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Myosin-Vb functions as a dynamic tether for peripheral endocytic
compartments during transferrin trafficking
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Abstract

Background: Myosin-Vb has been shown to be involved in the recycling of diverse proteins in
multiple cell types. Studies on transferrin trafficking in HelLa cells using a dominant-negative myosin-
Vb tail fragment suggested that myosin-Vb was required for recycling from perinuclear
compartments to the plasma membrane. However, chemical-genetic, dominant-negative
experiments, in which myosin-Vb was specifically induced to bind to actin, suggested that the initial
hypothesis was incorrect both in its site and mode of myosin-Vb action. Instead, the chemical-
genetic data suggested that myosin-Vb functions in the actin-rich periphery as a dynamic tether on
peripheral endosomes, retarding transferrin transport to perinuclear compartments.

Results: In this study, we employed both approaches, with the addition of overexpression of full-
length wild-type myosin-Vb and switching the order of myosin-Vb inhibition and transferrin loading,
to distinguish between these hypotheses. Overexpression of full-length myosin-Vb produced large
peripheral endosomes. Chemical-genetic inhibition of myosin-Vb after loading with transferrin did
not prevent movement of transferrin from perinuclear compartments; however, virtually all
myosin-Vb-decorated particles, including those moving on microtubules, were halted by the
inhibition. Overexpression of the myosin-Vb tail caused a less-peripheral distribution of early
endosome antigen-1 (EEALI).

Conclusion: All results favored the peripheral dynamic tethering hypothesis.

cargo for long distances in vivo, there is surprisingly little
evidence for such a role for unconventional myosins in

Background
Molecular motors generally are thought to be recruited to

vesicles or organelles to provide directional movement;
however, this perspective is complicated by evidence
showing that multiple motors, using multiple cytoskeletal
substrates, are found on individual vesicles and organelles
[1,2,2-7]. While kinesins and dyneins clearly transport

higher eukaryotes [8]. Biophysical studies have shown
that many myosin head domains bind more tightly to
actin in response to loading [9-12], but these adaptations
usually are interpreted as promoting processive transport
of cargo over long distances. However, the biophysical
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data also are consistent with adaptation to function as
dynamic tethers or tensioners between actin filaments
and other cytoplasmic structures. In this context, tethering
is distinct from docking, in that it may simply represent a
net balance of forces, movements, and/or positions.
Accordingly, retention (and active transport) within corti-
cal actin might prevent endosomes from encountering
microtubules, so tethering may represent an effect rather
than a distinct molecular mechanism. Actual point-to-
point transport of cargo by unconventional myosins in a
cellular context might be relatively rare; for example, to
reposition the myosin in the absence or reduction of load,
halting as a new load is sensed.

Myosin-Vb, originally named myr 6 [13], is a member of
one of the most ancient divisions of the myosin super-
family [14], with diverse cellular functions. It interacts
with the brain-expressed RING finger protein BERP,
Rab11la, Rab11a-FIP2, Rab1l1b, Rab25, and Rab8a [15-
19]. It has been implicated in recycling of transferrin and
its receptor [16,18,20], the chemokine receptor CXC2
[21], HIV Vpu [22], acetylcholine receptors [23], the pol-
ymeric IgA receptor [16,24], and the alpha-amino-3-
hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-
type glutamate receptor subunit GluR1 [25]. It also has
been implicated in formation of bile canaliculi [26].

Overexpression of tail fragments of unconventional
myosins has been the standard technique for their inhibi-
tion, and data from these experiments are usually inter-
preted in the context of point-to-point transport. For
myosin-Vb in transferrin trafficking, overexpression of a
tail fragment in HeLa cells caused accumulation of trans-
ferrin in perinuclear compartments, suggesting that
myosin-Vb functions in the transport of vesicles between
perinuclear recycling endosomes and the plasma mem-
brane [16]. By contrast, we adapted a chemical-genetic
method pioneered by Shokat and colleagues for kinases
[27,28] to unconventional myosins, allowing us to
acutely and specifically induce tight binding of a sensi-
tized mutant myosin to actin by microinjection or dialysis
of an ADP analog [29-32]. When we inhibited the sensi-
tized mutant myosin-Vb (also dominant-negative inhibi-
tion), it prevented accumulation of transferrin-positive
vesicles and organelles in the perinuclear region [20]. This
result was inconsistent with the transport hypothesis,
because if myosin-Vb is required for transport between
perinuclear compartments and the plasma membrane,
induction of tight binding to actin should have caused
transferrin to accumulate in perinuclear compartments.

