ assignments, we also per-

formed t-SNE to decrease the dimension of features

and found the subtype designations were largely con-

cordant with two-dimensional t-SNE distribution pat-

terns (Fig. 1C). Subsequently, we performed another

independent analysis on a dataset with 221 HCC sam-

ples from GEO database (GSE14520), the results of

which also revealed that there were three distinct molec-

ular subclasses of HCC (Fig. S2A,B). A SubMap analy-

sis was then conducted to determine whether the

subclasses identified in the two above datasets were cor-

related, and the result showed that C1, C2, and C3 sub-

classes in metadata set were highly correlated with

corresponding subclasses in GSE14520, suggesting there

were three distinct molecular subclasses of HCC with

different gene expression patterns (Fig. S3).

Using previously mentioned k = 3 classification, sig-

nificant prognostic difference was observed in metadata

set (log-rank test P < 0.0001, Fig. 1D), with a longer

median survival time (MST) for C1 (n = 307,

MST = 2456 days, 95% CI: 2088–2824 days) than C2

(n = 117, MST = 1490 days, 95% CI: 1239–1741 days,

P < 0.0001) and C3 (n = 178, MST = 1372 days, 95%

CI: 914–1830 days, P < 0.0001). Independent TCGA

and LIRI cohort also showed the same results (TCGA-

OS: log-rank test P = 0.0088; TCGA-recurrence-free

survival (RFS): log-rank test P = 0.017; LIRI-OS: log-

rank test P < 0.0001). Furthermore, prognostic differ-

ence was validated in GSE14520 cohort (221 patients

with available survival information), and similar differ-

ence was also observed, with C1 showing a significantly

longer OS time than that for C3 and C2 (P < 0.0001),

while significant difference was not observed in RFS

(log-rank test P = 0.15).

3.2. Transcriptomes of the HCC subclasses

To better characterize the three HCC subclasses, dif-

ferential analyses were performed. Gene expression dif-

ferences were considered significant if the adjusted P

value was < 0.01 and absolute log2 FC was > 2. Only

genes with significant differences in expression in all

three possible comparisons were considered subclass-

specific genes. Eventually, a total of 2830 subclass-

specific signature genes were identified, with 509 speci-

fic genes for C1, 2042 specific genes for C2, and 279

specific genes for C3 (Table S2). Next, Gene Oncology

enrichment analysis of the signature genes was con-

ducted using the CLUSTERPROFILER package, and signifi-

cantly enriched biological processes are shown in

Fig. S4 and Table S3. The specific genes of C1 and C2

showed enrichment of distinct biological processes.

Numerous metabolism-associated biological processes

were significantly enriched for signature genes of C1,

while abundant extracellular matrix (ECM)-relevant

processes were observed for signature genes of C2. For

C3, it was enriched in some development-relevant pro-

cesses. Besides, GSEA was applied to identify path-

ways enriched in each subclass, the result of pathway

analysis of subclass-specific genes revealed that amino

acid metabolism-relevant pathways were significantly

enriched for C1, ECM-relevant pathways were

enriched for C2, and other metabolism-relevant path-

ways including hormone and proteoglycan metabolism

were significantly enriched for C3 (Fig. S5, Table S4).

3.3. Correlation of the HCC subclasses with

metabolism-associated signatures

Considering that the classification was based on meta-

bolism-relevant genes, we further explored whether dis-

tinct subclasses had different metabolic characteristics.

First, 115 metabolism processes were quantified using

GSVA R package (Table S5). Then, differential analysis

was conducted to find subclass-specific metabolism sig-

natures, which was defined as signature with higher

GSVA score in the corresponding subclasses. Results

showed that only C1 and C3 had specific metabolism

signatures, and the numbers were 39 and 4, respec-

tively, while C2 had no specific metabolism signatures

according to the result of differential analysis. Nota-

bly, 13 of the 39 specific metabolism signatures in C1

were related to amino acid metabolism including urea

cycle, which was similar to the metabolic patterns of

previously reported periportal (PP)-type HCC involv-

ing gene signatures of gluconeogenesis, amino acid cat-

abolism, and urea cycle(Ng et al., 2017) (Fig. 2A).

