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Abstract

Prokaryotes evolved to thrive in an extremely diverse set of habitats, and their proteomes bear signatures of environ-
mental conditions. Although correlations between amino acid usage and environmental temperature are well-
documented, understanding of the mechanisms of thermal adaptation remains incomplete. Here, we couple the ener-
getic costs of protein folding and protein homeostasis to build a microscopic model explaining both the overall amino
acid composition and its temperature trends. Low biosynthesis costs lead to low diversity of physical interactions
between amino acid residues, which in turn makes proteins less stable and drives up chaperone activity to maintain
appropriate levels of folded, functional proteins. Assuming that the cost of chaperone activity is proportional to the
fraction of unfolded client proteins, we simulated thermal adaptation of model proteins subject to minimization of the
total cost of amino acid synthesis and chaperone activity. For the first time, we predicted both the proteome-average
amino acid abundances and their temperature trends simultaneously, and found strong correlations between model
predictions and 402 genomes of bacteria and archaea. The energetic constraint on protein evolution is more apparent in
highly expressed proteins, selected by codon adaptation index. We found that in bacteria, highly expressed proteins are
similar in composition to thermophilic ones, whereas in archaea no correlation between predicted expression level and
thermostability was observed. At the same time, thermal adaptations of highly expressed proteins in bacteria and
archaea are nearly identical, suggesting that universal energetic constraints prevail over the phylogenetic differences
between these domains of life.
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the genetic code (Sueoka 19671; Jukes et al. 1975; King and
Jukes 1969). Subsequent genome-wide studies found that ge-
nomic composition strongly affects the patterns of amino
acid and codon usage at the organismal level (Kreil and
Ouzounis 2007; Knight et al. 2007; Lightfield et al. 2017;
Goncearenco and Berezovsky 2014). At the same time, mu-
tational patterns cannot fully explain the genome composi-
tion (Rocha et al. 2010). Closely related species adapted to

Introduction

Over the 4 billion years of evolution, life has colonized an
extreme diversity of physical environments on Earth, ranging
from volcanic hot vents in the oceans to permafrost to hyper-
saline lakes. Adaptations to these conditions allow proteins
and nucleic acids to function in a wide range of physical and
chemical environments, resulting in specific patterns of nu-

cleotide and amino acid usage (Galtier and Lobry 1997; Kreil
and Ouzounis 2001; Zeldovich et al. 2007b; Berezovsky et al.
2007; England et al. 2003; Fukuchi et al. 2003; Sghaier et al.
2013; Sabath et al. 2013). Although the variation of amino
acid frequencies across species is relatively constrained for a
given genomic composition (Krick et al. 2014; Goncearenco
and Berezovsky 2014), amino acid compositions of prokary-
otic proteomes are sensitive to the temperature and salinity
of their natural environments (Fukuchi et al. 2003; Kreil and
Ouzounis 2001). Unraveling the evolutionary origins of amino
acids usage in proteomes involves two main questions: first,
what are the origins of the generally similar average amino
acid usage across multiple highly divergent species, and sec-
ond, what biological mechanisms drive adaptation of amino
acid frequencies to environmental conditions.

Correlations between nucleotide and amino acid frequen-
cies have been revealed simultaneously with the discovery of

different environments demonstrate variation in amino acid
usage unaccounted for by their similar genomic compositions
(Singer and Hickey 2003; McDonald 2010; Haney et al. 1999;
Fukuchi et al. 2003). Therefore, selection at the level of nucle-
otide frequencies does not fully explain the variation of amino
acid composition, and multiple mechanisms of protein-level
selection have been proposed. In unicellular organisms, highly
abundant proteins have a biased amino acid composition to
decrease the metabolic cost of amino acid biosynthesis
(Akashi and Gojobori 2002; Heizer et al. 2006; Seligmann
2003; Heizer et al. 2011). In this class of models, the best
explanation of observed amino acid compositions is achieved
in a phenomenological approach by Krick et al. (2014), who
took into account the metabolic cost of amino acids synthesis
and the rates of their chemical degradation.

Thermal adaptation is a particularly well-studied example
of environmental adaptation that does not reduce to

© The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License

(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any
medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

Open Access

Mol. Biol. Evol. 35(1)2211-224  doi:10.1093/molbev/msx282  Advance Access publication November 2, 2017 211



Deleted Text: well 
Deleted Text: enviromental

Venev and Zeldovich - doi:10.1093/molbev/msx282

MBE

changing nucleotide frequencies. Maintenance of the pool of
functional, properly folded proteins at elevated temperatures
imposes constraints on protein structures (Szilagyi and
Zavodszky 2000; England et al. 2003), as well as amino acid
compositions (Zeldovich et al. 2007b; Singer and Hickey 2003;
Kreil and Ouzounis 2001; Haney et al. 1999). The temperature
span of life reaches almost 120K (from —10° to 110°), a
change in energy of 0.24 kcal/mol. As this value is comparable
to the average effect of a single amino acid substitution in a
folded protein AAG = 1kcal/mol (Zeldovich et al. 2007c)
and the typical energy of inter-residue van der Waals con-
tacts, thermophilic proteins evolved sequence and structure
features to increase their stability. Thermally adapted proteins
utilize positive and negative design strategies, stabilizing their
native folds and destabilizing unfolded conformations
(Berezovsky et al. 2007). Increased fraction of hydrophobic
residues contributes to protein core stability, whereas in-
creased fraction of the charged residues enforces native fold
uniqueness by destabilizing unfolded conformations.
Destabilization of nonnative states can be achieved by an
increased fraction of charged residues on protein surface
and formation of ionic pairs (Szilagyi and Zavodszky 2000;
Zhao et al. 2011). It is known that whereas salt bridge typically
stabilizes the protein, longer range ion pairs are often desta-
bilizing (Kumar and Nussinov 2002). Microscopic models of
electrostatic effects in protein stability have been extensively
developed (Loladze et al. 1999; Loladze and Makhatadze 2008;
Strickler et al. 2006; Karshikoff et al. 2015; Sawle and Ghosh
2015), leading to in vitro validation by redesign of electrostatic
interactions in ubiquitin and several other proteins. Overall,
biophysical models provide a solid understanding of
atomistic-level interactions in specific proteins, and, statisti-
cally, explain well the global temperature trends of amino acid
frequencies in prokaryotes (Berezovsky et al. 2007; Venev and
Zeldovich 2015).