These apparently contradictory results could be reconciled
if myosin-Vb acts peripherally as a dynamic tether that
antagonizes the retrograde transport of transferrin to peri-
nuclear compartments, possibly by holding the parental
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organelle in the periphery during fission. We also
observed an increase in plasma-membrane transferrin
receptor upon myosin-Vb inhibition [20], suggesting that
chemical-genetic inhibition had shunted trafficking to the
rapid peripheral pathway [33]. The tail-fragment overex-
pression data can be explained as release of the peripheral
endocytic compartments from actin, allowing entire
peripheral endosomes to be transported to the perinuclear
region.

Our hypothesis is illustrated in Fig. 1. Peripheral endo-
somes are retained in the periphery by multiple myosin-
Vb motors whose heads periodically detach from actin
(green) as they go through the ATPase cycle, but usually
rapidly reattach, as suggested by biophysical data (Fig.
1A). In Fig. 1B, dynein (or a minus-end-directed kinesin;
its head domain is shown as the letter "D") attaches to a
microtubule and exerts retrograde force. Occasionally,
adjacent myosin-Vb detaches from actin (dotted circle)
and cannot reattach because dynein has pulled it away
from the actin filament. The remaining myosins hold the
bulk of the endosome in place. In Fig. 1C, fission has
occurred, and the daughter vesicle moves retrogradely;
after the switch to microtubules, myosin-Vb is carried
along as a passenger. Although we hypothesize that
myosin-Vb primarily functions as a dynamic tether, our
model does not preclude myosin-Vb-dependent mean-
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Model and normal distributions of myosin-Vb and
transferrin. (A) Peripheral endosomes are retained in the
periphery by multiple myosin-Vb motors whose heads peri-
odically detach from actin as they go through the ATPase
cycle, but usually reattaching. (B) Dynein (or a minus-end-
directed kinesin) attaches to a microtubule and exerts retro-
grade force. Occasionally, adjacent myosin-Vb detaches from
actin (dotted circle), allowing dynein to pull it away from the
actin filament. (C) Following fission, the daughter vesicle
moves retrogradely, carrying myosin-Vb as a passenger. (D,
E, F) In Hela cells expressing low levels of e GFP-myosin-Vb,
colocalization between myosin-Vb (green) and transferrin
(red) is rare (arrow) and transient (also see Additional file I).
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dering within the peripheral actin network. We have dia-
grammed two different means of binding myosin-Vb to
the endosome as cyan and purple circles, since two differ-
ent means have been demonstrated experimentally:
Rab11a [16] and the CART complex [18].

In this study, we have employed three different perturba-
tions of myosin-Vb function to further test the dynamic
tethering hypothesis, which makes clear predictions: first,
overexpression of full-length, functional myosin-Vb will
prevent transferrin from reaching perinuclear compart-
ments; second, chemical-genetic inhibition of sensitized
mutant myosin-Vb in cells after transferrin loading (in
our previous study, it was done before transferrin load-
ing) will neither cause accumulation of transferrin in peri-
nuclear compartments nor prevent transferrin from
moving from perinuclear compartments to the plasma
membrane; and third, overexpression of the myosin-Vb
tail fragment will cause at least some peripheral endocytic
markers to assume more perinuclear distributions. The
new data generally contradict the transport hypothesis. In
addition, our data suggest that members of the myosin-V
family may play a ubiquitous function in modulating ves-
icle transport along microtubules, as they are available to
interact with passing actin filaments as passengers.
Applied more broadly, our data suggest that identifying
endocytic compartments by their positions within the
cytoplasm may be unreliable in the context of significant
experimental disruptions.

