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Adipose macrophages with the anti-inflammatory M2 phenotype protect against obesity-induced inflammation and insulin
resistance. Heme oxygenase-1 (HO-1), which elicits antioxidant and anti-inflammatory activity, modulates macrophage phenotypes
and thus is implicated in various inflammatory diseases. Here, we demonstrate that the HO-1 inducer, hemin, protects against
obesity-induced adipose inflammation by inducing macrophages to switch to the M2 phenotype. HO-1induction by hemin reduced
the production of proinflammatory cytokines (TNF-« and IL-6) from cocultured adipocytes and macrophages by inhibiting the
activation of inflammatory signaling molecules (JNK and NF-xB) in both cell types. Hemin enhanced transcript levels of M2
macrophage marker genes (IL-4, Mrcl, and Clecl0a) in the cocultures, while reducing transcripts of M1 macrophage markers
(CD274 and TNF-«a). The protective effects of hemin on adipose inflammation and macrophage phenotype switching were
confirmed in mice fed a high-fat diet, and these were associated with PPARy upregulation and STAT6 activation. These findings
suggest that induction of HO-1 with hemin protects against obesity-induced adipose inflammation through M2 macrophage
phenotype switching, which is induced by the PPARy and STAT6 pathway. HO-1 inducers such as hemin may be useful for

preventing obesity-induced adipose inflammation.

1. Introduction

Obesity-induced adipose inflammation plays an important
role in the development of metabolic complications such as
insulin resistance and type 2 diabetes [1-3]. The accumulation
of adipose tissue macrophages (ATMs) is a hallmark of
obesity-induced adipose inflammation, and inflammatory
mediators (TNF-q, IL-6,and MCP-1) released from the ATMs
play a crucial role in promoting obesity-related systemic
inflammatory conditions [4]. Interestingly, ATMs can polar-
ize into different activation states that perform different func-
tions by producing proinflammatory or anti-inflammatory
cytokines [4], depending on microenvironmental stimuli.
Proinflammatory macrophages (M1) are classically activated
by interferon-y or lipopolysaccharide [5, 6], while anti-
inflammatory macrophages (M2) are activated by IL-4 or IL-
13 [4-6]. The ATMs in lean mice have an M2 profile, whereas

those in obese mice are polarized towards the M1 phenotype
[4]. This suggests that agents that polarize macrophages
towards the M2 phenotype might protect against obesity-
induced adipose inflammation.

Heme oxygenase-1 (HO-1) is a microsomal enzyme
induced in response to oxidative stress and inflammatory
stimuli, which plays an important role in suppressing inflam-
mation and insulin resistance [7]. It catalyzes the oxidative
degradation of heme to biliverdin and carbon monoxide
(CO) [8], and its enzymatic activity is paralleled by the levels
of its transcripts and protein [8, 9]. Importantly, the induc-
tion of HO-1 has potent anti-inflammatory effects against
macrophage-mediated inflammatory responses by preferen-
tially promoting the M2 phenotype [9, 10]. Moreover, induc-
tion of HO-1 in genetically obese mice (ob/ob) and diabetic
rats increases adiponectin expression and suppresses inflam-
matory cytokine expression [11, 12]. However it remains
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unclear whether HO-1 induction reduces obesity-induced
adipose inflammation by influencing adipose macrophage
polarization.

Here, we demonstrate that HO-1 induction by hemin
reduces levels of inflammatory cytokines and enhances adi-
pose macrophage switching toward the M2 phenotype in vitro
and in vivo. The HO-1 inducer hemin may be beneficial for
protecting obesity-induced adipose tissue inflammation.