Unfortunately, even state of the art models can only ex-
plain either the overall proteomic amino acid composition
(Seligmann 2003; Heizer et al. 2011; Krick et al. 2014), or its
temperature trends (Berezovsky et al. 2007; Venev and
Zeldovich 2015), but not both. Here, we couple protein
folding and protein homeostasis costs to bridge this gap
and build a microscopic model explaining both amino acid
composition and its temperature trends. As it is known,
chaperone-assisted folding mechanisms evolved to repair
misfolded proteins (Hartl et al. 2011), and even a moderate
decrease in protein foldability imposes an organismal fitness
cost (Drummond and Wilke 2008; Geiler-Samerotte et al.
2011). Chaperones require energy to function, which in
turn creates an additional selective pressure on protein fold-
ability, especially in the case of highly abundant proteins
(Kepp et al. 2014). As proteostasis consumes up to 80% of
total metabolic rate of unicellular free-living organisms (Kepp
et al. 2014), adaptation towards energy efficiency is a signifi-
cant driver of evolution. In fact, while the present work was
under review, the Dill group published a kinetic model of
proteostasis in Escherichia coli, showing that dynamic sorting
of client proteins between chaperone systems is energy effi-
cient for the cell. Specifically, it was found that the “sickest”
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Fic. 1. Material and energy flux in proteostasis. Amino acid biosyn-
thesis, translation and polypeptide synthesis, and chaperone assisted
protein folding consume a significant fraction of energy & available to
a prokaryote. Maintenance of steady state concentrations of every
amino acid bears a known energy cost, with cheaper amino acids
preferred in highly expressed proteins (Akashi and Gojobori 2002).
We propose that energy cost of chaperone activity depends on amino
acid composition of client proteins, as protein foldability is affected
by amino acid composition (Dill 1985; Berezovsky et al. 2007; Venev
and Zeldovich 2015). Therefore, amino acid composition evolves un-
der the energetic constraint from two distinct processes, amino acid
biosynthesis costs and chaperone activity.

proteostasis

proteins (ones with a stable misfolded state kinetically acces-
sible from unfolded state) use the most energy-intensive
GroEL chaperone (Santra et al. 2017).

Here, we propose that global amino acid composition
evolved under the selective pressure of the total energetic
cost of proteostasis. Following earlier studies, our model
includes the cost of amino acid synthesis and maintenance
of their constant concentrations in the presence of chemical
degradation (fig. 1). The key new feature, however, comes
from considering the energy cost of chaperone assisted pro-
tein folding. Protein stability against thermal unfolding
depends on the amino acid composition, and amino acid
compositions delivering highly foldable proteins require lower
energy expenditures on repairing misfolded proteins by chap-
erones. As detailed below, minimization of the total energy
spent on amino acid synthesis and maintenance of folded
proteins by chaperones provides an accurate description of
both average amino acid frequencies, and their trends with
environmental temperature.

Results

Thermal Adaptation in Highly Expressed Proteins Is
Similar in Bacteria and Archaea

Although archaea and bacteria have diverged early on during
evolution, today they share many of the same environments,
with both domains spanning wide temperature ranges.
Thermal adaptations in the two domains provide a unique
test case for comparing phylogenetically divergent responses
to the same physical environment. To quantify thermal ad-
aptation, we performed linear regressions between the fre-
quencies f,, of each of the 20 amino acids in the archaeal and
bacterial proteomes, and optimum growth temperature
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Fic. 2. Convergence of the archaeal and bacterial trends of thermal adaptation. Slopes of the amino acid frequencies versus OGT regressions are
compared between archaea and bacteria. (A) Proteome-wide, the temperature trends of amino acid usage in bacteria and archaea are weakly
correlated. (B) Ribosomal proteins of archaea and bacteria have similar patterns of thermal adaptation. (C) Predicted highly expressed proteins
(top 10% CAL) in the organisms with CUS show identical patterns of thermal adaptation between bacteria and archaea. (D) Correlation of trends of
thermal adaptation in complete proteomes of organisms with CUS is statistically insignificant in the organism bootstrap test (see text for details).

(OGT), and used the slopes of the regression df, /dT as metric
of adaptation (supplementary fig. S1A and B, Supplementary
Material online). Amino acids with positive slopes are statis-
tically overrepresented in thermophilic proteomes, whereas
negative slopes reflect reduced usage of an amino acid in
thermophiles.

The correlation between the temperature trends of amino
acid frequencies in complete proteomes of bacteria and
archaea is not very high, R = 0.48 (fig. 2A). Moreover, bacterial
slopes are generally lower than archaeal ones. Therefore, phy-
logenetic divergence and ensuing biochemical differences had
a profound effect on proteome-averaged amino acid usage in
the two prokaryotic domains.

We hypothesized that for highly expressed proteins, ener-
getic constraints on thermal adaptation may prevail over

phylogenetic differences, leading to a greater similarity of
archaea and bacteria. Highly expressed proteins are known
to evolve slowly (Pal et al. 2001; Rocha and Danchin 2004),
suggesting a stronger evolutionary constraint, which is par-
tially reflected in more stringent folding requirements
(Serohijos et al. 2012, Drummond et al. 2005; Drummond
and Wilke 2008).

