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Introduction
Diploid systems are characterized by genotypes with two 
alleles at each locus: one inherited from the mother and the 
other from the father. The typing technologies used to deter-
mine these alleles do not always reveal exactly two alleles; 
sometimes only one is seen and sometimes more than two 
seem to be present. An illustration of such data is provided 
by the typing of the major histocompatibility complex in 
humans, generally referred to as human leukocyte antigen 
(HLA), routinely made for clinical purposes and also used 
for studies of human peopling history and population genet-
ics.1–9 Such data, usually designated as ambiguous, have the 
characteristic of not providing a single two-allele genotype 
(possibly two identical alleles) for every individual typing. 
Ambiguous data, then, indicate an incertitude in the deter-
mination of the two alleles of the genotype of an individual 
rather than the occurrence of more than two alleles in an 
individual’s genotype.

Essentially, all classical methods of population genetics 
have been conceived for data without ambiguities and, there-
fore, are not appropriate to handle ambiguous data. This is 
even more so for nominal data, where alleles are the distinct 
forms, potentially infinite as described by Kimura and Crow 
(see Hedrick10), possible for a given locus. A common approach 
is to preprocess the data in order to eliminate ambiguities and 
hence obtain single two-allele genotypes.11 The problem with 
such approaches is that they always involve arbitrary decisions 
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that, at least in the long run, are inconsistent. For instance, 
some alleles now well identified with sequencing techniques 
were initially seen in ambiguous data typing, but they were 
reported as not present as a result of preprocessing treat-
ments.12 To tackle this problem, we have applied the alter-
native approach of adapting population genetics methods to 
ambiguous nominal data (see references below).

To achieve a generalization of population genetics methods 
adapted to ambiguous and highly polymorphic diploid data, a 
number of steps were involved. A fundamental first step was to 
establish a well-defined format that could clearly and explicitly 
describe ambiguities, that is, uniformat, which is described in the 
following section. A second step was to adapt, prove, and validate 
algorithms, encode them as programs, and test them empirically. 
A third point to address was how to handle specific difficulties 
related to the generalized methods. For instance, when estimat-
ing genetic frequencies, it was necessary to take into account 
the diagnosis of the estimation procedure, such as the number 
of distinct solutions and its control based on the convergence of 
the log likelihood. It was also necessary to find strategies to deal 
with the possible effects of indistinguishable ambiguities (allele 
blocks), and a further challenge was to find alternatives to essen-
tial equilibrium measures, such as Hardy–Weinberg equilibrium 
(HWE) and linkage disequilibrium (LD), that could take into 
account the extra information provided by the ambiguities and 
avoid statistical tests whose assumptions are likely to be broken 
by ambiguous data.

http://www.la-press.com/journal-evolutionary-bioinformatics-j17
http://www.la-press.com
http://dx.doi.org/10.4137/EBO.S32415
mailto:Jose.deAbreuNunes@unige.ch
http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17


Nunes

20 Evolutionary Bioinformatics 2015:11(S2)

In this article, we provide an updated description of 
uniformat and a unified account of the methods using the 
gene[rate] tools, including references to some applications 
already running and published studies that use them. As far 
as we know, the approach presented here is the only one cur-
rently available, which is able to handle both highly polymorphic 
(typical samples include hundreds of alleles per locus and tens of 
thousands of two-locus haplotypes) and ambiguous data.

The gene[rate] framework. The algorithms and programs 
described in this manuscript have been developed in the con-
text of analyses of ambiguous HLA data.2,13–15 These tools 
have been used in a number of studies already published, but 
here, we provide an integrated description of all the tools and a 
number of updates and improvements. Furthermore, we want 
to present this suite of tools in a larger, non-HLA context of 
ambiguous diploid data for which they are also expected to 
be useful.

The current implementation depends on other software and 
computer libraries in addition to the key components presented 
in the following section, all of which constitute a suite of facili-
ties to perform routine tasks in population genetics data analy-
ses. The gene[rate] tools are available online at two addresses: 
the original page: http://geneva.unige.ch/generate and a version 
tightly integrated with an HLA database, http://hla-net.eu/
tools, whose usage is described in a previous work.16 Examples of 
uniformat files and their preparation using common computer 
programs are provided in the website. These include text docu-
mentation, the slides of a tutorial presentation, and a screencast 
on the preparation and validation of uniformat files.