2. Materials and Methods

2.1.  Reagents. Tricarbonyldichlororuthenium(II)  dimer
[Ru(CO);CL,], (Sigma-Aldrich, St. Louis, MO) known as
CO-releasing molecule (CORM-2) was used as carbon
monoxide (CO) donor. Because CORM-2 contained
ruthenium (Ru) as their metal center, ruthenium(III)
chloride hydrate (RuCl;) (Sigma-Aldrich, St. Louis, MO)
was used as negative control. RuCl; has the same basic
structure as CORM-2 with the notable exception that it
does not yield CO in solution [13]. CORM-2 or RuCl; was
solubilized in dimethyl sulfoxide (DMSO) to give a stock
concentration of 1 M. Hemin, an inducer of HO-1 expression
and activity which increases endogenously generated CO,
and protoporphyrin IX zinc(II) (ZnPP), an inhibitor of HO-1
activity, were also purchased from Sigma-Aldrich (St. Louis,
MO) and dissolved in 20 mM sodium hydroxide (NaOH) to
give a stock concentration of 1 mM.

2.2. Animals. Six-week-old male C57BL/6 mice were
purchased from Orient Ltd. (Busan, Korea). The mice were
maintained under a standard light cycle (12h light/dark)
and were allowed free access to water and food. They were
randomly assigned to the following experimental groups
(n = 5 per group): (1) control diet + vehicle, (2) control diet +
hemin, (3) high-fat diet (HFD) + vehicle, (4) HFD + hemin,
and (5) HFD + hemin + ZnPP. The control diet contained
10% of its calories as fat while the HFD contained 60% of
its calories as fat from lard and soybean oil (Research Diets
Inc., New Brunswick, NJ); hemin and ZnPP (Sigma-Aldrich)
were dissolved in 10% ammonium hydroxide (NH,OH)
in 0.15M NaCl as a stock solution of 100 mg/mL and
then further diluted 1:40 with sterile 0.15M NaCl. Hemin
was intraperitoneally injected alone (25mg/kg BW) or in
combination with ZnPP (12.5mg/kg BW) into the mice
three times per week for 2 weeks [14]. Vehicle-injected mice
received an identical NH,OH-containing solution lacking
hemin or ZnPP. All animal experiments were approved by
the animal ethics committee of the University of Ulsan and
conformed to National Institutes of Health guidelines. Mice
were killed after a 4 h fast, and blood was collected by heart
puncture.

2.3. Cell Cultures and Treatments. Cells of the murine
macrophage cell line Raw264.7 were obtained from the
Korean Cell Line Bank (KCLB40071, Seoul, Korea),
maintained in RPMI1640 (Gibco BRL, NY, USA) containing
10% (vol/vol) FBS (fetal bovine serum) (Gibco BRL, NY,
USA) and incubated at 37°C in humidified 5% CO,.
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3T3-L1 preadipocytes were grown in DMEM (Dulbecco’s
modified Eagle’s medium) high glucose (Gibco BRL,
NY, USA) containing 10% FBS. Differentiation of 3T3-LI
preadipocytes to mature adipocytes was induced with
insulin, dexamethasone, and 3-isobutyl-1-methyl-xanthine,
as described [15], and the differentiated 3T3-L1 cells were
used on day 6 of differentiation. Coculture of adipocytes and
macrophages was performed in a contact system: 3T3-Ll1
adipocytes (3 x 10° cells/well) were incubated in 24-well
plates and Raw264.7 macrophages (3 x 10° cells/well) were
placed onto the adipocytes. The adipocytes and macrophages
were pretreated with hemin, ZnPP or CORM-2, and RuCl,
at the indicated concentrations for 1h prior to coculture for
24h. As a control, numbers of adipocytes and macrophages
equal to those in the contact system were cultured separately
and mixed after harvesting.

2.4. Separation of Adipocytes and Macrophages. Cocultures
of equal numbers of 3T3-L1 adipocytes and Raw264.7
macrophages (as described earlier) were separated using the
CD11b microbeads system (MACS; Miltenyi Biotec, Sunny-
vale, CA, USA) according to the manufacturer’s protocol.
Briefly, cocultured cells were collected, washed twice with
buffer (phosphate buffer saline (PBS) supplemented with
2mM EDTA and 0.5% bovine serum albumin (BSA)), and
incubated with CD11b microbeads for 15 min at 4°C. Washed
and resuspended cells were applied to a MACS column, which
retained CD11b" cells and allowed negative cells (adipocytes)
to pass through. The column was then removed from the sep-
arator and placed on a suitable collection tube. Appropriate
amounts of column buffer were pipetted onto the column to
flush out the positive cells (macrophages) using a plunger
supplier with the column. This method resulted in 90% to
95% pure CD11b" cells, as evaluated by flow cytometry.