Results and Discussion

We have shown that expression of low levels of exogenous
myosin-Vb (25-40% of endogenous levels) does not alter
the trafficking of transferrin [20]. However, the dynamic
tethering hypothesis predicts that exceeding endogenous
levels with wild-type exogenous myosin-Vb will alter the
balance of forces, reducing the extent and/or rate of retro-
grade movement from peripheral to perinuclear compart-
ments. To test this prediction, we increased the amount of
myosin-Vb associated with those compartments by tran-
siently transfecting HeLa cells with a full-length, wild-type
myosin-Vb construct. To allow imaging of live cells, we
used a construct with an N-terminal eGFP tag [16]. We
compared the distribution of eGFP-tagged myosin-Vb
with that of our C-terminal -tagged (V5 and 6x-His) ver-
sion [20], and observed no significant differences (data
not shown). At low levels of eGFP-myosin-Vb expression,
we observed only occasional, highly dynamic, colocaliza-
tion of myosin-Vb and transferrin (arrows, Fig. 1D,E,F;
Additional file 1).

Figure 2 and Additional files 2, 3, 4, 5, 6, 7, 8 show trans-
ferrin accumulation in peripheral compartments as a
function of the overexpression level of eGFP-myosin-Vb,
which the dynamic tethering hypothesis predicts will
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Figure 2

Overexpression of full-length, wild-type eGFP-
myosin-Vb causes coalescence of peripheral endo-
cytic compartments and inhibits perinuclear accu-
mulation of transferrin. Hela cells were transiently
transfected with full-length, wild-type myosin-Vb tagged with
eGFP and imaged 24 h after transfection. (A) Diagram
depicting predicted results. (B, C) Colocalization of actin on
enlarged compartments (arrows) with eGFP-myosin-Vb. (D,
E, F) In cells expressing high levels of eGFP-myosin-Vb coin-
cident with exposure to transferrin (arrows), large, periph-
eral organelles decorated with myosin-Vb also contain
transferrin. (G, H, 1, J, K, L) In cells exposed to a I-min
pulse of transferrin 24 h after transfection and 10 min before
imaging, transfected cells (arrows) contain large, peripheral
organelles decorated with myosin-Vb that lack transferrin.
Cells expressing lower levels of myosin-Vb (arrowheads,
panel K; too low to be seen in panel J) accumulate less trans-
ferrin than the surrounding untransfected cells (arrowheads).
Bar, 15 pum.

cause the coalescence and caging of peripheral endosomes
by actin (Fig. 2A). A coalescence of actin around the
enlarged peripheral endosomes is shown by the colocali-
zation of myosin-Vb and actin (Fig. 2B,C).

Hela cells that endocytosed fluorescent transferrin before
and during overexpression of eGFP-myosin-Vb seques-
tered transferrin in large peripheral compartments deco-
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rated with myosin-Vb (Fig. 2D,E,F; Additional file 2),
suggesting that fission of the compartments in which
myosin-Vb and transferrin normally transiently colocalize
(arrow, Fig. 1D,EF; Additional file 1) was inhibited. By
contrast, when transferrin was introduced after overex-
pression of myosin-Vb, transferrin was not colocalized
with myosin-Vb in the enlarged peripheral compartments
(arrows, Fig. 2F-K; Additional files 3, 4, 5). In addition,
transferrin failed to accumulate in perinuclear compart-
ments. As a negative control, we expressed a truncated
myosin-Vb consisting of the head domain and first IQ
domain, which had no effect on transferrin localization
(data not shown). These data suggest that that overexpres-
sion of myosin-Vb prevents transferrin from both entering
into and exiting from a normally dynamic, short-lived
endocytic compartment.

In isolation, the static images shown in Figure 2 can be fit
to the anterograde transport model if overexpression
caused rapid transport of transferrin from perinuclear
compartments while delaying its passage through cortical
actin. However, Additional files 3, 4, 5 show that transfer-
rin is not reaching perinuclear compartments.

As these data suggest that fission of vesicles from periph-
eral endocytic compartments and/or their transport to
perinuclear compartments had been prevented by
increased tethering to cortical actin, we examined the dis-
tribution of the endocytic markers Rab11a, Rab4, and
Rab5. Cotransfections with eGFP-myosin-Vb and the recy-
cling endosome marker mRFP-Rab11a showed virtually
complete colocalization at high levels of myosin-Vb
expression (Additional file 6). By contrast, little colocali-
zation was observed in cells cotransfected with eGFP-
myosin-Vb and the early endosome markers mRFP-Rab4
(Additional file 7) and mRFP-Rab5 (Additional file 8),
suggesting that trafficking through early endosomes was
not prevented. The videos also show that the enlarged
endosomes are relatively static, consistent with increased
tethering forces and caging by actin.

