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In light of the rapid accumulation of large-scale omics datasets, numerous studies have
attempted to characterize the molecular and clinical features of cancers from amulti-omics
perspective. However, there are great challenges in integrating multi-omics using machine
learning methods for cancer subtype classification. In this study, MoGCN, a multi-omics
integration model based on graph convolutional network (GCN) was developed for cancer
subtype classification and analysis. Genomics, transcriptomics and proteomics datasets
for 511 breast invasive carcinoma (BRCA) samples were downloaded from the Cancer
Genome Atlas (TCGA). The autoencoder (AE) and the similarity network fusion (SNF)
methods were used to reduce dimensionality and construct the patient similarity network
(PSN), respectively. Then the vector features and the PSN were input into the GCN for
training and testing. Feature extraction and network visualization were used for further
biological knowledge discovery and subtype classification. In the analysis of multi-
dimensional omics data of the BRCA samples in TCGA, MoGCN achieved the highest
accuracy in cancer subtype classification compared with several popular algorithms.
Moreover, MoGCN can extract the most significant features of each omics layer and
provide candidate functional molecules for further analysis of their biological effects. And
network visualization showed that MoGCN could make clinically intuitive diagnosis. The
generality of MoGCN was proven on the TCGA pan-kidney cancer datasets. MoGCN and
datasets are public available at https://github.com/Lifoof/MoGCN. Our study shows that
MoGCN performs well for heterogeneous data integration and the interpretability of
classification results, which confers great potential for applications in biomarker
identification and clinical diagnosis.

Keywords: multi-omics integration, graph convolutional network, autoencoder, similarity network fusion, cancer
subtype classification

1 INTRODUCTION

Owing to the recent rapid developments in high-throughput sequencing technology, multi-omics
research has strongly promoted the development of precision medicine. However, the application of
precision medicine for the prevention, diagnosis, and treatment of tumors is far from satisfactory (Lu
and Zhan, 2018). Multi-omics approaches are novel frameworks that can integrate multiple omics
datasets generated from the same patients (Heo et al., 2021); thus, an increasing number of studies
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have tried to characterize the molecular and clinical features of
cancers from a multi-omics perspective (Sun and Hu, 2016).

Integrated multi-omics approaches can be divided into two
types: the integration of Euclidean structure data or the
integration of non-Euclidean structure data (Eicher et al.,
2020). The first approach uses the expression matrix as the
input, and then trains machine learning models for clustering
and classification. For example, Chaudhary et al. were the first to
use a deep autoencoder (AE) (Hinton and Salakhutdinov, 2006)
model to predict the survival of patients with hepatocellular
carcinoma (Chaudhary et al., 2018); Chen et al. designed a
deep-learning framework, DeepType, that performs a joint
model of supervised classification, unsupervised clustering, and
dimensionality reduction to learn cancer-relevant data
representation (Chen et al., 2020). These methods can handle
large-scale datasets, but require substantial effort to interpret how
specific features contribute to the predicted results. On the other
hand, the non-Euclidean data integration approach trains models
using the network topology data. These methods can identify
cancer subtypes by fusing the similarities derived from various
omics data, such as similarity network fusion (SNF) (Wang et al.,
2014), GrassmannCluster (Ding et al., 2019), and high-order path
elucidated similarity (HOPES) (Xu et al., 2019). These network-
based processes are clinically intuitive, but existing studies have
focused on the unsupervised integration of multi-omics datasets.

Meanwhile, classification of tumor subtypes plays a leading
role in the treatment and prognosis of cancers. This is a multi-
class classification task and has always presented a challenge in
the field of integrating multi-omics using machine learning.
There is an urgent need for a multi-class network classification
model to handle cancer subtype classification and biomarker
identification. Graph convolutional network (GCN) (Kipf and
Welling, 2017) is a recently developed approach to incorporate
graph structures into a deep learning framework. It classifies
unlabeled nodes using information from the topology of the
network as well as the feature vectors of the nodes. The network
structure makes GCN naturally interpretable. Several studies have
been reported to use this model to predict the complex genome-
disease association (Xuan et al., 2019) and drug-disease
associations (Liu et al., 2020; Yu et al., 2021).

Herein, we developed MoGCN, a multi-omics integration
model based on graph convolutional network, for cancer
subtype analysis. This study creatively proposes developing a
network diagnosis model based on the pipeline of “integrating
multi-omics data first and then performing classification”.
Specifically, we utilized AE to integrate multi-omics expression
data and SNF to integrate a typical network topology data patient
similarity network (PSN) (Pai and Bader, 2018), to construct a
comprehensive view of cancer patients. Then, we used GCN to
combine the AE and SNF results and construct the final model for
cancer subtype classification. By applying MoGCN on the breast
invasive carcinoma (BRCA) data in The Cancer Genome Atlas
(TCGA, http://cancergenome.nih.gov/), we demonstrated that
MoGCN could achieve the best performance in cancer subtype
classification among the current algorithms. Similarly, MoGCN
achieved good results on the TCGA pan-kidney cancer validation
dataset. The case study for breast cancer also shows that our

method has great potential for heterogeneous data integration,
marker identification, and clinical diagnosis.