2.5.  Preparation of Adipocyte/Macrophage-Conditioned
Medium. Adipocyte-conditioned medium was collected
from 6-day matured 3T3-L1 adipocytes which were cultured
in serum-free medium for 24h. To prepare Raw264.7
macrophage-conditioned medium, macrophages were
incubated for 24 h with 5 yg/mL lipopolysaccharide (Sigma,
St. Louis, MO, USA), washed once with PBS, and cultured
in serum-free medium for another 24 h. These conditioned
media were collected and filtered to remove debris.

2.6. Measurement of Cytokine Levels. Cytokine levels in
culture supernatants were measured by enzyme-linked
immunosorbent assays (ELISA) using an OptEIA mouse
TNF-« set (BD Bioscience Pharmingen, CA, USA), a mouse
IL-6, adiponectin set, and an IL-4 kit (R&D Systems, Min-
neapolis, MN). Values for cytokine levels were derived from
standard curves using the curve-fitting program SOFTmax
(Molecular Devices, Sunnyvale, CA, USA).

2.7. Quantitative Real-Time PCR (qRT-PCR). Total RNA
extracted from cultured cells was reverse-transcribed to gen-
erate cDNA using M-MLV reverse transcriptase (Promega,
Madison, WI). Real-time PCR amplification of the cDNA
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was performed in duplicate with a SYBR premix Ex Taq kit
(TaKaRa Bio Inc., Foster, CA) using a Thermal Cycler Dice
(TaKaRa Bio Inc., Japan). All reactions were performed by the
same procedure: initial denaturation at 95°C for 10 s, followed
by 45 cycles of 95°C for 5s and 60°C for 30s. Results were
analyzed with real-time system TP800 software, and all values
for genes of interest were normalized to values for house-
keeping genes (36B4 for cocultured cells; -actin for adipose
tissue). The mouse primer sequences were used as follows:
adiponectin,  5'-GTCAGTGGATCTGACGACACCAA-3'
(Forward), 5'-ATGCCTGCCATCCAACCTG-3' (Reverse);
IL-4, 5'-ACGGAGATGGATGTGCCAAAC-3' (Forward),
5'-AGCACCTTGGAAGCCCTACAGA-3' (Reverse);
CD274, 5'-GCCTCACTTGCTCATTACAGGTTC-3' (For-
ward), 5'-GCAGTAGCTGTCAAGGGCTCA-3' (Reverse);
NOS2, 5'-CAAGCTGAACTTGAGCGAGGA-3' (Forward),
5" - TTTACTCAGTGCCAGAAGCTGGA-3' (Reverse); Mrcl,
5'-AGCTTCATCTTCGGGCCTTTG-3'  (Forward), 5'-
GGTGACCACTCCTGCTGCTTTAG-3" (Reverse); CleclOa,
5'-GGTCGTCTCCGTGATTGGAT-3' (Forward), 5'-GGT-
GGTGTTGTCTAAAGTGGCTCTC-3' (Reverse); HO-1, 5'-
TGCAGGTGATGCTGACAGAGG-3' (Forward), 5'-GGG-
ATGAGCTAGTGCTGATCTGG-3' (Reverse); TNF-a; IL-6;
36B4; B-actin [15].