In a previous study, we used a chemical-genetic approach
to show that induction of tight binding of sensitized
myosin-Vb to actin, before addition of transferrin, pre-
vented transferrin from accumulating in perinuclear com-
partments [20]. Our hypothesis is diagrammed in Fig. 3A,
and the effect of inhibition before transferrin uptake,
demonstrated previously, is shown in Fig. 3B. If myosin-
Vb is required for transport from perinuclear compart-
ments to the plasma membrane, then inducing tight bind-
ing of myosin-Vb to actin after transferrin loading should
increase transferrin accumulation in perinuclear compart-
ments, just as myosin-Vb tail overexpression does. We
therefore transfected HelLa cells with Y119G sensitized
mutant (Fig. 3) and wild-type control (not shown)
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Figure 3

Inhibition of myosin-Vb after loading with transferrin
does not prevent transit from perinuclear recycling
endosomes. Hela cells transiently expressing sensitized
myosin-Vb were loaded with Alexa 546-transferrin, washed,
incubated in growth medium for 30 min, and imaged for
myosin-Vb and transferrin. (A) Diagram depicting predicted
results; the sensitized mutant myosin-Vb is shown in red and
PE-ADP is shown as a green circle. (B) Inhibition of accumu-
lation of transferrin (red) added after myosin-Vb inhibition by
microinjection of PE-ADP2. Injected cells have blue nuclei.
(C, D, E, F, G, H) The cell expressing sensitized myosin-Vb
(center, panel C) was immediately injected with PE-ADP and
the same field was imaged 30 min later (F, G, H). Panels C
and D are overlaid in panel E, and panels F and G are overlaid
in panel H. Bar, 15 pm.

myosin-Vb, loaded them with fluorescent transferrin, and
microinjected the specific inhibitor of Y119G myosin-Vb,
Ne¢-(2-phenylethyl)-ADP (PE-ADP) [20]. Only cells with a
punctate eGFP localization, representing lower expression
levels, were chosen for microinjection. When PE-ADP was
injected 10 min (data not shown) and 30 min (Fig.
3D,EF) following the addition of transferrin, we still
observed a decrease in fluorescence intensity in the peri-
nuclear region of the transfected and injected cells (Fig.
3D,E,F) as well as rapid movement of transferrin when it
did not colocalize with myosin-Vb (Additional file 9).
These data, as well as the limited colocalization between
transferrin and myosin-Vb, indicate that myosin-Vb activ-
ity is not required to transport transferrin from perinu-
clear compartments to the plasma membrane. These data
are much more consistent with the peripheral tethering
hypothesis, because the peripheral site of myosin-Vb
function has been bypassed by loading with transferrin
before induction of tight binding of myosin-Vb to actin.
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While the inhibition of the Y119G sensitized mutant
myosin-Vb in preloaded cells did not cause transferrin
accumulation in perinuclear compartments, the data were
not as simple as they were predicted to be by the dynamic
tethering hypothesis, as myosin-Vb inhibition retarded
the depletion of transferrin from perinuclear compart-
ments relative to control cells (Fig. 3G,H). Upon closer
examination, our induction of binding of myosin-Vb to
actin had the general effect of halting nearly all motion of
myosin-Vb-decorated structures within the cell (Fig. 4A).
The motility of eGFP-myosin-Vb before and after microin-
jection was analyzed using kymographs (Fig. 4B,C for the
cells shown in Fig. 4A, Fig. 4D,E for additional negative
control cells; also see Additional files 10, 11, 12). Binned
measurements of instantaneous particle speeds in the
presence and absence of PE-ADP (Fig. 4F, Additional files
10 and 11) show that not only was slower actin-based
motility (0.15 - 0.3 pm/s) inhibited, but higher-speed
movements of myosin-Vb-decorated particles caused by
microtubule-based motors (> 0.7 um/s) were halted as
well. No such inhibition was observed under control con-
ditions, which included cells expressing Y119G myosin-
Vb after injection of vehicle plus fluorescent Dextran with-
out PE-ADP (data not shown), as well as cells expressing
wild-type myosin-Vb after PE-ADP injection (Fig. 4G,
Additional file 12).