Ribosomal proteins serve as a particularly well-defined
group of highly expressed proteins in both archaea and bac-
teria (Karlin et al. 2005). At the same time, differences in
ribosome structures and sequences between the two
domains are significant. Both domains of life exhibit very
similar patterns in thermal adaptation of ribosomal proteins
(fig. 2B), R=10.77 (bootstrap to find a similar correlation in
the same number of randomly selected proteins yields
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P < 0.001 (supplementary fig. S2, Supplementary Material on-
line). However, the specific function of ribosomal proteins
may have limited their options for thermal adaptation. To
identify other types of highly expressed proteins we used a
sequence based approach using codon adaptation index
(CAI; Sharp and Li 1987) in organisms with apparent codons
usage selection (CUS), see Materials and Methods for details.
Remarkably, for predicted highly expressed proteins from
organisms with CUS, the trends in thermal adaptation are
nearly identical. Figure 2C demonstrates R = 0.91, P < 0.001
for all proteins within the top 10% of CAl; excluding ribo-
somal proteins yields the same R =0.912 (data not shown).
The null hypothesis that the observed correlation can be
explained by a random choice of a subset of organisms or
proteins is safely rejected (P = 0.015, randomized CUS assign-
ment, P < 0.001, randomized CAl ranking (supplementary fig.
S3, Supplementary Material online). A greater similarity be-
tween thermal adaptations in highly expressed proteins from
archaea and bacteria compared with the whole-proteome
case comes mostly from the differences in usage of isoleucine,
alanine, lysine, and glutamic acid (A, |, K, E), as shown in figure
2A  and C and supplementary figure S1C and D,
Supplementary Material online.

At the same time, CUS alone does not imply similarity in
thermal adaptation for bacteria and archaea. Trends in ther-
mal adaptation in complete proteomes of bacteria and arch-
aea with CUS (fig. 2D), R = 0.73, appeared more similar than
for complete proteomes of all species (fig. 2A). However, cor-
relation of R > 0.73 could be achieved with probability 0.153
in a randomized selection of the same number of bacteria and
archaea from the full data set (supplementary fig. S4,
Supplementary Material online). Therefore, increased
proteome-wide similarity of thermal adaptation between
bacteria and archaea with CUS is not statistically significant.

This genomewide analysis clearly shows that highly
expressed proteins in both archaea and bacteria share a com-
mon strategy of thermal adaptation, which becomes ob-
scured at the level of complete proteomes. We propose
that the common strategy may involve optimization of en-
ergetic costs of proteostasis by balancing amino acid metab-
olism and chaperone energy expenses, and present the results
of the modeling below.

Simulated Amino Acid Frequencies Respond to
Chaperone Energy Costs

We designed lattice model proteins of 64 residues each in a
wide range of artificial temperatures 0.4 < T < 1.7in units
of Miyazawa—Jernigan residue level potential (p.u; Miyazawa
and Jernigan 1999), following equations (8—10) (see Materials
and Methods for details). The chaperone-adjusted synthesis
cost w (see eq. 7), was varied from w = 0 to w = 0.15. The case
of w=0 corresponds to zero cost of maintaining the amino
acid pool, so the energetic cost is completely defined by pro-
tein foldability. On the contrary, for large values of w, the
energetic costs of amino acid maintenance prevail over en-
ergy expenditures by chaperones, reducing the effect of pro-
tein foldability on fitness. Proteins designed with no synthesis
cost constraint, w =0, mostly reproduced earlier results
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(Berezovsky et al. 2007; Venev and Zeldovich 2015). At low
simulated temperatures, the folding constraint on protein
sequences was weak. Starting from a random sequence
with /21/20 amino acid abundances, the design procedure
was able to create well-folding sequences by swapping the
residues while retaining the overall amino acid composition
(supplementary fig. S5A, Supplementary Material online). As
the temperature increased, relative amino acid abundances
changed monotonically to allow designed proteins to in-
crease their thermal stability (supplementary fig. S5A, inset,
Supplementary Material online). Increasing frequencies of hy-
drophobic and charged residues extend the energy gap by
decreasing the energy of the native state and raising the av-
erage decoy energy (Berezovsky et al. 2007).

The outcome of protein design changed significantly if the
chaperone-adjusted synthesis cost w was introduced (supple-
mentary fig. S5B, Supplementary Material online). In this case,
frequent usage of “expensive” amino acids carried a significant
penalty even if they were favorable for protein foldability. At
w = 0.05, proteome-averaged frequencies of amino acids al-
ready diverged at low temperatures T, and the distribution of
amino acid frequencies was largely determined by their rela-
tive metabolic maintenance costs, due to the smaller selective
pressure on foldability. We then hypothesized that this inter-
play between the costs of raw materials (amino acid pool)
and maintenance of product (chaperone-assisted folding) can
explain both the average amino acid composition and its
temperature trends.