The essence of the framework is a suite of computer pro-
grams that handle highly polymorphic and ambiguous data 
organized around a data format that allows for the expres-
sion of complex phenotypes. The gene[rate] tools currently 
include utilities to convert files from and into a few data for-
mats and to recode datasets by transliterating some alleles or 
combinations of alleles into others – an operation required, for 
instance, in studies involving several population samples, all 
of which are not typed at the same time or in the same labora-
tory. The tools also include programs to estimate a number of 
one- and two-locus parameters relevant for population genet-
ics, whose rationale is presented in the following section.

Methods
uniformat version 3. To describe ambiguous data, we 

formally defined the uniformat grammar.17 This grammar 
allows the user to express all kinds of ambiguities that can 
occur in diploid data and includes abbreviations that may 
help express some usual cases, such as possible but uncertain 
homozygous, one “known” allele and several possible second 
alleles and untyped loci. Examples of data written in unifor-
mat are given as follows:

#  a simple double heterozygous

# � for HLA-A and a locus with alleles k– and k+

id    A * 01,A * 02:01    k-,k+

# � an untyped case for first locus

id    @    k+,k-
# � a homozygous-or-blank-heterozygous for the second locus

id    A*02,A*11    k+

# � a real homozygous for first locus and a multiple allele for second locus

id    A*01,A*01    B*07,B*14:01&B*14:02&B*14:05

# � a case of multiple allele pairs for a locus

id    B*07,B*14:01|B*07,B*14:02|B*07,B*14:05

The formal specification of the current version of 
uniformat in a BNF-like form (see Levine18 for BNF-like 
descriptions), slightly simplified from the one actually used in 
the parser implementation by omitting terms related to error 
control, follows below:

sample                                             : data EOF | EOF

data                                               : data case | case

case                    : IDENT LOCI_SEP full_pheno

full_pheno              : �fu l l_pheno LOCI_SEP locus_pheno | locus_pheno

locus_pheno       : �multi_alp | ALLELE | MULTI_AL 

             | AL_UNDET | AL_UNDET_NO_BLANK

multi_alp                 : multi_alp ALP_SEP basic_alps | basic_alps

basic_alps              ��: ALLELE AL_SEP ALLELE

                 |ALLELE AL_SEP MULTI_AL

                   |MULTI_AL AL_SEP ALLELE

                   |MULTI_AL AL_SEP MULTI_AL

In easy-to-read language, uniformat can be described 
as follows: a sample is a file where each line represents an 
individual; each line starts with an identifier and is followed by 
the phenotypes for the locus or loci of the individual; all 
the parts are separated by white space; each locus pheno-
type is a string (without spaces inside it) where allele pairs 
(that we call alps) are separated by a vertical bar, “|”, and 
alleles of a pair by a comma, with the proviso that the left 
allele is “smaller” than the right one. This last condition 
prevents an allele pair from appearing under two different 
forms (such as a1, a2 and a2, a1), which is likely to intro-
duce confusion. It also enables simplification of the algorithms, 
allowing for huge speedups during computer-intensive  
calculations because no comparisons are required. The con-
dition assumes that allele names can be ordered in some way, 
for instance, alphanumeric sorting, or, for computer imple-
mentations, numeric sorting (easily implemented by trans-
lating allele names into numbers representing their positions 
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in a list of allele names). Allele names can also be used to 
describe haplotypes, by separating the locus allele names 
with a tilde sign (“∼”). All the semantics of single allele names 
are valid for haplotype names, and currently, these can be 
mixed, which might lead to strange, but useful expressions. 
For instance, A*01∼B*08,A*02 represents a typing for which 
one haplotype is known to be exactly A*01∼B*08, while the 
other haplotype is only known to have A*02 at its first locus. 
Actually, haplotype data can be represented as a special case 
of (a highly polymorphic and ambiguous) single locus data.

Finally, allele names (ALLELE) and identifiers 
(IDENT) can use any of the following characters: alpha-
betic and numeric characters and also characters from the 
set {*, +, /, –, _, ’, : ,∼}. Other characters will produce invalid 
names, and some do have special meaning; hence, LOCI_
SEP, the locus separator, is a horizontal white space; AL_
SEP, the allele separator, is a comma; ALP_SEP, the alps 
separator, is a vertical bar; untyped loci are marked with the 
“@” sign corresponding to AL_UNDET or AL_UNDET_
NO_BLANK; a multiple allele, MULTI_AL, is just a suite 
of alleles (ALLELE) separated by an ampersand, “&”; and 
EOF means the end-of-file.