2.8. Western Blot Analysis. The nuclear and cytosolic protein
extracts were prepared using NE-PER Nuclear and Cyto-
plasmic Extraction Reagents (Thermo Scientific, Rockford,
USA) according to the manufacturer’s instruction. Epididy-
mal adipose tissues were collected, washed in PBS, and
homogenized in ice-cold CER I buffer. After incubation
on ice for 10 min, ice-cold CER II was added to the cell
suspension, mixed, and incubated for 1 min. The cytosolic
extracts were collected after cells were centrifuged at 15,000 g
for 5min. The nuclear pellets were then resuspended in
ice-cold NER and incubated for 40 min with vortexing for
15s every 10 min. The nuclear extracts were collected after
centrifugation (15,000 g for 10 min, 4°C). Other samples were
lysed in lysis buffer (10 mM Tris-HCI, 10 mM NaCl, 0.1mM
EDTA, 50 mM NaF, 10mM Na,P,0,, ImM MgCl,, 0.5%
deoxycholate, 1% IGEPAL CA-630, and protease inhibitors
cocktail) and centrifuged. The protein content of samples
was determined using a BCA protein kit (Pierce, Rockford
IL, USA). Samples containing 10-30 ug of total protein were
subjected to western blot analysis using polyclonal antibod-
ies to phosphorylated JNK (p-JNK) (c-Jun amino-terminal
kinase), total JNK, pSTAT6 (Tyr641), total STAT6, and his-
tone H3 (Cell Signaling, Danvers, MA, USA); CD68, PPARy,
IxBa (inhibitor of nuclear factor-«B alpha), and NF-«xB p65
(Santa Cruz Biotechnology, Santa Cruz, CA, USA); HO-1
(Enzo Life Sciences, Inc., Farmingdale, NY); and p-actin
(Sigma).

2.9. Statistical Analysis. Results are presented as means +
SEM. Statistical comparisons were performed using Student’s
t-test with Duncan’s multiple-range test. Differences were
considered to be significant at P < 0.05.

3. Results

3.1. Hemin Induces HO-1 Expression in Macrophages and/or
Adipocytes. We first examined the effect of hemin on HO-
1 expression in cocultured adipocytes/macrophages, which
mimics the inflamed adipose tissue environment in obe-
sity. Pretreatment of adipocytes and macrophages prior to
coculture with hemin markedly upregulated HO-1 expression
at the transcript and protein levels (Figures 1(a) and 1(b)),
and the HO-1 induction was confirmed in the separated
adipocytes and/or macrophages retrieved from the coculture
(Figure 1(b)).

3.2. HO-1 Induction Reduces Release of Inflammatory
Cytokines from Cocultured Adipocytes/Macrophages. Next,
we examined whether HO-1 induction by hemin affects the
production of inflammatory cytokines by the cocultured
cells. As shown in Figure 2, HO-1 induction markedly
decreased release of the proinflammatory cytokines TNF-«
(Figure 2(a)) and IL-6 (Figure 2(b)) from the cocultures,
while transcript levels of adiponectin increased (Figure 2(c)).
The effects of hemin were blunted by ZnPP, a competitive
inhibitor of HO-1 (Figures 2(a)-2(c)). Moreover, the CO-
releasing molecule, CORM-2, a reagent that mimics the
biological effects of HO-1 [13, 16], also attenuated the
coculture-induced inflammatory cytokine production
(Figures 2(a)-2(c)), indicating that the hemin effect is
associated with CO release. The effect of HO-1 induction
by hemin appeared to be largely dependent on CO release,
because RuCl;, which does not liberate CO [13], did not have
any effect on the release of inflammatory cytokines.

3.3. HO-I Induction Suppresses Inflammatory Signaling in
Cocultured Adipocytes/Macrophages. We further examined
the effect of hemin on inflammatory signaling molecules. We
treated 3T3-L1 adipocytes or Raw264.7 macrophages with
macrophage- or adipocyte-conditioned medium (M®-CM
or Adi-CM) to activate inflammatory signaling pathways. We
found that both conditioned media reduced HO-1 expression
in adipocytes and macrophages (data not shown), accom-
panied with increase in phosphorylation of JNK and IxB«
degradation (Figures 2(d) and 2(e)). Hemin-induced HO-1
expression suppressed the phosphorylation of JNK, as did
CORM-2, in both adipocytes (Figure 2(d)) and macrophages
(Figure 2(e)). In addition to this, both agents suppressed
the increased IxBa degradation in M®/Adi-CM-treated
adipocytes/macrophages. ZnPP and RuCl; had no effect.