The arrest of microtubule-based motility of myosin-Vb-
decorated particles was unexpected, and we initially sus-
pected that it might have been an artifact of high effective
ADP concentration in the form of the microinjected PE-
ADP analog. To test the hypothesis that myosin-Vb inter-
acts transiently with actin filaments during microtubule-
based transport under normal conditions, we measured
the speeds of particles decorated with wild-type eGFP-
tagged myosin-Vb before and after the addition of latrun-
culin A. If myosin-Vb (or other myosins) normally inter-
acts with actin filaments, latrunculin A treatment should
increase both mean speed and the proportion of vesicles
moving at 0.7-1.0 pm/sec. This prediction was con-
firmed, as latrunculin treatment nearly doubled the pro-
portion of particles exhibiting rapid movement (Figure
4H), in contrast with results from melanosome transport
in fish melanophores [34]. The modification of the
dynamic tethering hypothesis to account for these data is
diagrammed in Fig. 41 and 4J.

The dynamic tethering hypothesis further predicts that
some markers found in peripheral endocytic compart-
ments are likely to be shifted to a more perinuclear distri-
bution by myosin-Vb tail overexpression (Fig. 5A). We
tested this prediction for early endosomal antigen-1
(EEA1), which had a dispersed pattern in control cells
(Fig. 5B,C,D, arrowhead), while in cells expressing the
eGFP/myosin-Vb tail chimera [16], EEA1 was much more
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Figure 4
Chemical-genetic inhibition of myosin-Vb halts
myosin-Vb-decorated particles, including those being
transported via microtubules. (A) Representative image
of two Hela cells expressing sensitized Y | |9G mutant eGFP-
myosin-Vb before injection of the upper cell with PE-ADP.
Bar, 15 um. (B and C) Kymographs from the cells shown in
panel A (y axes represent lines wx and yz from panel A). (D
and E) Kymographs from additional negative control cells
expressing wild-type myosin-Vb injected with PE-ADP and
wild-type myosin-Vb injected with dextran respectively. (F
and G) Histograms of instantaneous speeds of myosin-Vb-
labeled vesicles before (black bars) and after (white bars) PE-
ADP injection in cells expressing wild-type and Y1 19G
mutant eGFP-myosin-Vb respectively; Speeds were meas-
ured for | 178 (before injection) and 621 particles (after) for
panel F, and 717 and 551 respectively for panel G. (H)
Instantaneous speeds of wild-type eGFP-myosin-Vb-labeled
vesicles before (black bars) and after (white bars) depolymer-
ization of actin by latrunculin A; the Y119G mutant gave
indistinguishable results (data not shown). Speeds were
measured for 707 (before) and 206 (after) particles. (I and J)
Diagrams depicting additions to the dynamic tethering
hypothesis to accommodate these data. Kinesin is repre-
sented with the letter "k" for the head domain.

concentrated, in an asymmetric pattern primarily on one
side of the nucleus (Fig. 5B,C,D, arrows).
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Figure 5

eGFP-myosin-Vb tail overexpression displaces EEAI
and Rabl la to more perinuclear positions. Hela cells
were transfected with the eGFP-myosin-Vb tail construct
and allowed to express overnight. (A) Diagram depicting dis-
placement of peripheral endosomes. (B) Immunofluorescent
detection of EEAI. (E, F, G) Cotransfection with the mRFP-
Rabl la construct. (H, I, J) Cells cotransfected with the
mRFP-Rab8a construct. (C, F, I) eGFP-myosin-Vb tail. (D,
G, )) overlays of B+C, E+F, and H+l respectively; arrows,
cells expressing the myosin-Vb tail fragment; arrowheads,
control cells not expressing the tail. Bar, 15 pm.

Based on the change in distribution of EEA1 coupled with
its failure to colocalize with the myosin-Vb tail, we
hypothesize that in the presence of the tail, endosomes
still are transported to more perinuclear regions of the
cytoplasm, but the fission between their domains that
normally occurs in peripheral regions occurs in a more
perinuclear location. We then confirmed the effect of the
myosin-Vb tail on Rab11a redistribution. As observed by
Lapierre et al., the dispersed pattern observed in untrans-
fected control cells (Fig. 5E,F,G, arrowheads) was changed
to a more perinuclear pattern by overexpression of the
eGFP/myosin-Vb tail (arrows).