2 MATERIALS AND METHODS

MoGCN uses multi-omics expression datasets from patients as
inputs, including but not limited to genomics, transcriptomics,
and proteomics datasets. First, we applied the autoencoder model
to extract patient expression features (expression matrix), and
applied the similarity network fusion model to construct a patient
similarity network. Then, we used the GCN model to integrate
these two types of heterogeneous features and to train the cancer
subtype classification model. By integrating network and vector
characteristics, MoGCN was able to achieve good classification
performance, and effectively addressed the issue of deep learning
interpretability in clinical applications. MoGCN is a command-
line tool that allows users to integrate multi-omics datasets for
cancer subtyping classifications efficiently. The overall workflow
is shown in Figure 1.

2.1 Data Preparation
BRCA datasets were downloaded from the UCSC Xena browser
(https://xenabrowser.net/) and the Cancer Proteome Atlas
(TCPA) portal (https://tcpaportal.org/tcpa/) and processed.
Copy number variation (CNV) data at the genomic level,
RNA-seq data at the transcriptomic level, reverse phase
protein array data (RPPA) at the proteomic level, and clinical
data were all available. The breast tumors were classified into four
subtypes (Cancer Genome Atlas Network, 2012): Basal-like,
typically with no expres-sion of hormone receptors or ERBB2;
Her2-enriched, overexpressing the oncogene ERBB2; and
Luminal A and B, generally estrogen receptor (ER)-positive
tumors expressing epithelial markers (Luminal B shows a
higher Ki67 index and worse prognosis than Luminal A);
these were similar to results generated by the established and
widely used PAM50 assay. Common samples were collected from
each omics level; therefore, data from a total of 511 patients in the
BRCA dataset were obtained. The details of the dataset are shown
in Table 1.

A 10-fold cross validation method was applied to all
algorithms implemented in this study. The dataset of 511
samples was first divided randomly into 10 subsets. We
successively selected one subset to become a testing dataset,
while the others were used as a training dataset. Therefore, 10
combinations of the training dataset and testing dataset were
obtained. In each run, we used the training dataset to train the
model and the testing dataset to test the model’s performance; the
average result of the 10 runs was taken as the final result of
the model.

2.2 Multi-Modal Autoencoder
The autoencoder consists of two modules simultaneously: an
encoder and a decoder. The encoder (f) maps the original domain
X to a new domain named latent space Zwith dimension L. Then,
the decoder (g) maps Z back to the original input space X. The
encoder and decoder are defined as z = f (x) and ~x = g (z). By
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minimizing the reconstruction loss, the model captures the
significant features of the data. The loss function to minimize
is formalized as: E = argminf,g [Loss (x, g (f (x)))].

As the input data are characterized by multi-omics data types
and represented bymultiple matricesX1, X2, Xn, corresponding to
the genome, transcriptome, proteome matrices, and so on, the
autoencoder must have multiple inputs and outputs. A multi-
modal autoencoder architecture is proposed. As shown in
Figure 1, the model consists of multiple encoders and
decoders, which share the same latent layer. The loss function
to minimize is formalized as:

E � argminf,g(αLoss1(x1, g1( f1(x1))) + . . .

+ βLoss2(x1, g1( f1(x1)))) (1)
Where α, . . . , β are the weights (prior knowledge) of each data
type, and α + . . . + β = 1.

2.3 Similarity Network Fusion
The SNF algorithm integrates different types of omics data,
creating a network for each data type, and ultimately
establishing a comprehensive view of the disease or biological
process. SNF is able to compute and fuse PSNs for each data type,
which enable the exploitation of complementary information
from multi-omics data types and outperforms other single
data analysis methods. Specifically, the algorithm computes

patient-patient similarity matrices for each data type and
constructs patient-patient similarity networks. Then, network
fusion is performed to enhance strong connections and
remove weak connections. Finally, a fused patient similarity
network is established.

Based on the assumption that there were n samples (such as
patients) and m different data types, for the vth (v = 1, 2, . . ., m)
data type, a scaled exponential similarity matrix was calculated:

W(i, j) � exp⎛⎝ − ρ2 (xi, xj)
μεi,j

⎞⎠ (2)

ρ(i, j) represents the Euclidean distance between the patient xi
and xj W(i, j) represents the n × n similarity matrix between
patient xi and xj µ is a hyperparameter that can be empirically set,
and ε is used to eliminate the scaling problem. Then, the similarity
matrix P(v) of all patients and K-nearest similarity matrix S(v) can
be defined as

P(i, j) �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

W(i, j)
2∑

k≠i
W (i, k), j ≠ i

1
2
, j � i

,

S(i, j) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

W(i, j)∑
k∈Ni

W(i, k) , j ∈ Ni

0, otherwise

(3)

Then, for the case in which there was two types of data, the
process was as follows:

a Calculate P(1), P(2), S(1), S(2). Let P(1)
t�0 = P(1) and P(2)

t�0 = P(2)
represent the initial two status matrices at t = 0.
b Iteratively update the similarity matrix.

P(1)
t+1 � S(1) × P(2)

t × (S(1))T, P(2)
t+1 � S(2) × P(1)

t × (S(2))T (4)

FIGURE 1 |MoGCNworkflow schematic. The input is the multi-omics data. First, the AE and SNF methods are used to reduce dimensionality and to construct the
patient similarity network, respectively. Next, the vector features and adjacency matrix are fed into the GCN for training. Feature extraction and network visualization can
be used for further biological knowledge discovery.

TABLE 1 | Summary of the BRCA dataset.