Simulated Trends Correlate with Biological Data

The amino acid frequencies produced by our model are con-
trolled by two parameters, temperature T and the chaperone-
adjusted synthesis cost w. To assess the fit of the model to
observed frequencies for given values of w and T, we used the
Jensen—Shannon divergence (JSD) between the frequency
distributions of the 20 types of amino acid in the simulated
and biological data. The JSD between two probability (fre-
quency) distributions is zero if the distributions are identical,
and equals one if the two distributions are completely unre-
lated. Using the Pearson correlation coefficient between
amino acid frequencies as the measure of similarity of the
distributions produced qualitatively similar results (data not
shown). Prokaryotic genomes were separated into mesophilic
(20 < OGT < 50°) and thermophilic (OGT > 50°) groups
and average amino acid frequencies from these groups were
used for comparison with the simulated data. This analysis
has been performed separately for bacteria and archaea. In
bacteria, the JSD between simulated and real data reaches
minima at specific values of T and w (fig. 3). Our model
correctly segregated thermophilic and mesophilic genomes.
The value of JSDy, reached its minimum at Ty, = 0.7 p.u.
whereas JSDt reached the minimum at a higher temperature
Tt = 0.9 (fig. 3A and B). Both JSDy, and JSD+ reached their
minima at the same value of chaperone-adjusted synthesis
cost w* = 0.05, so the energetic balance between chaperone
activity and costs of amino acid maintenance appeared sim-
ilar between thermophiles and mesophiles. Remarkably, the
value of w* was the same for archaea and bacteria; this finding
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Fic. 3. Simulated frequencies of amino acids compared with the naturally evolved ones for bacteria. (A, B) Jensen—Shannon divergence between
amino acid frequencies in simulated data and thermophilic (A) and mesophilic (B) proteomes exhibits clear minima with respect to the tem-
perature T and shaperone-adjusted synthesis costs w. The best match between the model and mesophilic proteomes is achieved at a lower
temperature than the best match to the thermophilic ones. (C) Pearson correlation coefficient R, between amino acid frequencies in simulated
data and all bacterial proteomes reachesR ~ 0.9for0.7 < T < 0.9.(D) In the same temperature range, the temperature trends of amino acid in
simulated data are strongly correlated with those in bacterial proteomes, R = 0.64.

was robust upon changes of proteostasis cost cutoff IT* (sup-
plementary table S1, Supplementary Material online).

The temperature range [Ty, T7| and the cost w* success-
fully describe the complete data set of both mesophiles and
thermophiles in terms of amino acid composition and its
temperature trends. To simplify comparison with earlier
works, figure 3C presents the Pearson correlation coefficient
Ra = R(f —model,f —bio) between average amino acid fre-
quencies in 262 bacteria (mesophiles and thermophiles com-
bined), and simulated data. The very high correlation,
Ra = 0.9 is similar to the predictions of the current-best
phenomenological model (Krick et al. 2014). Figure 3D shows
the correlation Ry, between the amino acid temperature
trends (slopes df,/dT) in the model and biological data,
Rp = R(df —model/dT,df —pio/dT), in the same 262

bacterial species. Difference quotients of simulated amino
acid frequencies Af,/AT,a = 1...20 in the [Ty, T7] range
were used to calculate the simulated temperature trends. For
the real frequencies of amino acids, the slopes were derived
from the linear regression over the entire OGT range (sup-
plementary fig. STA-D, Supplementary Material online).
Similar to the values of R,, the value of Ry exhibits a clear
maximum with respect to both w and T, reaching Rp ~ 0.60,
similar to earlier findings (Venev and Zeldovich 2015).
Interestingly, the relative temperature range in the model,
(Tr — Tm)/Tm =~ 29% compared well with the actual tem-
perature range of prokaryotes, thriving between ~280 and
370K, a 30% change in absolute temperature. Comparison
between simulated data and amino acid frequencies in arch-
aea is presented in supplementary figure S6, Supplementary
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Material online, and shows similar values of the optimum
temperature range and chaperone-adjusted synthesis cost w.
Qualitatively similar results are obtained by comparing the
simulation with amino acid frequencies derived from
predicted highly expressed proteins (top 10% of CAl for
organisms with CUS; supplementary figs. S7 and S8,
Supplementary Material online).

To prove that these results are not a numerical artifact, we
have shuffled the values of amino acid maintenance cost C,
and repeated the simulations. The reshuffling breaks the con-
nection between the biochemistry of amino acids, reflected in
their costs C,, and their physical properties, such as interac-
tion energies €4, As shown in supplementary figure S9,
Supplementary Material online, the values of JSD4 and Rp
obtained from reshuffled C, are almost always lower than
those for the initial true C, yielding p < 0.01. Therefore,
we demonstrated that the interplay between amino acid syn-
thesis costs and protein folding is internally consistent, and
our model produces correct amino acid frequencies only
when the connection between the organism-level biochem-
ical and physical properties of amino acids is preserved.

The predicted temperature trends of amino acid frequen-
cies had a statistically significant correlation with biological
data for bacteria, R=064 (supplementary fig. S10B,
Supplementary Material online). A much weaker correlation
was observed for archaea, R = 0.35 (supplementary fig. ST0A,
Supplementary Material online). We have then considered
only highly expressed proteins (top 10% of CAl for organisms
with CUS) from either domain, expecting that the selective
pressure of proteostasis is stronger for this group of proteins.
In bacteria, consideration of highly expressed proteins did not
significantly affect the agreement between simulated and bi-
ological data, R=055 (supplementary fig. S10D,
Supplementary Material online). However, temperature
trends in highly expressed proteins in archaea were strongly
correlated with our simulation, R =0.61 (supplementary fig.
S10G, Supplementary Material online). Therefore, in archaea,
highly expressed proteins experience a selective pressure that
is well-described by the model, while the complete archaeal
proteomes apparently evolved under a variety of constraints
yet to be identified.

Results of the simulations were generally robust with the
respect to changes of the model parameters, such as proteo-
stasis cost cutoff IT*, equation (10) as shown in supplemen-
tary table S1, Supplementary Material online. The correlation
coefficient Ry between the simulated and biological temper-
ature derivatives of amino acid frequencies was not sensitive
to IT". However, at low values of IT", the selection was not
strong enough, leading to the optimum parameter w being
different for thermophiles and mesophiles in certain cases.
This artifact vanished at IT* > 0.7, the value ultimately cho-
sen for production simulations.