We next examined Rab8a, which has been shown to inter-
act in vitro with myosin-Vb [19]. We observed a nearly
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normal distribution of Rab8a despite the overexpression
of the myosin-Vb tail (Fig. 5H,1,J). These results are con-
sistent with the differences between Rabl1la and Rab8a
compartments and pathways observed by Roland et al.,
and indicate that the affinity of the myosin-Vb tail
domain for Rab8a is much lower than its affinity for
Rab11a. This result also is consistent with their inability to
observe interaction between myosin-Vb and Rab8a in a
cellular context.

Since mosaic endosomes have been observed with every
possible combination of Rab4, Rab5, and Rabl1a [35],
we examined Rab4 and Rab5 distribution. Overexpres-
sion of the myosin-Vb tail produced a slight alteration in
the distribution of Rab4 (Fig. 6A,B,C,D), but no signifi-
cant effect on Rab5 distribution (Fig. 6F,G,H), which is
puzzling given the association between EEA1 and Rab5
[36].

To summarize our model, myosin-Vb is associated with
multiple compartments, of which only some are involved
in transferrin trafficking. Myosin-Vb primarily tethers a
subset of peripheral, Rab11a-positive endocytic compart-
ments to cortical actin, opposing forces from dynein or
minus-end-directed kinesins and retaining the compart-
ment in the actin-rich periphery. This is analogous to the
mechanism of Velcro™, except that instead of hooks bend-
ing, the myosin-Vb heads are going through the ATPase
cycle and periodically releasing from actin. In this anal-
ogy, overexpression of full-length, wild-type myosin-Vb
(Fig. 2) causes greater retention of normally endocytic
compartments in the periphery, leading to their coales-
cence, because the increase in number of myosins out-
weighs their individual cycling off and back onto actin.

Cotransfection

Endocx)trl'ltl:ymarker Endocytic Marker

Overlay

Myosin-Vb tail

Myosin-Vb tail

Figure 6

(A-H) Overexpression of eGFP-myosin-Vb tail causes
a slight shift in Rab4 distribution, but has little effect
on Rab5 distribution. Hela cells were transiently trans-
fected with eGFP-myosin-Vb tail fragment (B,C,D,F,G,H)
and mRFP-Rab4 (A,B,C,D) or mRFP-Rab5 (E,F,G,H) and
imaged after overnight incubation. Bar, |5 pum.
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These data strongly suggest that while this compartment is
normally rare and transient (Fig. 1), all transferrin still
must pass through it to reach perinuclear compartments.
Both our overexpression of myosin-Vb and overexpres-
sion of the myosin-Vb tail create artifacts. In the former
case (Fig. 2), caging by actin causes coalescence and block-
age of both entry and exit; while in the latter case [16],
release from actin causes what we believe to be virtually
the same compartment to collapse to a perinuclear loca-
tion. Chemical-genetic inhibition is analogous to prevent-
ing individual Velcro™ hooks from bending, but does not
prevent entry and exit into this compartment via the
peripheral pathway [20].

Myosin-Va, the founding member of this myosin family,
appears to have a similar function, albeit involving differ-
ent compartments. In melanocytes, we first suggested a
peripheral tethering function for myosin-Va based on the
mutant phenotype, a perinuclear accumulation of
melanosomes [37]. The best-characterized system for
melanosome transport has been Xenopus melanophores
[4,5,38,39], with similar, but less dynamic, results from
murine melanocytes [40]. In both cases, myosin-Va func-
tion was hypothesized to provide not only peripheral cap-
ture, but transport within the periphery as well. While
pauses in microtubule-based movement attributed to
myosin-Va have been observed [41,42], these studies rep-
resent the first such observation for myosin-Vb. In gen-
eral, myosin-Vb appears to perform the same function in
the endocytic pathway as myosin-Va performs in exocytic
pathways, and our future experiments will test the validity
of our generalization. In a technical context, our results
suggest that membrane compartments cannot necessarily
be reliably identified by their locations within the cyto-
plasm in cells in which trafficking has been grossly per-
turbed by manipulation, particularly overexpression, of
any relevant component.