To further investigate the characteristics of sub-

classes, seven HCC-associated key signatures were cho-

sen and quantified using GSVA algorithm. C1 had

significantly higher PP and perivenous (PV) signatures

than C2 and C3, and C2 exhibited higher expression

for stromal-relevant signature, consistent with results
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from enrichment analysis. C1 had significantly lower

score of stem-relevant signature and higher score of

differentiation-associated signature than C2 and C3,

which was corresponding to the clinical characteristics

of C1. Besides, C1 and C3 both had significantly

higher score of Wnt activation-relevant signature than

C2, which may be associated with their harboring high

frequency of cadherin-associated protein beta 1
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(CTNNB1) mutations (Fig. 2B and Table S6). Then,

ESTIMATE algorithm was used to calculate the

immune and stromal score. Significant difference in

immune score was observed among three groups, with

higher immune score of C2 than C1 (P < 0.001) and

C3 (P < 0.001; Fig. 2C). In addition, C3 exhibited

lower stromal score than C1 (P < 0.00001) and C2

(P < 0.00001; Fig. 2D).

3.4. Correlation of the HCC subclasses with

immune infiltration in the metadata set

With the significant difference in immune score identi-

fied among subclasses, immune infiltration was investi-

gated to characterize their immunologic landscape.

The abundance of 16 immune-related cell types was

calculated using MCP-counter and ssGSEA algorithm

and presented in a heatmap (Fig. 3A). Significant dif-

ference was observed between C2 and other two sub-

classes, with higher abundance of 11 immune cell

populations (T cells, CD8 + T cells, NK cells, cyto-

toxic lymphocytes, B-cell lineage, monocytic lineage

cells, myeloid dendritic cells, neutrophils, Th1 cells,

Th2 cells, and Tem cells) for C2 compared with C1 or

C3. In addition, C2 also exhibited lower enrichment

for Treg cells and Th17 cells. Notably, stromal cell

populations (endothelial cells and fibroblasts) were sig-

nificantly higher in C2, consistent with previous result

of C2’s enrichment for stromal-relevant signatures

(Fig. 3B). Detailed information is shown in Table S6.

We further investigated the association between sub-

classes and the expression of 15 potentially targetable

immune checkpoint genes that were chosen based on

current drug inhibitors in clinical trials or have been

approved for specific cancer types, and the results indi-

cated that C2 exhibited higher expression for 14

immune checkpoint genes (except for LAG3) than C1

and C3 (Fig. 3C).

3.5. Correlation of the HCC subclasses with

clinical characteristics in the TCGA and GEO

dataset

We then explored tumor-related clinicopathological

variables associated with our classification based on

TCGA (Fig. 4A, Table S7) and GEO (Fig. 4B,

Table S8) cohorts. The results of chi-square test

revealed several significant correlations between clinico-

pathological features and HCC subclasses in TCGA

cohort. Lack of vascular invasion (P < 0.001), patho-

logic stage I/II (P < 0.001), histologic grade G1/G2

(P < 0.001), and low serum AFP level (P < 0.001) were

associated with the C1 subclass, and presence of

vascular invasion, advanced pathologic stage (III/IV),

histologic grade (G3/G4), and high serum AFP level

were associated with the C2 or C3 subclass. Similarly,

in GEO cohort, C1 was correlated with low metastasis

signature (P < 0.001), low serum AFP level (P < 0.001),

and pathologic stage I/II (P = 0.001).