Consistent with previous findings (Venev and Zeldovich
2015), the temperature trend of leucine frequency was not
captured well by the model. Leucine is a very hydrophobic
residue, as reflected by the Miyazawa and Jernigan interaction
potential. Accordingly, the frequency of leucine rapidly in-
creased with temperature in simulated proteomes, as leucine
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participates in hydrophobic interactions in the protein core.
As it is known (Goncearenco et al. 2014), the frequency of
leucine does not increase with temperature in bacteria, al-
though it does so in archaea (supplementary fig. S1A and B,
Supplementary Material online). Combined with the fact that
leucine is relatively simple to synthesize, and is coded by six
different codons, these observations clearly point to the bio-
chemical differences between archaea and bacteria, and to
the limitations of current biophysical models. Our choice of
the Miyazawa and Jernigan amino acid interaction potential,
which overemphasizes attractive forces, may be one of the
factors contributing to the leucine being an outlier.
Alternative derivations of the knowledge based potential,
such as (Thomas and Dill 1996), may alleviate this issue.
Aspartic acid is an another known outlier (Goncearenco
et al. 2014). This charged amino acid is predicted to increase
in frequency as the temperature rises, just as glutamic acid,
lysine, and arginine. However, while glutamic acid and lysine
consistently increase in frequency in both bacteria and
archaea, aspartic acid is surprisingly depleted in natural
thermophilic proteomes.

Amino Acid Synthesis Costs Increase with
Environmental Temperature

Metabolic costs of amino acid synthesis are negatively corre-
lated with protein expression levels across the three domains
of life (Akashi and Gojobori 2002; Swire 2007). In figure 4A
and G, we plotted the proteome-averaged Akashi-Gojobori
amino acid synthesis cost against environmental temperature
for 140 archaea and 262 bacteria, assuming equal expression
levels of all proteins. We found a statistically significant pos-
itive correlation, confirming that thermal stability requires
heavier usage of synthetically “expensive” proteins, in agree-
ment with an earlier observation made on Thermus thermo-
philus genome (Swire 2007). In contrast with the amino acid
synthesis cost, the amino acid maintenance cost, which com-
bines synthesis and decay (Krick et al. 2014), is not signifi-
cantly correlated with the environmental temperature (OGT;
fig. 4B and D). These observations are generally consistent
with our simulations. Supplementary figure S11A-H,
Supplementary Material online, demonstrates that for the
optimum temperature range [Tm,Tt] and chaperone-
adjusted synthesis cost w* = 0.05, amino acid synthesis costs
increased with temperature, whereas amino acid mainte-
nance costs weakly decreased, similar to figure 4.

Highly Expressed Proteins Are Similar to Thermophilic
Ones in Bacteria, Not in Archaea

In full agreement with earlier findings by Akashi and Gojobori
(2002) and Swire (2007), our analysis found a statistically sig-
nificant negative correlation between the amino acids syn-
thesis costs and CAl (proxy for expression) in sets of 167
bacterial and 65 archaeal genomes (supplementary fig. S12,
Supplementary Material online). At the same time, it has
been proposed that amino acid composition of highly
expressed proteins is similar to the composition of thermo-
philic proteins (Cherry 2010). As noticed earlier (Serohijos
et al. 2012), this is somewhat contradictory to the findings
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Fic. 4. Temperature trends of the amino acid synthesis and maintenance costs in prokaryotes. Proteome average cost of amino acid synthesis and
amino acid maintenance for archaeal species (A, B) and bacterial species (C, D). Marker color represents the genome-wide GC content of each
specie; as it is well-established, genome-wide GC content is not correlated with OGT, see also supplementary figure S1A and B, Supplementary

Material online.

of Akashi et al and Swire, as thermophilic proteins tend to be
more synthetically “expensive”.

To look for the origins of this controversy, we compared
the protein expression levels, approximated by CAl, with their
thermostability in bacteria and archaea. To assess protein
thermostability of a group of proteins, we used the JSDt be-
tween their average amino acid composition and the average
amino acid composition of 92 thermophilic archaea or 66
thermophilic bacteria (OGT > 50°). For each organism, pro-
teins were split into twenty bins according to their CAl, and
average amino acid usage of each bin was compared with the
thermophilic composition using JSD+. For archaea, we did not
observe a significant correlation between CAl and JSD+ (fig.
5A). However, bacteria exhibited a statistically significant neg-
ative correlation between JSD+ and CAl bin (fig. 5B): bacterial
proteins appeared more similar to thermophilic ones (lower
values of JSD) as their CAl increased. As a control, we have
reshuffled synonymous codons within each genome,

destroying the codon bias and thus CAIl metric of each pro-
tein, but leaving amino acid composition intact. No correla-
tion was observed in reshuffled data for bacteria (fig. 5B). To
rule out the possible effects of binning on the observed cor-
relations, we repeated the analysis using 5 and 50 bins of CAl
values, and observed the same trends (data not shown).
These results partially support Cherry’s findings and demon-
strate the immense flexibility of the 20-dimensional space of
protein sequence composition to satisfy multiple physical
and phylogenetic constraints.

We have also tried to approximate protein thermostability
by the fraction of IVYWREL amino acids, which is strongly
correlated with OGT at the proteomic level (Zeldovich et al.
2007b). Although a strong negative correlation between
IVYWREL and CAl was observed, the same trend persisted
upon synonymous codon reshuffling, in both bacteria and
archaea (supplementary fig. S13, Supplementary Material on-
line). Therefore, an intrinsic connection between the amino
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thermophilic composition using Jensen—Shannon divergence, sepa-
rately for archaea (A), and bacteria (B). In bacteria, the higher is pro-
tein expression, the more similar is amino acid composition to a
thermophilic one (decreasing JSD-, red line, statistically significant).
No such trend was observed for archaea. As a control, codon reshuf-
fling was used to destroy the relation between CAl and amino acid
composition of proteins. For both archaea and bacteria, the correla-
tion between JSD1 and CAl for reshuffled codons was not significant.
Error bars represent the 30% and 70% percentiles of the underlying
distributions.

acid and nucleotide frequencies via the genetic code prevents
the use of IV'YWREL metric to compare protein expression
(CAl) and thermostability.