Number of samples Number of features

Basal-like 112 CNV 19,273
Her2-enriched 53 mRNA 19,580
Luminal A 248 RPPA 223
Luminal B 98 — —

Total 511 Total 39,076
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c After t steps, the overall state matrix can be calculated by:

P(t) � P(1)
t + P(2)

t

2
(5)

For the generalization of m > 2, the update process is:

P(v) � S(v) × ⎛⎝∑k≠vP
(k)

m − 1
⎞⎠ × (S(v))T, v � 1, 2, . . . , m (6)

2.4 Graph Convolutional Network
GCN analysis requires two inputs: the structure of the graph and
the features of each node. In this manual, one input is the multi-
omics feature matrix X ∈ Rn×d, where n is the number of nodes
and d is the number of features. Another input is the PSN, which
can be represented by the form of an adjacency matrix A ∈ Rn×n.
The GCN is built by stacking multiple convolutional layers.
Specifically, each layer is defined as:

H(1+1) � σ(LH(I)W(I)) (7)
Where L � ~D

−1
2 ~A ~D

−1
2 or L � ~D

−1 ~A denotes the normalized graph
laplacian; Ã � A + I denotes the adjacency matrix with added
self-connections; ~D is the degree matrix of ~A; W is the weight
matrix learned from training; σ denotes the nonlinear activation
function, generally the ReLU activation function; and H(l) is the
input of each layer, and notably, H(0) = X.

2.5 Interpretability of MoGCN
Machine learning has great potential for improving products,
processes, and research. However, computers usually do not
explain their predictions, which is a barrier to the adoption of
machine learning. In this study, the interpretability of MoGCN is
reflected in both AE feature extraction and PSN visualization. In
the autoencoder model, we used sensitivity analysis (Garson,
1991) for feature extraction: 1) multiplying the standard deviation
of each input node by its connection weights in the network; 2)
extracting top features every 10 epochs; and 3) merging and
sorting the extracted features. The weights analysis method allows
feature extraction during the training process, but consumes
relatively little extra time. Meanwhile, the visualization of the
PSN also provides an intuitive explanation for the clinical
diagnosis of patient subtyping.

Sensitivity analysis is a valuable method used to describe the
importance of input variables in neural networks quantitatively.
The importance of a node can be determined by the variance of
this feature (also known as variable sensitivity) and the weighted
connections that the node contributes to the network (also known
as weight sensitivity). Therefore, the importance score of a feature
xi can be defined as:

Si � σ i × ∑L
j�1

∣∣∣∣Wij

∣∣∣∣ (8)

Where σi represents the standard deviation of xi, L is the number
of nodes in the next layer, and W is the connection weight of the
input nodes to the output nodes.

In order to obtain stable characteristics of AE during training,
the process for each omics layer is as follows:

a Calculate Si and extract top N features every 10 epochs to get
feature sets G1, G2, . . ., Gm.
b After training, merge G1, G2, . . ., Gm and obtain the stable set
of essential genes.

The case study on breast cancer demonstrates the promising
potential of MoGCN in biological knowledge mining.

2.6Mainstream Feature ExtractionMethods
and Classification Methods
We compared AE with the following unsupervised feature
extraction algorithms: principal component analysis (PCA),
factor analysis (FA), independent component analysis (ICA),
and singular value decomposition (SVD). These methods were
implemented by calling the built-in functions in the Python
scikit-learn library (https://scikit-learn.org/stable/).

We compared GCN with the following state-of-the-art
methods: decision tree (DT), K-nearest neighbors (KNN),
Gaussian naïve Bayes (GNB), random forests (RF), support
vector machine (SVM), deep neural network (DNN) with four
layers, GrassmannCluster and HOPES. GrassmannCluster and
HOPES were implemented using Matlab. Moreover, other
methods were also implemented by calling the built-in
functions in the Python scikit-learn library (https://scikit-learn.
org/stable/).

2.7 Evaluation Index of Model Performance
In the classification tasks, the prediction results of a model have
four basic indicators: true positive (TP), false positive (FP), false
negative (FN), and true negative (TN). The accuracy represents
the proportion of all samples judged correctly by the classifier,
and is defined as:

accuracy � TP + TN

TP + FP + TN + FN
(9)

The F1 score is a measure of classification tasks. It is often used
as the final evaluation index in most machine learning
competitions. It is the harmonic average of the precision rate
and the recall rate, which has a maximum of 1 and a minimum of
0. It is defined as:

F1 score � 2 ×
precision × recall

precision + recall
(10)

Where precision = TP
TP+FP, recall =

TP
TP+FN.

In addition, all results were subjected to 10-fold cross
validation.

2.8 Functional Enrichment Analysis
Biological Process (BP) annotation, Molecular Function (MF)
annotation and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analyses for selected genes were
conducted using David (https://david.ncifcrf.gov/). Gene set
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variation analysis (GSVA) (Hanzelmann et al., 2013) was
performed on the MSigDB (https://www.gsea-msigdb.org/gsea/
msigdb/) “c2. cp.reactome.v7.4. symbols.gmt” gene set using the
“GSVA” package in R software. p-value of <0.05 was considered
statistically significant.

2.9 Kaplan-Meier Survival Analysis
We used the validation breast cancer cohort (n = 1880) from
Kaplan–Meier (KM) plotter (https://kmplot.com/analysis/) to
validate the prognostic value of genes. 10-years overall survival
analysis was performed.