We also compared our classification with previously

reported HCC molecular subclasses, including Boyault’s

classification (G1–G6), Chiang’s classification (five

classes), Hoshida’s classification (S1, S2, and S3),

D�esert’s classification (four classes), and TCGA classifi-

cation (iCluster1, iCluster2, and iCluster3). In TCGA

cohort, C1 subclass was significantly associated with

Boyault’s G5/G6 (P < 0.001), Chiang’s proliferation

(P < 0.001) and CTNNB1 class (P < 0.001), Hoshida’s

S3 (P < 0.001), D�esert’s PP-type (P < 0.001), and

TCGA iCluster2 (P < 0.001). C2 subclass was linked to

Boyault’s G3 (P < 0.001), Hoshida’s S1 (P < 0.001),

D�esert’s ECM/STEM-type (P < 0.001), and TCGA

iCluster1 (P < 0.001). C3 subclass was associated with

Boyault’s G1/G2 (P < 0.001) and Hoshida’s S2

(P < 0.001). Similarly, in GEO cohort, C1 was linked

to Boyault’s G5/G6 (P = 0.023), Chiang’s proliferation

(P = 0.003) and CTNNB1 (P < 0.001) class, Hoshida’s

S3 (P < 0.001), and D�esert’s PP-type (P < 0.001). C2

was linked to Hoshida’s S1 (P < 0.001) and D�esert’s

ECM/STEM-type (P < 0.001). C3 was enriched in Boy-

ault’s G1/G2 (P = 0.004) and Hoshida’s S2 (P < 0.001).

3.6. Correlation of the HCC subclasses with

mutations, neoantigens, and copy number

aberrations

The tumoral genomic landscape has been proven to be

correlated with antitumor immunity. To investigate

whether differences exist in the somatic mutation fre-

quencies across HCC subclasses and observe different

patterns of mutations among HCC clusters, somatic

mutation data from TCGA and ICGC databases were

analyzed. The genes with high mutation frequency or

in critical pathways, including P53/cell cycle pathway,

Wnt/beta-catenin pathway, and hepatic differentiation,

are visualized in Fig. 5A (detailed statistical analysis is

shown in the Table S9). Results showed that C1 and

C2 displayed distinct mutation characteristics. Specifi-

cally, C1 had significantly lower mutation frequency of

TP53 (16%) than C2 (30%) and C3 (25%), while C2

had significantly lower mutation frequency of

CTNNB1 (3%) than C1 (26%) and C3 (35%). Nota-

bly, although C3 exhibited higher mutation frequency

of CTNNB1 than C1 and C2, other results of this

study did not support characterizing C3 as a subclass

of frequent CTNNB1 mutations.
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We then correlated the classification with the number

of overall mutations and predicted neoantigens

(Fig. 5B). And significant difference was observed in

the number of mutations, with a smaller median num-

ber of mutations for C2 (n = 67) compared with C1

(n = 96, P < 0.00001) and C3 (n = 107, P < 0.00001),
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A

B

Fig. 4. Clinical characteristics of HCC subclasses in the TCGA and GSE14520 cohort. (A) Correlation of our classification (C1, C2, and C3)

with clinical characteristics and previous HCC subclasses in the TCGA cohort. (B) Correlation of our classification with clinical characteristics

and previous HCC subclasses in GSE14520 cohort.
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respectively. No statistical difference was identified for

the number of neoantigens in pairwise comparison

(Fig. 5B). In terms of somatic copy number aberrations,

patients within C1 showed lower burden of both gains

and losses than C3, with a median of three broad gains

(range 0–20) and three broad losses (range 0–17) in C1

vs five broad gains (range 0–18, P < 0.00001) and 5.5

broad losses (range 0–18, P < 0.00001) in C3. There

was no statistical difference in burden of gains between

C1 (three broad gains, range 0–20) and C2 (four broad

gains, range 0–22, P = 0.078); however, C2 (six broad

losses, range 0–19) had higher burden of losses than C1

(three broad losses, range 0–17, P < 0.001; Fig. 5C).