To check if our simulation can capture an increased sim-
ilarity between highly expressed and thermophilic proteins,
we have divided the model proteins into three bins of low,
medium, and high abundance, positing that the metabolic
cost is proportional to the total amount of protein in each
group, equation (11) (see Materials and Methods for details).
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We have run the simulation for w* = 0.05, corresponding to
the best global fit of model with experimental data, and found
that highly abundant model proteins were indeed consis-
tently closer in amino acid composition to natural thermo-
philic bacteria, compared with low-abundant model protein
(supplementary fig. S14, Supplementary Material online).
Although this finding is encouraging, the effect is relatively
small, Rt = 0.82 for low abundance versus Rt = 0.88 for
high abundance. Further study of this phenomenon warrants
development of a more detailed cellular fitness model, as in
our approach the contribution of proteins to fitness was ex-
clusively defined by stability, metabolic cost and abundance,
without considering essentiality or connectivity in the cell’s
metabolic network.

Discussion

Statistically significant correlations between environmental
conditions and amino acid usage are well-established, dating
back at least to 1982, when amino acid usage was quantita-
tively linked to environmental temperature by Ponnuswamy
et al. (1982). An early physical model of amino acid compo-
sition has been proposed by Dill (1985), who derived the ratio
of hydrophobic to polar residues conferring highest stability
to a globular protein. The interest in the statistical under-
standing of thermal adaptation increased as microscopic sim-
ulations of protein evolution became possible (Taverna and
Goldstein 2002; Bloom et al. 2006; Goldstein 2008). Modeling
of lattice proteins (Berezovsky et al. 2007; Venev and
Zeldovich 2015) showed that although the temperature
trends in amino acid frequencies can be explained by purely
physical models, the frequencies themselves are weakly cor-
related with genomic data. This discrepancy suggests that
either the physical models are still not precise enough to
resolve individual amino acids beyond their rough classifica-
tion by hydrophobicity, or other factors contribute signifi-
cantly to amino acid usage.

Complementary to protein folding constraints, metabolic
costs and overall energy balance of a cell have been long
identified as powerful evolutionary drivers (Pal et al. 2006),
as exemplified, for example, by the success of quantitative flux
based metabolic models (Varma and Palsson 1994; Price et al.
2004). Akashi and Gojobori (2002) estimated the energy
expended on the synthesis of each of the 20 types of amino
acid molecules, and found that highly expressed proteins are
enriched in “cheap”, easily synthesized amino acids. These
findings highlighted the importance of proteostasis as the
major cellular process, coupling energy and material fluxes
in a cell. The flux models were further advanced by an esti-
mate of the amino acid decay rates within a cell (Krick et al.
2014). By combining the amino acid synthesis cost, decay rate,
and sequence entropy into an empiric cost function, Krick
et al. (2014) made successful predictions of amino acid fre-
quencies. However, this model did not explicitly address pro-
tein folding or other physical considerations, and so is difficult
to extend to the study of thermal adaptation.

To bridge this gap, we proposed that proteostasis is not
limited to the chemical turnover of amino acid molecules,
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but, crucially, maintains appropriate levels of functional, cor-
rectly folded proteins. Molecular chaperones are an integral
part of this process, attempting to refold proteins in an
ATP-dependent manner. Invoking quality control systems in
response to misfolded proteins causes a fitness penalty pro-
portional to the fraction of misfolded proteins, their expression
level and is largely function-independent (Geiler-Samerotte
et al. 2011). Moreover, further experiments suggested that it
is indeed the metabolic cost of chaperone activity that
imposes the fitness penalty, rather than the consequences,
for example, toxicity, of the presence of abundant misfolded
proteins (Tomala et al. 2014). Chaperone function provides a
feedback to the genotype, by accelerating its evolution while
serving as a capacitor for otherwise deleterious phenotypic
mutations (Bogumil and Dagan 2012; Cetinbas et al. 2013).

Following Kepp et al. (2014) and in parallel with (Santra
et al. 2017), we hypothesized that the energy consumed by
chaperones is nonnegligible and must be taken into account
together with other metabolic costs. Specifically, we assumed
that the total energy cost of proteostasis includes contribu-
tions from both amino acid turnover and chaperone activity.
The key feature of the model is the statistical dependence
between foldability of a protein and its amino acid composi-
tion (Dill 1985; Berezovsky et al. 2007; Venev and Zeldovich
2015). Indeed, well-folded proteins typically contain a bal-
anced mix of charged and hydrophobic residues, while intrin-
sically unfolded proteins do not (Uversky et al. 2000).
Statistically, proteins with an unbalanced amino acid compo-
sition are less stable and so may require more frequent chap-
erone intervention. Therefore, we posited that amino acid
compositions have evolved to minimize the total energy
spent on amino acid homeostasis and chaperone activity,
and tested this hypothesis by simulations.

By incorporating protein folding and metabolic cost in a
single model, we were able to capture average amino acid
composition and its temperature trends simultaneously
(fig. 3), significantly improving upon purely physical models
(Berezovsky et al. 2007; Venev and Zeldovich 2015). These
models are captured in our study as a limiting case w = 0. As
demonstrated in figure 3, the predictive power of the model
dramatically increases by considering a balance between pro-
tein folding requirement and the metabolic cost constraints,
w = 0. It has been long posited that stringent protein folding
requirements are associated with increased fitness (Taverna
and Goldstein 2002; Bloom et al. 2006; Zeldovich et al. 2007a;
Lobkovsky et al. 2010). More or less explicitly, these works
assumed that fitness is related to metabolic rates which in
turn depend on the amount of folded, functional enzymes to
catalyze chemical reactions. This assumption led to various
models where fitness was positively correlated with stability,
as in equation (8). In the present model, however, the positive
contribution of stability to fitness does not stem from the
metabolic rate argument. Rather, it emerges from the energy
balance of the cell: more stable proteins require less energy
expense in the chaperone system, leaving more ATP and
other resources for replication. Therefore, our model suggests
a novel and independent biological mechanism leading to
the fitness being an increased function of protein stability.