3.4. HO-1 Induction Promotes M2 Macrophage Polarization in
Cocultured Adipocytes/Macrophages. In order to test whether
HO-1 induction affects macrophage polarization in cocul-
tured adipocytes/macrophages, we examined its effect on the
expression of M1 and M2 macrophage markers. As shown in
Figure 3, HO-1 induction by hemin increased IL-4 release
from the cocultures, as did CORM-2 (Figure 3(a)). It also
enhanced IL-4 transcript levels (Figure 3(b)). Consistent with
this, it also enhanced transcript levels of M2 macrophages
markers such as Mrcl (Figure 3(c)) and Clecl0a (Figure 3(d)),
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FIGURE 1: HO-1 induction in adipocyte and macrophage cocultures. Coculture of 3T3-L1 adipocytes and Raw264.7 macrophages were
cocultured in direct contact in a ratio 1:1 for 24 h in the presence or absence of hemin (10 uM). As a control, adipocytes and macrophages
were also cultured separately, with cell numbers per well equal to those in the contact system and mixed after harvesting. (a) Total RNAs were
isolated and the level of HO-1 transcripts was analyzed by qRT-PCR. 36B4 was used as a control gene. A.U.: arbitrary units. (b) After 24 h
of coculture, the cell types were separated using CD11b microbeads. Levels of HO-1 protein expression were measured in coculture, isolated
adipocytes (Iso-Adi), and macrophages (Iso-M®) by western blotting; $-actin was used as a control. The experiment was isolated in duplicate.

Results are means + SEM. *P < 0.05, **P < 0.01, and *P < 0.005.

while it reduced transcript levels of the M1 macrophage
marker CD274 (Figure 3(e)).

3.5. HO-1 Induction Reduces HFD-Induced Adipose Tissue
Inflammatory Responses. To extend the in vitro findings,
we placed C57BL/6 mice on a 60% HFD or control diet
for 2 weeks with hemin injected 3 times per week. The
body weights of the hemin-treated mice given 60% HFD
increased significantly less than those of the vehicle-injected
mice, and food intake did not differ between the two groups
(Figure 4(a)). As shown in Figure 4, hemin decreased levels
of inflammatory cytokines (TNF-& and IL-6) in the adipose
tissue of HFD-fed mice (Figure 4(b)) and increased IL-
4 and adiponectin levels (Figure 4(c)). Hemin treatment
did not affect expression of CD68, a macrophage marker
(Figure 4(d)). It suppressed phosphorylation of JNK and IxBe
degradation (Figure 4(d)). We further measured the expres-
sion of NF-«B p65, a subunit of the NF-«B transcription
complex, in the cytoplasm of adipose tissue and the nuclear
fraction. We found that hemin reduced nuclear translocation
of p65, pointing to a decrease in NF-«B activation in the
adipose tissue of HFD-fed mice (Figure 4(d)). It indicates that
HO-1 induction by hemin inhibits inflammatory signaling in
adipose tissue, in agreement with the in vitro observations.

3.6. HO-I Induction Induces M2 Macrophage Polarization
in Adipose Tissue. We further examined the effect of HO-
1 induction with hemin on macrophage polarization in the
adipose tissue of HFD-fed mice. As shown in Figure 5, hemin
treatment increased levels of HO-1 transcripts (Figure 5(a))
and protein (Figure 5(c)) in the adipose tissue and also tran-
scripts of M2 marker genes (Mrcl and Clecl0a) (Figure 5(b))
while it decreased M1 marker expression (CD274 and NOS2)
(Figure 5(b)). Moreover, the HO-1 inhibitor ZnPP completely
blocked the upregulation of M2 markers (Mrcl and Clecl0a)
and downregulation of M1 markers (CD274 and NOS2)
transcripts (Figure 5(b)). These changes were accompanied
by upregulation of PPARy expression, which has a role in M2
macrophage phenotype switching, and activation of STATS,
a signaling molecule in the IL-4 pathway (Figure 5(c)).