Previous study indicates that HCC driver genes on

chromosome 11q13 (eg, FGF19) have higher possibil-

ity of amplification (Schulze et al., 2015; Sia et al.,

2017). These genes may exert critical function in the

treatment of HCC. Therefore, we next investigated the

correlation between the HCC classification and the

amplification of driver genes on chromosome 11q13

(Fig. 5D). Although no significant difference in driver

genes’ amplification was observed between pairs of

subclasses, C2 still showed a trend toward higher

amplification rate (e.g., FGF19: 9.09%) than C1

(7.07%, P = 0.59) and C3 (4.31%, P = 0.21; detailed

statistical analyses are shown in Table S10).

3.7. Ninety-gene classifier and performance

validation

Differential analysis yielded 509 significant genes for the

C1 subclass, 2042 for the C2 subclass, and 279 for the

C3 subclass. To build a classifier for clinical use, it is

necessary to select top informative subclass-associated

signature genes. After comprehensive consideration of

accuracy and clinical application potential, top 30 genes

with largest log2FC value (> 0) in each subclass were

selected for the development of the subclasses’ classifier.

Thus, a 90-gene classifier was generated and visualized

in Fig. 6A and Table S11. Subsequently, the subclass

prediction was repeated with the 90-gene classifier in

GSE14520 datasets (Fig. 6B). The concordance with the

original prediction based on NMF was evaluated, and

we observed the concordance of 76.35% in C1 subclass,

85.56% in C2 subclasses, and 70.59% in C3 subclasses.

Results suggested that the 90-gene signature can repro-

ducibly determine the HCC classification.

3.8. Distinct sensitivity to immunotherapy and

targeted therapies for HCC subclasses

Different immune infiltration patterns and expression

levels of immune checkpoint genes among HCC

subclasses indicated that the likelihood of responding

to immunotherapy needed to be further investigated.

Using subclass mapping, we compared the expression

profiles of three HCC subclasses (C1, C2, and C3)

with another published dataset containing 47 patients

with melanoma that received programmed cell death

protein-1 (PD-1) immune checkpoint inhibitor or cyto-

toxic T-lymphocyte-associated protein-4 (CTLA-4)

immune checkpoint inhibitor (Fig. 6C). Significant cor-

relation was observed when comparing the expression

profile of C2 group with CTLA4-response group

(P = 0.01), indicating that patients within C2 group

were more promising to respond to anti-CTLA4 ther-

apy.

Besides, we also explored the association between

HCC subclasses and sensitivity toward targeted drugs

(sorafenib and cabozantinib) using the same method

(Fig. 6D). For cabozantinib, C2 exhibited significant

association of cabozantinib-sensitive group (P < 0.01),

while C1 was significantly associated with cabozan-

tinib-resistant group (P = 0.03). For sorafenib, signifi-

cant correlation was only observed between C2 group

and sorafenib-resistant group (P = 0.01).

4. Discussion

Although numerous HCC classifications based on gene

expression have been proposed in recent years, a con-

sensus in molecular taxonomy has not yet been estab-

lished. To identify HCC subgroup associated with

metabolic processes and good prognosis, HCC classifi-

cation was established in this study based on 2752

metabolic genes screened from previous publications.

Three subclasses of HCC (C1, C2, and C3) were iden-

tified. The metabolic signatures, prognosis value, tran-

scriptome features, immune infiltration, clinical

characteristics, and drug sensitivity of the subclasses

were explored. Results showed that C1 displayed dis-

tinct metabolic signatures and was similar to the dif-

ferentiated nonproliferative HCCs with low AFP and

good prognosis. C2 was associated with immunity sig-

natures and had high expressions of immune check-

point genes, demonstrating drug sensitivity toward

CTLA4 inhibitors and cabozantinib. This class was

barely involved in metabolic signatures. C3 with higher

level of AFP and worse prognosis demonstrated less

enrichment in metabolic signatures than C1 but higher

enrichment of metabolic signatures than C2. In gen-

eral, this study explored the metabolic landscape of

HCC and identified three clusters with active, interme-

diate, or exhausted metabolic activities, respectively.