Further experimental studies will be needed to elucidate the
relative contributions of metabolic versus energetic correlates
of protein stability to organism fitness.

While comparing the model findings with experimental
data, we have made several novel statistical observations.
First, we showed that the trends of thermophilic adaptation
of highly expressed proteins are very similar in archaea and
bacteria, while no strong correlation is observed at the whole-
proteome level (fig. 2). We interpret this finding as manifes-
tation of convergent response to a selective pressure acting
on highly expressed proteins irrespective of their phylogenetic
history, and suggest the energetics of proteostasis as mecha-
nistic explanation. Second, we clearly demonstrate that
proteome-wide amino acid synthesis cost, according to
Akashi-Gojobori scale, increases with OGT in both archaea
and bacteria (fig. 4). This observation supports our hypothesis
of synthetically expensive amino acids being crucial for pro-
tein stability and thermal adaptation. At the same time, it is
well-established that highly expressed proteins are “cheap” to
synthesize (Akashi and Gojobori 2002; Seligmann 2003; Heizer
et al. 2006; Raiford et al. 2008 and supplementary fig. S12,
Supplementary Material online). Therefore, we find that ther-
mophilic proteins are expensive to synthesize but highly
expressed ones are biosynthetically cheap. At the same
time, it has been suggested that amino acid composition of
highly expressed proteins is similar to that of thermophilic
proteins (Cherry 2010), which creates a logical inconsistency.
We attempted to address this issue by estimating the
expression levels using CAl and correlating it with various
composition-based predictors of thermostability in a
large set of bacterial and archaeal proteomes. In the bac-
terial data set, we observed that highly expressed proteins
had amino acid compositions more similar to the average
composition of thermophilic proteomes. This finding par-
allels earlier results by Cherry (2010). However, no signif-
icant correlation was found in archaea (fig. 5). Apparent
inconsistencies in the empirically observed cost-
expression-stability triangle require further study, and
suggest a surprising flexibility of amino acid usage evolv-
ing to satisfy different constraints. Observed statistical
differences between archaea and bacteria in the cost-
expression-stability space may complicate comparisons
of evolutionary simulations (Drummond et al. 2005;
Serohijos et al. 2012) with experimental data. Further de-
velopment of high-throughput experimental methods for
characterizing protein expression levels and thermosta-
bility, such as limited proteolysis and mass spectrometry,
LiP-MS (Leuenberger et al. 2017) will make it possible to
transition away from sequence-based predictors, and will
stimulate the next generation of predictive, organism-
level models of metabolism and selection.

Materials and Methods

Model of Protein Homeostasis and Simulation of
Adapted Proteomes

Our model for protein homeostasis costs closely follows Kepp
et al. (2014), together with the hypothesis that a specific
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amino acid composition generates an additional,
folding-related energy demand due to chaperone activity re-
quired to refold misfolded or unstable proteins. As in Kepp
et al. (2014), we assume that the cellular fitness increases with
the amount of energy spent on replication. As the total en-
ergy supply is limited, reduction of the energetic costs of
proteostasis confers fitness advantage on the cell.

The energy expenditures of proteostasis, figure 1, can be
approximated by

Ep ~E+ &+ &y, (M)

where subscripts s, f, d denote synthesis, chaperone-
assisted folding and degradation respectively. We assume
that protein synthesis cost & depends on the protein
sequence only via amino acid composition and sequence
length L. Thus, the total protein synthesis cost & can be
approximated by

20
E ~oal+ Z CaNa, 2
a=1

where the first term is the cost of translating L codons (o per
each), and the second term represents the total energy of
synthesizing n, amino acids of each kind in a protein,

20
> n, = L. The vector C;,a = 1,...,20 in equation (2) is
a=1

the amount of energy required per unit time to maintain a
constant concentration of each type of amino acid mono-
mers, as they are consumed by protein synthesis and also
being chemically degraded at different rates, as derived in
Krick et al. (2014).

Maintenance of constant concentration of folded, func-
tional proteins involves the action of chaperones, which help
refold improperly folded proteins. Chaperone-assisted refold-
ing consumes energy primarily on conformational transitions
required to form the hydrophobic cavity (Hartl et al. 2011).
We assume that the cost of chaperone activity is proportional
to the fraction of unfolded client proteins, which in turn
depends on the amino acid composition of the client.
Denoting the fraction of chaperone clients in the native state
as P, One can express the energy costs of chaperone activity
and protein degradation as

Sf‘i‘gdz(F+DF)'Pnat+(U+DU)'(1_Pnat)> (3)

where F is the energy spent per unit time to assist successful
folding of the P, fraction of natively-folded protein, U is
energy consumed by chaperones to refold 1 — P, fraction
of client proteins that fail to fold spontaneously, and D, Dy
are proteasome energy expenditures of degrading natively
folded and nonnatively folded proteins, respectively. We as-
sume that F + D < U 4 Dy, that is, maintenance of poorly
folding proteins is costlier than maintenance of the well-
folding ones. This assumption is supported by the evidence
of dosage-dependent fitness penalty induced by misfolding
mutations in a protein unrelated to cellular metabolism
(Geiler-Samerotte et al. 2011), and by recent modeling of
E. coli chaperone network (Santra et al. 2017). As we describe
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proteostasis as steady state phenomenon, temporal effects
such as differences in protein and amino acid molecule life-
time, kinetics of protein folding and refolding can be neglected.