The main changes introduced by uniformat version 3 
are the simplification of the locus separator, which can now be 
any white space (any number of tabs and spaces) and not nec-
essarily one tabulation mark as before, and the integration of 
the treatment of the haplotype notation. These simplifications 
are possible because, in this version, white spaces cannot occur 
inside single locus phenotypes. Although no other changes 
were made to the grammar definition, its actual implementa-
tion as a parser has been much improved by using hash tables 
to store allele (and haplotype) names, allowing for a faster 
encoding of input files and decoding of results into output 
files. The current implementation also allowed the integration 
of the previous tools into a single tool for validation and recod-
ing. Overall, this simplifies the creation and manipulation of 
uniformat files, while maintaining compatibility with ver-
sion 2 files. Files in uniformat version 1 can no longer be 
used because of the HLA nomenclature changes effective in 
2010,19 but they can still be converted to newer versions using 
the validation tool.

Tools for using uniformat effectively. The grammar 
defined earlier has been implemented in a program, uniformat, 
that checks if a file is a valid uniformat file, performs all 
abbreviation expansions, and, in case of errors, returns an 
indication of the lines where the errors occur.

The same program can also perform recoding, or translit-
eration, of valid uniformat files. Recoding or transliteration 
is an operation often required when working with popula-
tion data samples coming from different laboratories, or not 
typed with the same techniques, or typed at different times 
using different allele definitions. The transliteration facility 
makes this operation much simpler, as a single transliteration 
file can be used for all data sources that are used in a project. 

The transliteration file is just a list of old and new names; an 
example is provided in the web page of the tool.

There are many reasons for which “file conversions” are 
needed; that is why there are many options for this tool. When 
the data are compatible (usually this means not ambiguous), 
both forward and backward conversions are available. The 
formats that have been included in this tool are the ones that 
we have most commonly found in our practice, but they may 
be extended in the future.

Some people develop their own typing kits, and, for 
those, phenotype might be the tool of choice for a fast 
and accurate interpretation of the results. This tool expects 
two inputs: a probe-definition file and a typing-reactivity 
results file. The output is a uniformat file that provides 
the interpretation of the reactivities in terms of allele pairs 
required to explain them. The originality of this tool is the 
use of allele pairs rather than lists of alleles, thus avoiding 
spurious ambiguities such as those resulting from the use of 
NMDP codes, see discussions in Buhler et al and Sanchez-
Mazas et al.14,20

Frequency estimation. All methods based on the 
expectation–maximization (EM) algorithm21 are actually 
generalizations of the gene-counting method initially pro-
posed by Ceppellini et  al.22, which were extended to hap-
lotypes in 1995.23–25 Implementations of the gene-counting 
methods were further extended to deal with ambiguities 
(initially a fixed number, around 200; personal communi-
cation by J. Clayton in 1995, personal communication) and 
further generalized to any number of ambiguities and loci 
around 2005.26

The principles of the gene[rate] implementation of fre-
quency estimation have been succinctly described,17 and the 
relevant mathematical details appear in the Appendix. Basi-
cally, it is an implementation of the gene-counting method 
that allows the use of ambiguous data by representing them as 
alternative allele pairs. What was and still is particular to the 
gene[rate] implementation is that the algorithm is controlled 
by an EM algorithm rather than by the changes in frequency 
estimates (as in the original gene-counting method and most 
current EM implementations). The algorithm itself is imple-
mented in such a way as to report quality information about 
the estimates, ie, the number of iterations until convergence 
and the number of distinct solutions found. This is indeed 
essential because the estimation procedure does not necessar-
ily have a unique solution.27 The assessment of the uniqueness 
of the solution is made by using multiple random starting 
points and checking if they all converge to the same maxi-
mum, as in Excoffier and Slatkin,24 but, unlike these authors, 
we report all distinct solutions found and not only the one 
with the largest log likelihood. If the solution is unique, it 
means that we have good estimates; if there are multiple solu-
tions, the results should not be used as frequency estimates. 
Common ways to tackle the problem of getting multiple solu-
tions include increasing the sample size, reducing the level of 
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resolution of the typing, or recoding some indistinguishable 
alleles as a single entity. Sometimes these remedies produce 
the desired effect (ie, a single solution), but sometimes they do 
not, meaning that there are no acceptable maximum likeli-
hood frequency estimates. From our experience, this is very 
rarely the case with one-locus alleles and rare with two-locus 
haplotypes, whereas it happens more frequently with highly 
ambiguous data, possibly with several loci, and with not so 
large sample sizes. In practice, this has rarely been a prob-
lem for us. The effect of sampling variation is much more 
important than variation due to the use of ambiguities in the 
estimation process, as shown in a previous study.28 The pos-
sibility of dealing with ambiguities requires scrutiny from  
the user, especially if the relative amount of ambiguities in 
the sample is large. An account of the questions raised by the 
use of ambiguities is given in Buhler et al.14