3 RESULTS

3.1 Multi-Omics Integration Using AE Can
Improve Classification Performance
Multi-omics data sets are inherently high-dimensional, and their
processing may be computationally intensive. Dimensionality
reduction is a general strategy to reduce computational
burden. Moreover, multi-omics data are highly heterogeneous
and the relationship between different data types (also named as
layers in data form) is not linear. The extraction of important
features from the various layers remains a huge challenge. Here,
we used random forest as a benchmark classifier to compare the
performance of different dimensionality reduction algorithms
(Tables 2, 3). The results in the rows show that AE performs
best in most cases. More importantly, the results in the columns
show that after the integration of different omics features, the
performance of AE-based classification improved, whereas that of
other methods slightly decreased or remained unchanged. The
potential reasons for this were: 1) a large amount of noise in
multi-omics data, so the classification relative information
density is low, which interferes with the traditional algorithms;
2) traditional algorithms are linear methods and cannot uncover
potential nonlinear relationships within complex biological data.

3.2 Integration of PSN for Greater
Performance Improvement
After integration of multi-omics data using the AE, we applied the
SNF model to construct the patient similarity network (PSN)
(Figure 1). Then, we used GCN to integrate the expression data
and PSNs to establish a complete pipeline for multi-omics
biological data. We compared MoGCN with DT, KNN, GNB,
RF, SVM, DNN, GrassmannCluster, and HOPES. Considering
that GrassmannCluster and HOPES are algorithms used to
construct PSNs and cannot be directly used for classification,
we used the GCN to integrate the GrassmannCluster or HOPES
algorithm for classification separately. The results showed that
the MoGCN method was able to achieve state-of-the-art
classification results (Figure 2). The standard deviation of
MoGCN was the smallest among all compared methods,
indicating that integration of the vector features and the PSN
can improve the overall prediction stability. In addition, we found
that using the features extracted by AE can help other
classification algorithms improve their classification
performance further (Supplementary Table S1). We also
implemented the ablation experiments to prove that a
combination of AE and SNF with GCN (MoGCN) can achieve
better prediction performance. As AE and SNF are both
unsupervised algorithms, the classifier method GCN is needed
for subtype prediction. As shown in Figure 2, MoGCN
performed better than AE + GCN and SNF + GCN in
accuracy and F1 score.

3.3 The Interpretability of MoGCN From AE
Feature Extraction and PSN Visualization
3.3.1 AE Captured Cancer Gene Mutation Patterns at
the CNV Level
We trained the AE for 100 epochs to converge, extracted top 100
genes with the highest scores every 10 epochs, and finally
obtained 183 genes. The BP enrichment analysis of the top-

TABLE 2 | The accuracy of different dimensionality reduction algorithms.

PCA FA ICA SVD AE

mRNA 0.8318 ± 0.0427 0.7808 ± 0.0351 0.6889 ± 0.0301 0.8278 ± 0.0380 0.8357 ± 0.0396
CNV 0.6008 ± 0.0417 0.5949 ± 0.0263 0.5030 ± 0.0339 0.6047 ± 0.0488 0.5695 ± 0.0497
RPPA 0.7730 ± 0.0199 0.7495 ± 0.0411 0.5440 ± 0.0294 0.7847 ± 0.0474 0.8082 ± 0.0438
mRNA + CNV + RPPA 0.8258 ± 0.0459 0.7044 ± 0.0440 0.6283 ± 0.0441 0.8337 ± 0.0402 0.8787 ± 0.0477

*10-fold cross validation (mean ± standard deviation).

TABLE 3 | The F1 score of different dimensionality reduction algorithms.

PCA FA ICA SVD AE

mRNA 0.8086 ± 0.0534 0.7499 ± 0.0450 0.6226 ± 0.0324 0.8129 ± 0.0428 0.8144 ± 0.0520
CNV 0.5578 ± 0.0504 0.5493 ± 0.0231 0.4295 ± 0.0410 0.5461 ± 0.0413 0.5209 ± 0.0548
RPPA 0.7313 ± 0.0388 0.7098 ± 0.0547 0.4430 ± 0.0438 0.7498 ± 0.0573 0.7935 ± 0.0489
mRNA + CNV + RPPA 0.8080 ± 0.0490 0.6541 ± 0.0489 0.5670 ± 0.0542 0.8172 ± 0.0493 0.8722 ± 0.0529

*10-fold cross validation (mean ± standard deviation).
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scoring genes using David showed that their biological function
focused on cell development, cell migration, cell death, signal
transduction, and response to estrogen (Figure 3A). The KEGG

annotation showed that these genes are significantly enriched in
the Wnt, ErbB, PI3K-AKT-mTOR, and tumor necrosis factor
(TNF) signaling pathways. The Wnt signaling pathway is highly

FIGURE 2 | Performance comparison of different algorithms. 10-fold cross validation (mean ± standard deviation).

FIGURE 3 | Copy number variation characteristics of breast cancer. (A) Biological Process (BP), Molecular Function (MF), and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway annotations for the top-scoring genes using David (p < 0.05). (B) Hierarchical clustering heat map of the mutation distribution of the top-
scoring genes selected by AE.
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FIGURE 4 |mRNA molecular characteristics of breast cancer. (A) Hierarchical clustering heat map of the top-scoring genes selected by AE. (B) (C) List of genes
which are high expressed in basal-like breast cancer (BLBC) subtype and biological process (BP) annotation of these genes using David (p < 0.05). (D) 10-years overall
survival analysis (logrank p < 0.05) of CCL19, CXCL13, HLA-DQA2, KRT81, LCN2 and SLPI.
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conserved and it plays a key role in cancer progression. Mutations
in the PI3K-AKT-mTOR signaling pathway are the key drivers of
tumorigenesis and are related to the resistance of endocrine
therapy in breast cancer. The TNF family is a group of
cytokines that can cause cell apoptosis, and their expression is
strongly associated with the development of various cancers.
These results indicated that AE has captured genes with
significant mutation patterns in BRCA.