4. Discussion

Obesity-induced adipose inflammation is characterized by
recruitment of macrophages into adipose tissue and activa-
tion of the cells to release inflammatory mediators. Direct
cell-cell cross talk between adipocytes and macrophages
is likely crucial for promoting inflammatory responses in
obese adipose tissue [15, 17]. Using contact cocultured
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FIGURE 3: HO-1 induction alters macrophage polarization in cocultures. Raw264.7 macrophages were seed onto 3T3-L1 adipocytes
with/without being pretreated with the indicated concentrations of hemin or CORM-2 for 12 h. (a) IL-4 levels in hemin/CORM-2-treated
cocultures. (b) Total RNAs were isolated and the level of IL-4 was analyzed by qRT-PCR. Transcript levels of the M2 markers Mrcl (c) and
Clecl0a (d) and the M1 marker (CD274) (e) were detected by qRT-PCR; f-actin was used as control gene. The experiment was performed in
duplicate. Results are means + SEM. “P < 0.05, **P < 0.01, *P < 0.005, and P < 0.001. A.U.: arbitrary units.

adipocytes/macrophages system and mimicking the inflamed
adipose tissue environment in obesity, we first found that
the HO-1 induction by hemin significantly reduced levels of
inflammatory cytokine (TNF-« and IL-6) release from the
cocultures. A similar effect was produced by CORM-2, a CO-
releasing agent. Induction of HO-1 was noticeable in both
of the constituent cell types retrieved from the cocultures,
and the effect of hemin was completely blunted by the HO-
1 inhibitor ZnPP. These observations indicate that induction
by hemin of HO-1, which releases CO via its enzyme activity,
is responsible for the reduction of inflammatory cytokine
release by both cell types.

Next, we examined the effect of hemin on inflamma-
tory signaling. When adipocytes and macrophages were
stimulated with the corresponding conditioned medium, we
found that hemin suppressed the activation of the inflam-
matory signaling molecules JNK and NF-xB in both of

the adipocytes and macrophages, while the HO-1 inhibitor
ZnPP blunted the hemin-induced suppression of inflam-
matory signaling molecules in cocultures, indicating that
the reduction of inflammatory cytokine release by hemin is
due to the inhibitory effect of inflammatory signaling. More
importantly, we observed that the CO producer CORM-2
also suppressed phosphorylation of JNK and NF-«B activa-
tion. Given that CO, a by-product of heme catabolism by
HO-1, exerts potent anti-inflammatory effects by inhibiting
JNK/AP-1 binding [18] and/or NF-xB binding [19], the
inhibitory effect of hemin on the activation of the inflamma-
tory signaling molecules may be, at least in part, associated
with CO production by HO-1, leading to reduced inflamma-
tory cytokines. Because anti-inflammatory M2 macrophages
inhibit M1 macrophage-mediated inflammatory responses
through inhibition of JNK and NF-«B [20-22], we further
inquired whether the suppressed inflammatory signaling by
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FIGURE 4: HO-1 induction reduces HFD-induced adipose tissue inflammatory responses. C57BL/6 mice were fed an HFD diet for 2 weeks
with hemin injection 3 times per week (n = 5). (a) The body weight change and food intake were measured. (b) TNF-«, IL-6 levels, and (c) IL-4
and adiponectin levels were measured by ELISA. (d) Expression of a macrophage marker (CD68) and inflammatory molecules (p-JNK/JNK,
IxBa, and NF-«B p65) in adipose tissue were detected by western blotting. Results are means + SEM. *P < 0.05 **P < 0.01,*P < 0.005, and
P < 0.001 (compared with HFD-vehicle control).
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hemin in the cocultured adipocytes/macrophages was asso-
ciated with macrophage polarization. We found indeed that
hemin upregulated transcripts of M2 macrophage markers
(Mrc-1, CleclOa, and IL-4), while it decreased M1 macrophage
markers (CD274 and TNF-«) in the cocultures. These find-
ings indicate that the inhibitory action of hemin on inflam-
matory signaling leads to switching from the M1 to the M2
macrophage phenotype in the cocultures.