Liver parenchymal cells are critical in the metabolic

processes of HCC and present a gradient pattern along
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the portocentral axis. For example, gluconeogenesis,

amino acid catabolism, and urea synthesis are per-

formed in PP hepatocytes, while lipogenesis and gly-

colysis are increased in the PV hepatocytes (Ng et al.,

2017). A classification model of HCC provided by

D�esert et al revealed four subclasses, namely ‘ECM-

type’, ‘STEM-type’, ‘PV-type’, and ‘PP-type’ (Desert

et al., 2017). The ECM type featured in signatures of

ECM modeling, integrin signaling, and epithelial-to-

mesenchymal transition, which is in accordance with

the C2 subclass characterizing by stromal-relevant sig-

nature and abundant gene signatures of ECM-relevant

processes in our study. The PP and PV types are two

distinct subclasses of nonproliferative HCCs. The PP

HCCs preserve the default metabolic program of nor-

mal liver and are well-differentiated and enriched for

signatures of PP hepatocytes including gluconeogene-

sis, amino acid catabolism, urea cycle, and HNF4A-

induced genes. Therefore, the PP program is the least

aggressive in HCCs and is correlated with favorable

survival and low recurrence. The PV subclass is highly

enriched in lipid and bile salt metabolism signatures

and activates the WNT signaling pathway, presenting

high frequency for predicted CTNNB1 mutations.

C1 was chiefly involved in amino acid metabolism

including urea cycle and lipid metabolism processes as

well as differentiation signatures, indicating better

prognosis compared with C2 and C3 involving in

HCC progression signatures (EMT, ECM, TGF-b/
SMAD, Stem, Wnt/b-catenin). C1 showed similar

metabolism patterns of the PP and PV subclasses com-

bined. The enrichment in metabolic signatures indi-

cated that C1 patients may be beneficial from

metabolic therapies. Metabolic therapies targeting cer-

tain metabolism processes provide alternatives for

chemoresistant patients. For example, it has been

A

B

C
Fig. 6. Identification of predictive classifier

and putative targeted therapeutic and

immunotherapeutic response. (A)

Heatmap of the expression level of the

90-gene classifier. (B) Concordance of

HCC molecular subclass prediction

between the 90-gene classifier and

original prediction based on NMF. (C) C2

may be more sensitive to the CTLA-4

inhibitor (nominal P = 0.01) and

cabozantinib (nominal P < 0.01) by

SubMap analysis.
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reported that metformin can prevent liver carcinogene-

sis (Shankaraiah et al., 2019) and treatment with met-

formin is associated with favorable prognosis in

patients with HCC (Schulte et al., 2019). Determining

the responders of metabolic therapies has proven to be

challenging (Rosario et al., 2018). This study provided

insights into predicting potential responders toward

metabolic therapies. In addition, the lowest score of

stem-relevant signature and highest score of differenti-

ation of C1 corresponded with its clinical characteris-

tics of lack of vascular invasion, pathologic stage I/II,

and histologic grade G1/G2. Further, it has been vali-

dated in previous study (Hoshida et al., 2009) that

subclass with elevated AFP indicates poor prognosis,

which may be a possible explanation for the relation-

ship between the lowest serum AFP level and favor-

able survival in C1.

C2 matched the G3 (Boyault et al., 2007) subclass in

terms of the highest mutation frequency in TP53.

HCCs bearing TP53 mutations are often associated

with a high level of chromosome instability and poor

prognosis (Laurent-Puig et al., 2001). Nowadays,

immunotherapy has gained widespread attention in

cancer treatment. The safety and efficacy of several

PD-1 immune checkpoint inhibitors and CTLA-4 inhi-

bitors have been evaluated, and the outcomes are

promising (Duffy et al., 2017; El-Khoueiry et al., 2017;

Killock, 2017). The highest infiltration of stromal cell

identified in C2 corresponded with its enrichment in

stromal-relevant signatures. An HCC classification

based on immune microenvironment reported favor-

able prognosis in subclass with abundant immune infil-

tration and poor prognosis in immune-low subclass

(Kurebayashi et al., 2018), contradicting with the unfa-

vorable prognosis of the immune-high C2 in our study.