Furthermore, we performed hierarchical clustering analysis
of the selected mutation genes in all samples (Figure 3B). We
found the local co-amplification of ERBB2 in the Her2-enriched
subtype on 17q12-21. The role of ERBB2 as an important
predictor of patient outcome and response to various
therapies in breast cancer has been clearly established. It is
well known that amplification of the 17q12-q21 region is the
most common mechanism for ERBB2 activation in breast
cancer and that it leads to the simultaneous activation of
several other genes. These co-amplified and co-activated
genes may have an impact on disease progression and the
clinical behavior of ERBB2-positive tumors and thus
represent important targets of research (Kauraniemi and
Kallioniemi, 2006).

3.3.2 AE Captured the EMT and Epidermal
Development Characteristics of Basal-Like Subtype
on Transcriptome Level
Similar as CNV data, AE selected a total of 121 candidate genes at
the transcriptome level after training for 100 epochs. A cohort of
1880 patients from the KM plotter was used to validate the
prognostic value of these genes. We found 70 genes that were
significantly associated with 10-years overall survival (logrank p <
0.05), suggesting that they were potential biomarkers for BRCA
prognosis (Supplementary Table S2).

The expression heatmap (Figure 4A) of the 121 genes was
presented according to the four known subtypes (Luminal A
and B, Her2-enriched, and basal-like). The BLBC patients were
associated with aggressive behavior and poor prognosis, and do
not typically express hormone receptors or HER-2 (the “triple-
negative” phenotype). Therefore, patients with basal-like
cancers are unlikely to benefit from the currently available
targeted systemic therapy (Rakha et al., 2008). We focused
on those genes and found that this subtype was related to
epidermal development and the epithelial-to-mesenchymal
transition (EMT) (Figures 4B,C). Specifically, KRT5, KRT6B,
KRT14, and KRT17 are all well-described BLBC markers.
KRT81 is one of the main hair proteins that is expressed in
the hair cortex. However, it was reported that KRT81 is
expressed in clinical specimens from patients with breast
cancer (Nanashima et al., 2017). KM survival analysis
showed that KRT81 is associated with poor prognosis
(Figure 4D). Our results are consistent with previous studies
that BLBC expresses basal cytokeratin and other markers of
healthy breast myoepithelial cells. The EMT has been associated
with various tumor functions, including tumor initiation,
malignant progression, tumor stemness, tumor cell migration,
intravasation to the blood, metastasis, and resistance to therapy.
Matrix metalloproteinase (MMPs) are considered as target

genes of the EMT pathway and MMP expression is a late
event of the EMT (Han et al., 2018). PRAME plays a tumor-
promoting role in triple-negative breast cancer by increasing
cancer cell motility through EMT-gene reprogramming (Al-
Khadairi et al., 2019). ELF5 is a suppressor of EMT and
metastasis through the transcriptional repression of Snail2 in
breast cancer (Chakrabarti et al., 2012). LCN2 modulates the
degradation, allosteric events, and enzymatic activity of matrix
metalloprotease-9 (Santiago-Sanchez et al., 2020). And we
found LCN2 is an unfavourable prognostic factor
(Figure 4D). SLPI were overexpressed preferentially in
human patients that had lung-metastatic relapse (Zhang
et al., 2002), its poor prognosis (Figure 4D) suggests that it
may be widely related to the drivers of human cancer metastasis
progression. Additionally, we found some immune factors with
good prognosis, CCL19, CXCL13 and HLA-DQA2 (Figure 4D).
In conclusion, these characteristics of the basal-like subtype
were supported by the association between basal cytokeratins
and poor outcome.

3.3.3 Network Visualization and Pathway Analysis at
the Proteome Level
After training the model, we reclassified the subtypes of all
patients. We visualized the patient network using Cytoscape
(https://cytoscape.org/) and identified the two largest subgraphs
with high similarity and strong connections. These were
dominated by patients with the basal-like subtype and with
the Her2-enriched subtype (Figure 5A). We compared the
classification results with the immunohistochemistry results
(Figure 5B). In the basal-like subgroup, there were four
abnormal patients (Figure 5A). Specifically, the status of
GM-A2DH is ER-negative, PR-negative, HER2-negative, and
it is located in the center of the basal-like subgraph. Compared
with the original label Her2-enriched, it is more reasonable for
MoGCN to classify GM-A2DH as basal-like subtype. Although
E2-A1B0 (ER−, PR−, HER2+), BH-A209 (ER+, PR+, HER2−), and
A8-A08L (ER+, PR−, HER2−) were connected to basal-like
patients in the subgraph, their prediction results were
consistent with the original labels. We suggested that this
was the result of a combination of two features: 1) these
patients were located at the edge of the basal-like subgraph,
and 2) the multi-omics feature extracted by AE complemented
the decision-making of the network. In the Her2-enriched
subgroup, there were also four abnormal patients
(Figure 5A), which were all predicted by MoGCN predicted
as the Her2-enriched subtype. BH-A1F2, D8-A1J9, and BH-
A202 were HER2+, indicating that they could benefit from
HER2-targeting therapy. D8-A1JK (ER−, PR+, HER2−) did
not meet the classification criteria of Her2-enriched and
basal-like subtypes. Considering that it is in the Her2-
enriched subgroup, MoGCN diagnosed it as Her2-enriched.
These results suggested that by integrating the network
structure and multi-omics features, MoGCN was able to
make clinically interpretable decisions.