Subsequently, we confirmed the effect of hemin in vivo
by injecting hemin into HFD-fed mice. Hemin injection
markedly upregulated HO-1 expression at the transcript and
protein levels, and it reduced levels of the inflammatory
cytokines in adipose tissue, and this was also accompanied by
reduced activation of inflammatory signaling molecules and
increased expression of M2 macrophage markers. In addition,

since hemin treatment did not alter CD68 expression in
the adipose tissue of the HFD-fed mice but increased M2
marker expression, the anti-inflammatory effect of hemin
in adipose tissue may depend on polarization to the M2
phenotype. Consistent with our findings, other studies have
reported that the HO-1 system reduces various metabolic
complications such as diabetic pathologies and vascular
diseases: adipocyte-specific overexpression of HO-1 atten-
uated HFD-mediated adiposity and vascular dysfunction,
increased insulin sensitivity, and improved adipocyte func-
tion by increasing adiponectin and by decreasing inflamma-
tory cytokines including MCP-1 [23]. Furthermore, hemin
selectively stimulated macrophage polarization towards the
anti-inflammatory M2-phenotype in diabetic and/or spon-
taneously hypertension rats [23-27]. These together with
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our findings suggest that HO-1 induction by hemin reduces
obesity-induced adipose tissue inflammation by promoting
macrophages phenotype switching, and this may protect
against obesity-related metabolic complications. However,
HO-1 induction could be disadvantageous in certain con-
ditions: it can aggravate infection with enterohemorrhagic
Escherichia coli by reducing nitric oxide production in human
enterocytes [28], and it also enhances pancreatic tumor
growth and metastasis by increasing angiogenesis [29] and
exacerbates intracellular oxidative stress in astroglia, leading
to brain injury [30]. Hence, caution is needed if HO-1
inducers are used as a therapeutic target.

It should be noted that PPARy activation primes mono-
cytes into an enhanced M2 phenotype or has more pro-
nounced anti-inflammatory effects on M1 macrophages [31].
One well-established pathway via which PPARy controls the
inflammatory response is by interfering with inflammatory
signaling pathways involving AP-1, NF-«B in activated Ml
macrophages [32]. Moreover, it also directly controls the
expression of genes involved in inducing the M2 macrophage
phenotype, such as the arginase I gene [33]. Because HO-1
enhances the expression and activity of PPARy [34] and con-
versely is a target gene for PPARy signaling [35], the upregula-
tion of PPARy may promote the polarization towards the M2
phenotype. Moreover, we found that adiponectin, another
molecule promoting M2 macrophage polarization [36, 37]
and a PPARy target gene, increased in the adipose tissue of
hemin-injected HFD-fed mice, which is consistent with a
previous study [23]. HO-1 induction by hemin also increased
IL-4 and phosphorylation of STAT6, a typical sign of IL-
4 receptor activation, in adipose tissue of HFD-fed mice.
Since IL-4 signaling through STAT6 phosphorylation induces
transcription of PPARy and their coactivator, amplifying
the expression of signature M2 proteins [38], the increased
IL-4/STAT6/PPARy signaling may be important for hemin-
induced M2 macrophage polarization.

In conclusion, we have shown that HO-1 induction
by hemin reduces inflammatory responses in cocultured
adipocytes/macrophages and in the adipose tissue of HFD-
fed mice. The protective effect of HO-1 induction against
adipose inflammation was associated with polarization
towards the M2 macrophage phenotype via the PPARy and
STAT6 pathway. HO-1 inducing factors such as hemin may
be useful for protecting against obesity-induced adipose
inflammation.
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