The HCC microenvironment consisted of immune-sup-

pressive cells and high expression of immune check-

point molecules. T-cell exhaustion, tumor-specific T-

cell dysfunction, and immune evasion by tumor cells

are the results of the interaction between PD-1 and

PD-L1 on tumor-infiltrating lymphocytes and tumor

cells, respectively. Additional inhibitory molecules will

be expressed by the exhausted T cells depending on

the severity of exhaustion, which may reverse by com-

bined PD-1/CTLA-4 blockade (Wherry and Kurachi,

2015). High expression of PD-L1 is often associated

with high expression of PD-1 on CD8 + T cells, indi-

cating a poorer prognosis due to higher risk of cancer

recurrence or metastasis and cancer-related death (Dai

et al., 2017). Furthermore, an increased number of

Treg can suppress immune response to tumor cells by

inhibiting proliferation, activation, degranulation, and

production of perforin and granzymes by CD8 + T

cells (Chen et al., 2003), leading to poor disease prog-

nosis (Gao et al., 2007). In addition, a systematic

review reveals that Th17 cells can both increase tumor

progression and mediate antitumor immune response,

but generally, they are correlated with enhanced prog-

nosis in cancers (Punt et al., 2015). The poor prognosis

in C2 may be attributed to the combined effects of

low infiltration of Treg and Th17, high expression of

immune checkpoint genes, presence of vascular inva-

sion, advanced pathologic stage (III/IV), histologic

grade (G3/G4), and high serum AFP level. On the

other hand, the highest expression of 14 out of 15

immune checkpoint genes in C2 provided possibility of

immunotherapy for C2 patients. Results indicated that

C2 was promising toward anti-CTLA4 therapy and

cabozantinib but not sorafenib. Cabozantinib is a sec-

ond-line therapy and is available for clinical use during

the 2-year period from 2017 through 2018 (Kudo,

2018). The high expression of CTLA4 may account for

C2’s sensitivity toward anti-CTLA4 therapy. The out-

come of our study provides a novel insight into the

combination therapy of anti-CTLA4 therapy and

cabozantinib, which requires further validation in large

cohorts.

Particularly, it has been demonstrated that neoanti-

gens load and overall mutations load may drive T-cell

responses (Diaz and Le, 2015; McGranahan et al.,

2016). Therefore, we made efforts to verify whether

copy number aberrations (deletions and amplifica-

tions), number of mutations, and neoantigens are asso-

ciated with immune infiltration in HCC. In this study,

no association was detected between neoantigen load

and the subclasses, and C2 was correlated with the

least number of mutations. In terms of copy number

aberrations, C2 patients showed lower burden of gains

but higher burden of losses. Our data suggested that

neither neoantigen load nor mutational load was cor-

related with T-cell response, but copy number changes

may have an effect on the immune response. The anti-

tumor immunity in HCC may be driven by other

mechanisms, such as the quality or clonality of

neoantigens, expression of HCC-associated antigens,

and aneuploidy and mutations in specific oncogenic

pathways (Charoentong et al., 2017; McGranahan

et al., 2016; Sia et al., 2017). Although no significance

was detected for the amplification of the locus 11q13

in C2, C2 showed higher amplification rate of HCC

driver genes compared with C1 and C3, indicating an

association between immune infiltration and oncogene-

sis. Notably, patients with genomically amplified

FGF19 can possibly gain from therapy targeting

fibroblast growth factor receptor 4 (FGFR4). A

FGFR4-targeted drug, BLU-554, has been evaluated
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in a Phase 1 clinical trial by Blueprint Medicines and

the result showed great potential for controlling HCC

progression (https://clinicaltrials.gov/ct2/show/NCT0

2508467). Further clinical trials are required to test the

efficacy of combination of anti-CTLA4 therapy and

anti-FGFR4 therapy for C2 patients.