A further extension of the gene-counting estimation 
implemented in gene[rate] is the replacement of Hardy–
Weinberg with a more general model that includes one 
parameter to allow for deviation from Hardy–Weinberg pro-
portions (see mathematical details in Appendix). This model 
is a key element for efficient Hardy–Weinberg testing with our 
method, as described in the following section.

Testing HWE. Testing for HWE on HLA data 
presents a number of difficulties, such as non-observed 
genotypes, ambiguous data, and the presence of a reces-
sive-like blank allele. To avoid such difficulties, we con-
sidered an approach using a likelihood ratio test (LRT). 
The test consists of comparing the likelihood of frequency 
estimates under the Hardy–Weinberg model with the like-
lihood of frequency estimates under a model that gener-
alizes HWE by including an extra parameter (such as an 
inbreeding coefficient). Thus, we consider two models: 
one of them being a particular case of the other. Formally, 
the full model is a function of both the allele frequencies 
and a parameter, F, which measures deviation from the 
Hardy–Weinberg model:

	 L0 = f  ( pi, F )

The usual Hardy–Weinberg model just sets this extra 
parameter to zero:

	 L
hwe

 = f  ( pi, F = 0) = f  ( pi )

As usual for LRTs, twice the difference of the log like-
lihoods follows a chi-square distribution with one degree 
of freedom. This test presents an advantage over the more 
usual chi-square, exact, or Monte–Carlo–Markov–Chains 
(MCMC) tests, in that it is not affected by the problems 
mentioned at the beginning of this section.

Assessing selective neutrality. Neutrality testing is fre-
quently performed using the revised version of the Ewens– 
Watterson test proposed by Slatkin, hereafter EWS.29,30 Using 
this test with ambiguous data is, however, problematic due to the 

presence of genotypes that are not determined unequivocally. 
To tackle this problem, a parametric resampling schema is used 
in such a way that the EWS is applied to a batch of samples 
with no ambiguous genotypes, which is randomly drawn from 
the allele frequencies estimated in the population.28 The batch 
of P-values obtained in this way is then adjusted to maintain 
the false discovery rate at its nominal level.31 This correction for 
multiple testing improves the Bonferroni correction method 
originally proposed in Ref. 28. The adjusted values are then 
used to assess the putative deviations from neutrality.

As an indication of the quality of the assessment, the 
number of zeros or ones, which are values, respectively, 
smaller or larger than all others, is reported, but the adjusted 
P-values actually indicated correspond to non-zero or non-
one P-values. From our experience, getting zeros or ones 
without also getting small non-zero (typically smaller than 
2.5%) or large non-one (typically larger than 97.5%) P-values 
almost always indicates that the number of samples generated 
is not large enough to capture the full variability of the EWS 
statistic. Thus, the test should be rerun with a higher number 
of bootstrapped samples.

Linkage disequilibrium. LD for two bi-allelic loci 
reduces to a single coefficient; hence, the existence of a haplo-
type in LD implies that the other three haplotypes are also in 
disequilibrium. In this case, we can also say that the two loci 
are in LD. This simple situation does not hold when working 
with loci having more than two alleles. Therefore, we need to 
consider separately global LD, and the LD of each individual 
haplotype. The latter is the same as for bi-allelic loci, ie, the 
difference between the observed (often estimated) haplotype 
frequency and the product of the frequencies of the alleles 
defining the haplotype. The global measure of LD is supposed 
to provide a summary of the situation, taking into account all 
possible haplotypes for two given loci. It is possible that two 
loci are not in global LD while some specific haplotypes for 
these loci do present strong LD. On the other hand, global 
LD requires that at least one haplotype exhibits strong LD.