Considering the significant enrichment of the two
subgraphs of the basal-like subtype and the Her2-enriched
subtype, we performed GSVA analysis on the RPPA data of
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FIGURE 5 | Analysis of the results for the proteome and patient similarity network. (A) Visualization of basal-like and Her2-enriched subgroups using Cytoscape. (B)
The IHC, original label, and MoGCN -predicted label of patients. “−”, IHC-negative; “+”, IHC-positive; “?”, missing data. (C) GSVA of basal-like subgroup and Her2-
enriched subgroup (p < 0.05).
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these samples (Supplementary Table S3). The results showed
the statistically different pathways in two subgroups. The
basal-like subgroup was more enriched in intense cell cycle
activity, DNA damage repair, and the fibroblast growth factor
receptors (FGFR) pathways (Figure 5C). The basal-like cell
lines express an autocrine FGF2 signaling loop that may also be
targetable by monoclonal antibodies (Sharpe et al., 2011),
suggesting that patients harboring those tumors may be
candidates for FGFR-based targeted therapies. The Her2-
enriched subgroup overexpressed ErbB signaling, insulin
receptor signaling, and MTOR signaling pathways, which
was consistent with the genome level changes. Therefore,
combination therapy targeting HER2 can effectively
improve patient survival.

3.4 Validation of MoGCN on the TCGA
Pan-Kidney Cancer Dataset
To verify the generality of MoGCN, we applied this analysis
model to the TCGA pan-kidney cancer (KIPAN) dataset, which
consisted of three main subtypes: kidney chromophobe (KICH),
kidney clear cell carcinoma (KIRC), and kidney papillary cell
carcinoma (KIRP) (Figure 6A). The CNV, mRNA, and RPPA
data for the 698 patients were obtained (Figure 6B). In the
subtype analysis, the accuracy and F1 score of the MoGCN
model reached 97.71 and 97.68% and outperformed all other
compared methods (Figure 6C). These results showed that
MoGCN has potential applicability for a wide range of multi-
omics data mining.

4 DISCUSSION

Cancer has been widely regarded as a highly heterogeneous
disease, and the early diagnosis and prognostic of a cancer

type have become the focus of cancer research. The ultimate
goal of biology is to achieve systems biology understanding, that
is, the integration, interpretation and insight of multi-omics. In
the era of big data, efficient data mining of massive biomedical
data is an important challenge for bioinformatics research.

We developed MoGCN, a network-based multi-omics
integration pipeline for cancer subtype classification. Our study
focused on the issues of feature reduction and the interpretation
of prediction results. Notably, AE improved performance after
integrating multi-omics features, and it also achieved the most
optimal performance, which implied that it has the ability to
capture the complex nonlinear relationships between multi-omics
data. Whereas other mainstream algorithms slightly decreased or
remained unchanged. Moreover, by using GCN to integrate the
omics features and the PSN, the classification performance of our
method was further improved, and displayed the highest accuracy
(0.8982) and F1 score (0.9016) compared with the current
mainstream cancer subtype prediction algorithms.

MoGCN is interpretative in terms of feature extraction and
clinically intuitive diagnosis. Once the model has been trained,
MoGCNwas able to extract the most signification features of each
omics layer for downstream biological knowledge discovery. The
mutated genes at genome level were significantly enriched in
functions or signaling pathways for cancer development, such as
epidermal development, cell migration, Wnt signaling, ErbB
signaling, and mTOR signaling. In addition, the genes highly
expressed in the basal-like subtype with the worst clinical
prognosis were characterized by enrichment in epidermal
development and the epithelial-mesenchymal transition.
Finally, through the visualization of the PSN, we found that
the topological network and omics data features were
complementary and could provide intuitive information for
clinical diagnosis. The generality of MoGCN was proven on
the TCGA pan-kidney cancer dataset. These case studies show
that MoGCN performs well for heterogeneous data integration

FIGURE 6 | Performance of MoGCN on KIPAN dataset. (A), (B) Summary of the KIPAN dataset. (C) Performance comparison of different algorithms. 10-fold cross
validation (mean ± standard deviation).
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and the interpretability of classification results, which confers
great potential for applications in biomarker identification and
clinical diagnosis.

5 CONCLUSION

In conclusion, we developed an interpretable deep learning multi-
omics integration model, for cancer subtype analysis. The captured
features could reveal the molecular characteristics of cancer
subtypes and the patient similarity network could provide
intuitive information for clinical diagnosis. This study provided a
novel method of the multi-omics integration. And the graph-based
approach could provide new possibilities to the precision medicine.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

XL gathered all the data and performed the data analysis. JM
designed the study and drafted the manuscript. LL, MH, and ML
contributed to results analysis and discussions. FH and YZ
supervised the study, revised the manuscript and gave the final
approval of the version to be published.