According to the results, a larger proportion of C1

(26%) and C3 (35%) patients carried CTNNB1 muta-

tions compared with C2 (3%). C1 matched Hoshida’s

S3, Chiang’s CTNNB1 subclass, and Boyault’s G5/G6

related to CTNNB1 mutations that lead to Wnt path-

way activation. The explanation for higher proportion

of CTNNB1 mutations in C3 compared with C1

should be referred to the result of t-SNE analysis. C1

separated into two subpopulations, and some outliers

of C3 mixed with C1. We speculated that C1 showing

heterogeneity can be potentially subdivided into two

distinct subtypes with different patterns of CTNNB1

mutations, and either subtype may have a larger pro-

portion of patients bearing CTNNB1 mutations com-

pared with C3. In addition, C3 and C1 showed similar

molecular patterns. Higher AFP level and worse prog-

nosis as well as lower abundance in metabolic signa-

tures distinguished C3 from C1. C3 outliers mixed in

the C1 population had great possibility in carrying

CTNNB1 mutations due to the genetic profiles of C1,

contributing to larger proportion of CTNNB1 muta-

tions in C3. A more reasonable outcome will be

attained if these C3 outliers are relabeled as C1.

The high frequency of CTNNB1 mutations in C1

indicated that patients of this subclass may be benefi-

cial from Wnt signaling pathway-targeted inhibitors.

The Wnt/b-catenin signaling pathway may be the best

characterized oncogenic pathway in HCC (Hoshida

et al., 2009). CTNNB1-activating mutations are identi-

fied in ~ 11–41% of liver cancers (Guichard et al.,

2012). Wnt signaling activation mainly due to muta-

tions in CTNNB1, a b-catenin gene, has been recog-

nized in a major subset of HCC patients (Delgado

et al., 2015). Previous studies have revealed that

tumor-intrinsic active b-catenin signaling may lead to

T-cell exclusion, thus resistance toward anti-PD-L1

and anti-CTLA4 (Spranger et al., 2015), which is con-

sistent with the insensitivity toward immune blockade

in C1 patients of our study. Clinical testing of the sen-

sitivity toward CTNNB1-targeted inhibitors may be

promising for C1 patients. Because of the worse prog-

nosis and nondistinctive character of C3, there may be

less treatment options for C3 patients.

In general, the classification we established validated

the findings of previously established HCC subclasses,

but at the same time preserved its own features.

Specifically, this classification perfectly matched the 3

subclasses from Hoshida (S1, S2, and S3). C1 matched

Hoshida’s S3 and presented the characteristics of well-

differentiated, nonproliferative HCC. C2 and Hoshi-

da’s S1 coincided in poor differentiation with poor

prognosis and high immune infiltration. C3 corre-

sponded with Hoshida’s S2 in high AFP level and

poor prognosis. Thus, this work is a new proof of the

existence of Hoshida’s subclasses in TCGA-LIHC

cohort and LIRI-JP cohort combined. In addition, this

study not only validated the clinical significance of

Hoshida’s classification, but also unveiled unexploited

features of Hoshida’s classification. By classifying

HCC into three clusters with active, intermediate, or

exhausted metabolic activities, this study provided new

insights into the heterogeneity of HCC from the meta-

bolic landscape and proposed possible clinical treat-

ment options for HCC subtypes. We also highlighted

for the first time that C2, corresponding to Hoshida’s

S1, was more likely to be responders of immune check-

point inhibitors.

5. Conclusion

In conclusion, this study classified HCCs from the

metabolic perspective and proposed three subclasses

with active, intermediate, or exhausted metabolic activi-

ties, respectively. C1 was intensively correlated with

metabolic processes with good prognosis, matching

characteristics of the established nonproliferative HCCs.

C2 exhibited high immune infiltration and sensitivity

toward immune blockade as well as chemotherapy. C3

with higher level of AFP and worse prognosis was less

active in metabolism compared with C1 but more active

than C2. With the high predictive value of the 90-gene

classifier, our classification may help to predict the

prognosis of HCC patients and prospective therapies.
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