To test the LD, the usual chi-square test (or equivalents 
such as Fisher’s exact test and its MCMC approximations32) is 
in general inapplicable to HLA data, because it cannot handle 
ambiguous data or the presence of a putative recessive-like 
blank allele, and it also suffers from the large number of hap-
lotypes that are generally not observed (ie, with estimated fre-
quencies of 0). Instead, our approach consists in using an LRT 
(as for the Hardy–Weinberg test) for comparing two estima-
tions: the log likelihood of the estimated haplotype frequency 
and the product of the log likelihoods of the estimated allele 
frequencies. Under the hypothesis of no LD, the two statistics 
are expected to be similar. As the model of “no LD” can be 
seen as a special case of the more general LD model (by set-
ting the disequilibrium coefficients of all haplotypes to zero), 
the number of degrees of freedom associated with this LRT 
used is the number of possible haplotypes. Formally, this uses 
a full model described by the following equation:
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L p q p qi j ij i j ij

n

ij

ij

0 , ,δ δ( ) ∝ +( )∏

where nij is the count of ij haplotypes (observed or estimated). 
The simple “no LD” model can be described by L(pi ) × L(qj ), 
which means that the simple model results from the full model 
when all δij are zero.

In general, the number of degrees of freedom associated 
with this likelihood is provided by the number of independent 
(free) parameters, which is given by considering the restric-
tions on the sums of the frequencies of all haplotypes carry-
ing a given allele (they must add up to the allele frequency) 
and on the sum of the allele frequencies at the two loci, that 
is ( ) ( )k k1 21 1

2
− × − , where k1 and k2 denote the number of alleles at 

each locus. Unfortunately, this number is too large for typi-
cal HLA data, and even the largest samples, donor registries 
with millions of individuals, show only a small part of the 
total number of haplotypes. To address this issue, we adjust 
the number of degrees of freedom to the number of possible 
haplotypes (in the sense of being potentially present in the 
sample given the two-locus phenotypes). This empirical prac-
tice is justified by the close agreement that we have generally 
observed between the P-values provided by it and those of a 
distribution-free method presented in the following section.

The previous likelihoods provide the first measure of 
global LD that we report in our outputs (LRT). Given the 
problems raised earlier about the convergence of the LRT 
test statistic to its limiting chi-square distribution, we have 
complemented this LRT test with a resampling procedure, 
where the null hypothesis of no LD is used to generate a 
given number of two-locus samples (often 10,000) to which 
the LRT test is applied. The procedure provides an empiri-
cal distribution for the LRT statistic under the hypothesis 
of no LD, and the reported P-value is the position (quan-
tile) of the observed LRT in this empirical distribution. The 
test statistic is left bounded; therefore, the null hypothesis 
is only invalidated by extreme values on the right tail of the 
empirical distribution.

An additional statistic is calculated, not to be used for a 
global test of LD, but rather to identify individual haplotypes 
whose frequencies deviate from their expectations more than 
by chance. (Chance, here, means random sampling, and the 
deviations are expected to be normally distributed.) This is 
done by considering the standardized residuals proposed by 
Agresti33 for a chi-square test. Residuals of this kind are con-
sidered to be more independent from the observed or expected 
frequencies than other residuals, and unlike other measures 
of LD such as D and D′ (see Hedrick10), they allow for direct 
comparisons of deviations, even for haplotypes with very dif-
ferent observed or expected frequencies.

Discussion and Conclusion
To our knowledge, currently, the gene[rate] tools are the 
only suite of computer programs that are able to work with 

highly polymorphic and ambiguous nominal data. These tools 
are an extension of the classic methods of gene-counting and 
haplotype estimation published in 1995 (references are men-
tioned in “Frequency estimation” section) and are shown to 
be particular instances of the EM algorithm. The framework 
of nominal alleles is rather distinct from that of sequence 
data. Nominal alleles refer to longer or shorter chromosomal 
regions that can span tens to thousands of nucleotides and 
are just considered as equal or distinct, without taking into 
account the molecular information. This is often because 
such information is not simply available given the typing 
techniques used to produce the data. Such data are clearly 
not as rich as sequence data, but they present interesting 
characteristics that make them useful for population genet-
ics analyses. The high polymorphism of the data allows for a 
high discrimination of populations. The eight loci of the sys-
tem are considered as segregating independently; they span 
over a contiguous region of 6 million nucleotides. Finally and 
most importantly, data for HLA are very abundant, given 
the clinical relevance of the system. (A  detailed discussion 
of HLA relevance for population genetics has been given by 
Sanchez-Mazas et al.13)

As we have stated, not all data ambiguities are of the 
same nature, and they do not have the same relevance, for 
nominal and sequence data. It is interesting to see that the 
approach taken for sequence data is either to make a call or 
discard the ambiguous position,34–37 while the approach pre-
sented here includes the ambiguities in the calculations. In 
practice, instead of using two alleles for an individual, what 
we consider is two probability distributions for each individ-
ual (that reduce to a single allele for nonambiguous data).