FUNDING

This work was supported by the National Key Research Program
of China (2017YFA0505002, 2021YFA1301603, and
2015AA020108).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2022.806842/
full#supplementary-material

REFERENCES

Al-Khadairi, G., Naik, A., Thomas, R., Al-Sulaiti, B., Rizly, S., and Decock, J.
(2019). PRAME Promotes Epithelial-To-Mesenchymal Transition in Triple
Negative Breast Cancer. J. Transl Med. 17 (1), 9. doi:10.1186/s12967-018-
1757-3

Cancer Genome Atlas Network. (2012). Comprehensive Molecular Portraits of
Human Breast Tumours. Nature 490 (7418), 61–70. doi:10.1038/
nature11412

Chakrabarti, R., Hwang, J., Blanco, M. A., Wei, Y., Lukačišin, M., Romano, R.-A.,
et al. (2012). Elf5 Inhibits the Epithelial-Mesenchymal Transition in
Mammary Gland Development and Breast Cancer Metastasis by
Transcriptionally Repressing Snail2. Nat. Cel Biol 14 (11), 1212–1222.
doi:10.1038/ncb2607

Chaudhary, K., Poirion, O. B., Lu, L., and Garmire, L. X. (2018). Deep
Learning-Based Multi-Omics Integration Robustly Predicts Survival in
Liver Cancer. Clin. Cancer Res. 24 (6), 1248–1259. doi:10.1158/1078-
0432.CCR-17-0853

Chen, R., Yang, L., Goodison, S., and Sun, Y. (2020). Deep-learning
Approach to Identifying Cancer Subtypes Using High-Dimensional
Genomic Data. Bioinformatics 36 (5), 1476–1483. doi:10.1093/
bioinformatics/btz769

Ding, H., Sharpnack, M., Wang, C., Huang, K., and Machiraju, R. (2019).
Integrative Cancer Patient Stratification via Subspace Merging.
Bioinformatics 35 (10), 1653–1659. doi:10.1093/bioinformatics/bty866

Eicher, T., Kinnebrew, G., Patt, A., Spencer, K., Ying, K., Ma, Q., et al. (2020).
Metabolomics and Multi-Omics Integration: A Survey of Computational
Methods and Resources. Metabolites 10 (5), 202. doi:10.3390/
metabo10050202

Garson, G. D. (1991). Interpreting Neural Network Connection Weights. Artif.
Intelligence Expert 6, 46–51.

Han, B., Zhou, B., Qu, Y., Gao, B., Xu, Y., Chung, S., et al. (2018). FOXC1-induced
Non-canonical WNT5A-MMP7 Signaling Regulates Invasiveness in Triple-
Negative Breast Cancer. Oncogene 37 (10), 1399–1408. doi:10.1038/s41388-
017-0021-2

Hänzelmann, S., Castelo, R., and Guinney, J. (2013). GSVA: Gene Set Variation
Analysis for Microarray and RNA-Seq Data. BMC Bioinformatics 14 (7), 7.
doi:10.1186/1471-2105-14-7

Heo, Y. J., Hwa, C., Lee, G.-H., Park, J.-M., and An, J.-Y. (2021). Integrative Multi-
Omics Approaches in Cancer Research: From Biological Networks to Clinical
Subtypes. Mol. Cell 44 (7), 433–443. doi:10.14348/molcells.2021.0042

Hinton, G. E., and Salakhutdinov, R. R. (2006). Reducing the Dimensionality of
Data with Neural Networks. Science 313 (5786), 504–507. doi:10.1126/science.
1127647

Kauraniemi, P., and Kallioniemi, A. (2006). Activation of Multiple Cancer-
Associated Genes at the ERBB2 Amplicon in Breast Cancer. Endocr. Relat.
Cancer 13 (1), 39–49. doi:10.1677/erc.1.01147

Kipf, N. T., and Welling, M. (2017). Semi-supervised Classification with Graph
Convolutional Networks, International Conference on Learning
Representations(ICLR), 22 Feb 2017 (Toulon, France: Palais des Congrès
Neptune).

Liu, Q., Hu, Z., Jiang, R., and Zhou, M. (2020). DeepCDR: a Hybrid Graph
Convolutional Network for Predicting Cancer Drug Response. Bioinformatics
36 (Suppl. l_2), i911–i918. doi:10.1093/bioinformatics/btaa822

Lu, M., and Zhan, X. (2018). The Crucial Role of Multiomic Approach in Cancer
Research and Clinically Relevant Outcomes. EPMA J. 9 (1), 77–102. doi:10.
1007/s13167-018-0128-8

Nanashima, N., Horie, K., Yamada, T., Shimizu, T., and Tsuchida, S. (2017). Hair
Keratin KRT81 Is Expressed in normal and Breast Cancer Cells and
Contributes to Their Invasiveness. Oncol. Rep. 37 (5), 2964–2970. doi:10.
3892/or.2017.5564

Pai, S., and Bader, G. D. (2018). Patient Similarity Networks for Precision
Medicine. J. Mol. Biol. 430 (18 Pt A), 2924–2938. doi:10.1016/j.jmb.2018.05.037

Rakha, E. A., Reis-Filho, J. S., and Ellis, I. O. (2008). Basal-like Breast
Cancer: a Critical Review. Jco 26 (15), 2568–2581. doi:10.1200/JCO.2007.
13.1748

Santiago-Sánchez, G. S., Pita-Grisanti, V., Quiñones-Díaz, B., Gumpper, K., Cruz-
Monserrate, Z., and Vivas-Mejía, P. E. (2020). Biological Functions and
Therapeutic Potential of Lipocalin 2 in Cancer. Ijms 21 (12), 4365. doi:10.
3390/ijms21124365

Sharpe, R., Pearson, A., Herrera-Abreu, M. T., Johnson, D., Mackay, A., Welti, J. C.,
et al. (2011). FGFR Signaling Promotes the Growth of Triple-Negative and
Basal-like Breast Cancer Cell Lines BothIn VitroandIn Vivo. Clin. Cancer Res.
17 (16), 5275–5286. doi:10.1158/1078-0432.CCR-10-2727