Methods

Expression Constructs

The full-length eGFP-wild-type myosin-Vb, eGFP-myosin-
Vb tail, mRFP-Rab4a, mRFP-Rab5a, mRFP-Rab8a and
mRFP-Rab11a expression constructs were gifts from Jim
Goldenring and are based on the peGFP-C2 expression
vector (Clontech). The sensitized Y119G mutant eGFP
myosin-Vb was created by shuttling a 989-bp Clal/BstEIl
fragment from pEcho/pcDNA3.1 Y119G myosin-Vb [20].
The control eGFP-tagged myosin-Vb 11Q expression vec-
tor was created by amplifying the eGFP-tagged, wild-type
myosin-Vb sequence for the head domain through the
first IQ domain and cloning into pYY8.

Cells and transfection
HelLa cells were cultured as described [20]. For transfec-
tions, 1 pg of Lipofectamine 2000 (Invitrogen) was added

http://www.biomedcentral.com/1471-2121/9/44

to 40 pl of OptiMEM (Invitrogen), then mixed with 0.5 pg
of DNA diluted into 40 pl of OptiMEM according to man-
ufacturer's instructions. Hela cells were trypsinized, col-
lected and resuspended in complete medium at a
concentration of 1 x 10° cells/ml. The cell suspension (80
pl) was added to the DNA/liposome mixture and plated as
40-pl dots in live-cell chambers (Bioptechs, Butler, PA) or
glass coverslips, incubated for 1-2 h and then flooded
with complete medium. Cells were used in experiments
24-48 h after transfection.

Immunofluorescence

EEA1 was detected using a monoclonal antibody (BD
Transduction Laboratories 610456). The primary anti-
body was detected with Alexa-546- or Alexa-647-labeled
goat anti-mouse secondary (Invitrogen). For cell outlines,
actin was stained with Alexa-647-labeled phallacidin
(Invitrogen).

Transferrin trafficking, microinjection, and latrunculin
treatment

Transfected cells were incubated in serum-free medium
for 60 min, then exposed to 10 pg/ml Alexa 546-labeled
transferrin (Invitrogen) for 1 min, washed 3 times with
PBS and incubated in pre-equilibrated complete medium
for the duration of live-cell experiments. For concomitant
labeling with transferrin before expression of exogenous
eGFP-myosin-Vb (Fig. 2D,E,F), fluorescent transferrin (10
pg/ml) was added to the complete medium used to flood
the coverslips during transfection as described above.
During live-cell experiments, stage positions of individual
transfected cells were stored using MetaMorph (Molecular
Devices) and a motorized stage (Prior). To inhibit Y119G
myosin-Vb, HelLa cells were injected in the nucleus with
10 mM PE-ADP, 100 mM KCI, 8 mM K-phosphate (pH
7.0), 0.05 mg/ml fixable Alexa 647-labeled dextran (Invit-
rogen), and 10 mM Mg-ATP using a Harvard Apparatus
PLI-100 at 8-15 kilopascals; negative control injections
contained the same solution lacking PE-ADP. Assuming
an injection volume of ~3% cell volume, the final concen-
tration of PE-ADP was ~300 uM. To inhibit actin polym-
erization, latrunculin A (Molecular Probes) was added to
medium at 2.5 pg/ml.

Imaging and Quantitation

All images were obtained using a Nikon TE2000E
equipped with a Q57 12-bit CCD camera (Roper Scien-
tific) controlled by MetaMorph software. Images were
obtained through a 60x (1.2 NA) water-immersion lens
that was maintained at 37°C using an objective heater
(Bioptechs). For time-lapse movies, images were obtained
at a rate of 1 frame/sec over a 1-min time course. Fluores-
cence imaging of the dextran to identify injected cells was
performed following the time-lapse imaging. Instantane-
ous speeds of individual particles were measured by
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observers (blindly with respect to experimental condi-
tions) using the Track Points package of MetaMorph and
the data were exported to Microsoft Excel. Measurements
were obtained from 5-10 cells per condition, and num-
bers of particles are provided in the Figure 3 legend. Since
pixel size produced submicron/sec speed measurement
errors, speeds were separated into 3 bins: 0-0.15 pm/sec
(stationary and actin-based), 0.16-0.70 pm/sec (both
actin- and microtubule-based), and 0.71-1.0 pm/sec
(microtubule-based).