The spirit of Li’s samtools37 and that of gene[rate] are 
similar, but a number of differences in the nature of the data 
makes a direct comparison impossible. We do plan, however, 
to perform such a comparative study using a triple approach: 
the alleles defined at nominal levels (as usual with HLA data), 
their translation as sequence data, and the raw reads produced 
by an NGS typing technique.

The uniformat grammar and the gene[rate] tools 
described in this article are specially adapted to nominal diploid 
data with ambiguities. Although primarily developed to solve 
problems arising with the analysis of the highly polymorphic 
genetic system HLA, the human MHC, the suite is completely 
general and applicable to diploid data. It may even accommo-
date pedigree information by directly specifying known, pos-
sibly partial, haplotypes in the uniformat data file. Actually, 
these tools have already been used in mixed analyses of HLA, 
classical and nonclassical genes, and other immunogenetic sys-
tems such as KIR and MICA.38–41

The web interface is currently the easiest way to use 
this suite because of the large number of dependencies on  
external libraries and other software, but the code source  
will eventually be packaged, including dependency informa-
tion, in the Debian format42 or as an R package, and made 
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publicly available. The web interface is continuously main-
tained and updated.

Questions, comments, error reports, and suggestions are 
welcome and can be addressed to the author.
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Appendix
Likelihood equations used in the generalized counting 

methods. The properties of the gene-counting method for fre-
quency estimation have long been known, initially presented as a 
result of work essentially led by C.A.B. Smith and later framed in 
the more general expectation–maximization (EM) algorithm of 
Dempster et al. The general properties of convergence and unique-
ness of a solution are verified for some families of distributions, one 
of which is the general exponential family. Showing that a model 
used to estimate frequencies leads to likelihood equations that can 
be seen as resulting from observations of a member of the general 
exponential family of distributions is then all that is needed to 
guarantee these properties to such a model of estimation.

We start by considering a generalized description of a 
sample by means of its genotype descriptions. A uniform rep-
resentation is given by

	
1 =

≥
∑α δij ij i j
j i

p p 	 (1)

where pi stands for allelic frequencies, δij is the zygote indica-
tor, and αij is the association coefficient for that pair of alleles. 
The association coefficients are 1 if Hardy–Weinberg holds 
and would be some constant value (1−F) for an inbreeding-
like model. This form provides a unified expression, the free 
model, whose domain is constrained by
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The calculation of the degrees of freedom associated with 
such a model is not mentioned here, but it is easy to see that the 
constraints on this model are the total sum of allele frequencies 
and the sums of the frequencies of all the allele pairs carrying a 
given allele, that is, k k−( )1

2 , assuming, as until now, that k alleles 
exist for the locus.

The support, or log likelihood, for such a model is given by
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Rearranging the indices, this can be further rewritten as
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Noting that we restricted our expressions to j $ i and 
should therefore rewrite nji as nij, we observe that
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and finally rewrite the support Equation (2) as
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We proceed now to the identification of the component 
functions of a member of the exponential family. Their com-
mon expression is

f x a b x c d xT, expΘ Θ Θ( ) = ( ) ( ) ( ) ( )[ ]

We note immediately that
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δ

and also that

a Θ( ) = 1

because all the other terms involve parameters of interest 
(frequencies and association coefficients).
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Therefore, we have to show that
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but the right member is just the dot product of two vec-
tors of k(k + 1)/2 + k components.

They are
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These two functions are indeed readily identifiable with 
the vector of the parameters – or, more precisely, logarithms 
of the parameters – and a sufficient statistic. Consequently, we 
have shown that the complete data log likelihood for the free 
model is a member of the exponential family of distributions.

Calculations made using this model are thus guaran-
teed to have the same properties as those of the general EM 
gene-counting method. In the gene[rate] framework, this 
free model is materialized as an HWE model by setting the 
association coefficients to 1, and as an inbreeding-like model 
by setting all the association coefficients equal (leading to an 
estimate of 1−F).
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