Sun, Y. V., and Hu, Y.-J. (2016). Integrative Analysis of Multi-Omics Data for
Discovery and Functional Studies of Complex Human Diseases. Adv. Genet. 93,
147–190. doi:10.1016/bs.adgen.2015.11.004

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 80684211

Li et al. MoGCN for Cancer Subtype Analysis

https://www.frontiersin.org/articles/10.3389/fgene.2022.806842/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.806842/full#supplementary-material
https://doi.org/10.1186/s12967-018-1757-3
https://doi.org/10.1186/s12967-018-1757-3
https://doi.org/10.1038/nature11412
https://doi.org/10.1038/nature11412
https://doi.org/10.1038/ncb2607
https://doi.org/10.1158/1078-0432.CCR-17-0853
https://doi.org/10.1158/1078-0432.CCR-17-0853
https://doi.org/10.1093/bioinformatics/btz769
https://doi.org/10.1093/bioinformatics/btz769
https://doi.org/10.1093/bioinformatics/bty866
https://doi.org/10.3390/metabo10050202
https://doi.org/10.3390/metabo10050202
https://doi.org/10.1038/s41388-017-0021-2
https://doi.org/10.1038/s41388-017-0021-2
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.14348/molcells.2021.0042
https://doi.org/10.1126/science.1127647
https://doi.org/10.1126/science.1127647
https://doi.org/10.1677/erc.1.01147
https://doi.org/10.1093/bioinformatics/btaa822
https://doi.org/10.1007/s13167-018-0128-8
https://doi.org/10.1007/s13167-018-0128-8
https://doi.org/10.3892/or.2017.5564
https://doi.org/10.3892/or.2017.5564
https://doi.org/10.1016/j.jmb.2018.05.037
https://doi.org/10.1200/JCO.2007.13.1748
https://doi.org/10.1200/JCO.2007.13.1748
https://doi.org/10.3390/ijms21124365
https://doi.org/10.3390/ijms21124365
https://doi.org/10.1158/1078-0432.CCR-10-2727
https://doi.org/10.1016/bs.adgen.2015.11.004
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Wang, B., Mezlini, A. M., Demir, F., Fiume, M., Tu, Z., Brudno, M., et al. (2014).
Similarity Network Fusion for Aggregating Data Types on a Genomic Scale.
Nat. Methods 11 (3), 333–337. doi:10.1038/nmeth.2810

Xu, A., Chen, J., Peng, H., Han, G., and Cai, H. (2019). Simultaneous Interrogation
of Cancer Omics to Identify Subtypes with Significant Clinical Differences.
Front. Genet. 10, 236. doi:10.3389/fgene.2019.00236

Xuan, P., Pan, S., Zhang, T., Liu, Y., and Sun, H. (2019). Graph Convolutional
Network and Convolutional Neural Network Based Method for Predicting
lncRNA-Disease Associations. Cells 8 (9), 1012. doi:10.3390/cells8091012

Yu, Z., Huang, F., Zhao, X., Xiao, W., and Zhang, W. (2021). Predicting Drug-
Disease Associations through Layer Attention Graph Convolutional Network.
Brief Bioinform 22 (4). doi:10.1093/bib/bbaa243

Zhang, D., Simmen, R. C. M., Michel, F. J., Zhao, G., Vale-Cruz, D., and Simmen, F.
A. (2002). Secretory Leukocyte Protease Inhibitor Mediates Proliferation of
Human Endometrial Epithelial Cells by Positive and Negative Regulation of
Growth-Associated Genes. J. Biol. Chem. 277 (33), 29999–30009. doi:10.1074/
jbc.M203503200

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Li, Ma, Leng, Han, Li, He and Zhu. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 80684212

Li et al. MoGCN for Cancer Subtype Analysis

https://doi.org/10.1038/nmeth.2810
https://doi.org/10.3389/fgene.2019.00236
https://doi.org/10.3390/cells8091012
https://doi.org/10.1093/bib/bbaa243
https://doi.org/10.1074/jbc.M203503200
https://doi.org/10.1074/jbc.M203503200
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	MoGCN: A Multi-Omics Integration Method Based on Graph Convolutional Network for Cancer Subtype Analysis
	1 Introduction
	2 Materials and Methods
	2.1 Data Preparation
	2.2 Multi-Modal Autoencoder
	2.3 Similarity Network Fusion
	2.4 Graph Convolutional Network
	2.5 Interpretability of MoGCN
	2.6 Mainstream Feature Extraction Methods and Classification Methods
	2.7 Evaluation Index of Model Performance
	2.8 Functional Enrichment Analysis
	2.9 Kaplan-Meier Survival Analysis

	3 Results
	3.1 Multi-Omics Integration Using AE Can Improve Classification Performance
	3.2 Integration of PSN for Greater Performance Improvement
	3.3 The Interpretability of MoGCN From AE Feature Extraction and PSN Visualization
	3.3.1 AE Captured Cancer Gene Mutation Patterns at the CNV Level
	3.3.2 AE Captured the EMT and Epidermal Development Characteristics of Basal-Like Subtype on Transcriptome Level
	3.3.3 Network Visualization and Pathway Analysis at the Proteome Level

	3.4 Validation of MoGCN on the TCGA Pan-Kidney Cancer Dataset

	4 Discussion
	5 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