Additional files
All videos are of Hela cells.

Abbreviations List
EEAL: early endosomal antigen-1; and PE-ADP: N°-(2-
phenylethyl)-ADD.
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Additional material

Additional file 1

Low-level expression of full-length eGFP-myosin-Vb (green) shows rare,
dynamic colocalization (circles) of myosin-Vb and transferrin (red); same
cell as shown in Figure 1D-F. Frame acquisition rate, 0.5/sec; elapsed
seconds are displayed at lower right.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2121-9-44-S1.mov]|

Additional file 2

Overexpression of full-length eGFP-myosin-Vb (green) in the presence of
transferrin (red; added at the time of transfection) produces enlarged,
less-motile peripheral endosomes decorated with myosin-Vb and contain-
ing transferrin at 24 h post transfection; same cells as shown in Figure
2D-F. Frame acquisition rate, 0.5/sec; elapsed seconds are displayed at
lower right.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2121-9-44-S2.mov]|

Additional file 3

Overexpression of full-length eGFP-myosin-Vb produces enlarged, less-
motile peripheral endosomes decorated with myosin-Vb; same field as
shown in Figure 2]-L. Frame acquisition rate, 0.5/sec; frame display rate,
3/sec.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2121-9-44-S3.mov]|

http://www.biomedcentral.com/1471-2121/9/44

Additional file 4

Owerexpression of full-length eGFP-myosin-Vb (not shown) prevents entry
of Alexa 546-labeled transferrin (shown) into perinuclear compartments;
same field as Additional file 3. Frame acquisition rate, 0.5/sec; frame dis-
play rate, 3/sec.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2121-9-44-S4.mov]|

Additional file 5

Owerlay of Additional file 3 (myosin-Vb, green) and Additional file 4
(transferrin, red).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2121-9-44-S5.mov]|

Additional file 6

Rab11a (red) colocalizes with eGFP-myosin-Vb (green) at high myosin-
Vb expression levels. Frame acquisition rate, 0.5/sec; frame display rate,
6/sec.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2121-9-44-S6.mov]|

Additional file 7

Rab4 (red) does not colocalize with eGFP-myosin-Vb (green) at high
myosin-Vb expression levels. Frame acquisition rate, 0.5/sec; frame dis-
play rate, 6/sec.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2121-9-44-S7.mov]|

Additional file 8

Rab5 (red) does not colocalize with eGFP-myosin-Vb (green) at high
myosin-Vb expression levels. Frame acquisition rate, 0.5/sec; frame dis-
play rate, 6/sec.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2121-9-44-S8.mov]|

Additional file 9

Chemical-genetic inhibition of sensitized mutant (Y119G) eGFP-myosin-
Vb by PE-ADP microinjection does not prevent movement of transferrin-
positive particles. Cells were loaded with fluorescent transferrin (red) 30
min before myosin-Vb was inhibited in the center cell by PE-ADP. Frame
acquisition rate, 1/sec; frame display rate, 3/sec.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2121-9-44-S9.mov]|

Additional file 10

Chemical-genetic inhibition of sensitized mutant (Y119G) eGFP-myosin-
Vb by PE-ADP microinjection (cell on left) halts movement of all myosin-
Vb-decorated particles, including those being transported via microtu-
bules; same field as Figure 3A. Uninjected control cell is on the right.
Frame acquisition rate, 1/sec; frame display rate, 10/sec.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2121-9-44-S10.mov]|
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Additional file 11

Same conditions as Additional file 10 without a control uninjected cell.
Frame acquisition rate, 1/sec; frame display rate, 10/sec.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2121-9-44-S11.mov]

Additional file 12

Negative control cell expressing wild-type eGFP-myosin-Vb; PE-ADP
injection (immediately before imaging) does not halt movement of
myosin-Vb-decorated particles. Frame acquisition rate, 1/sec; frame dis-
play rate, 10/sec.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2121-9-44-S12.mov]|
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