To model folding of chaperone client proteins, we used a
lattice model (Shakhnovich and Gutin 1990; Sikosek and
Chan 2014) of compact polymers on a 4 X 4 X 4 cubic lat-
tice, with a randomly generated subset of N = 10* confor-
mations. Choosing a different set of 10* conformations did
not affect the results of the simulation. A residue
level knowledge-based potential (Miyazawa and Jernigan
1999) €4, a,b = 1,...,20 was used to calculate energy of
nonlocal contacts in each conformation:

L

Eis = Z €55, 045 (4)

k=1

where i = 1,...,N is the index of conformation, Sy is the
type of the amino acid at position k of the sequence S, and J,,
is a contact map of the conformation i. Dependence of amino
acid interaction potentials on temperature (Goldstein 2007;
Pucci et al. 2014) is not considered in the model. The equi-
librium fraction of natively-folded proteins P, .. was calculated
from the Boltzmann distribution:

—Enac/ksT
P = P (TEnat/koT) (5)

; exp (—E;/kgT)

where E,,, is the lowest energy among all conformations and
kg is the Boltzmann constant.

Substituting equations (2, 3) into equation (1), we derive
the proteostasis cost,

20
Ep~ oL+ Y Canlg+ (F + D) - Paae + (U + Dy)
a=1

' (1 - Pnat)y (6)

which can be rewritten as
20
gp :“_ﬁ(Pnat_W'ZCana)a (7)
a=1

where o, f > 0 and w >0 are constants, and C, is the
vector of amino acid maintenance costs. Importantly,
foldability P,,,. of chaperone clients depends on their
amino acid composition, allowing for a nontrivial inter-
play between the two terms in equation (7). The param-
eter w controls the relative fitness costs of protein
(mis)folding (implicit via chaperone activity) and amino
acid biosynthesis in our model. The limiting case of w =0
corresponds to a purely physical model where fitness is
proportional to protein foldability, as in Taverna and
Goldstein (2002), Bloom et al. (2006), Zeldovich et al.
(2007a), Lobkovsky et al. (2010), whereas the opposite
case of large w recapitulates flux based energetic models
(Akashi and Gojobori 2002; Krick et al. 2014; Kepp et al.
2014). In the following, w will be referred to as chaperone-
adjusted synthesis cost.
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To simulate proteomes evolved to minimize the costs of
protein homeostasis, we design lattice proteins using the fol-
lowing scoring function for sequence S at temperature T:

20
T(S, T,w) = Ppac — W - Z Cahg. (8)

a=1

Minimization of the proteostasis costs &, is equivalent to
maximizing the score T1(S, T, w). Furthermore, for the or-
ganism to be viable, all of its proteins must be sufficiently
stable (P, > 0.5), which leads to the additional constraint:

Poac(Si, T) > 0.5, i=1...M. 9)

The simulation introduces mutations in sequences until a
sufficiently high proteostasis score is satisfied:

M

1 *
~ D (S, Tw) > 1T, (10)

i=1

where IT* is the threshold proteostasis score defining a viable
organism. In the limiting case of w =0, the IT" is similar to
the parameters previously used in Zeldovich et al. (2007a). For
production simulations, I[T* = 0.7 was used, see Results and
supplementary table S1, Supplementary Material online for
details.

The protein design simulation starts with M = 10° ran-
dom sequences. At every step, one amino acid mutation is
introduced in each sequence, and a change of its score IT is
calculated. Mutations that increase I1 are always accepted,
whereas mutations that decrease IT are accepted according
to Metropolis Monte Carlo (MC) scheme with probability
P = exp(—(ITogg — Mpew)/Tmc),  with  the  design
“temperature” Tyc = 104 The stability condition (9) is
then checked, and if all sequences satisfy it, the proteostasis
cost criterion (10) is evaluated. The simulation stops if the
criterion (10) is met or the number of iterations exceeds 10°.

To introduce protein abundance in the model, we assign
each protein with abundance level g; for the three groups of
low, medium and high abundance (a = 0.005, 0.1, 1 respec-
tively). We assign proteins to abundance groups in 25:50:25
ratio, so medium-abundance proteins represent half of the
proteome, and low- and high-abundant group are one quar-
ter of the proteome each. While this is a strong assumption,
we believe that it captures the nonuniform protein abun-
dance distribution at a coarse-grained level. Since proteostasis
costs scale linearly with abundance, we can rewrite the design
criterion (10) as

M

Z aiH(Si7 T7 W)
e | (11)

> ai

This expression reduces to equation (10) if abundances g;
are all equal to each other. Furthermore, the MC criterion for
accepting mutations becomes P = exp (—a;(TToq—
Ihew)/Trmc), so proteins of low abundance are less con-
strained in their sequences as long as the stability criterion
(9) is still satisfied. This feature of the model is supported by

our analysis of real data, where temperature trends in bacteria
and archaea were similar for highly abundant proteins but less
so for complete proteomes. The effective decrease of MC
temperature for highly abundant proteins also provides for
their slower evolution, established, for example, by
Drummond et al. (2005). The distribution of protein stabilities
P, of all sequences generated in the simulation is shown in
supplementary figure S15, Supplementary Material online. As
expected, low-abundance proteins have a lower average sta-
bility and a wider distribution of stabilities.

Therefore, for each combination of the two input param-
eters, environmental temperature T and chaperone-adjusted
synthesis cost w, we were able to generate simulated pro-
teomes of 10° sequences of length 64 each, optimizing the
proteostasis costs (8) or (11) subject to stability condition (9).
The GPU-accelerated lattice protein folding library GaleProt
(Venev and Zeldovich 2015) was used for massively parallel
evaluation of P,,.. Frequencies of amino acids found in the
simulated proteomes were used for comparison with geno-
mics data.

Data Sets

We used RefSeq and BioProject databases at NCBI to retrieve
543 completely sequenced, annotated, single-chromosome
bacterial genomes with known OGT or a specified environ-
mental temperature. A Python script (Cock et al. 2009) was
used to retrieve OGT data from NCBI Entrez. If only a tem-
perature range was specified, the average temperature was
used as OGT. Following (Goncearenco et al. 2014), we re-
moved 281 overrepresented species with the values of OGT
0f27.5°,30°, 37° as they represent plant and animal pathogens
and experience diverse selective pressures unrelated to envi-
ronmental temperature. The bacterial data set covers the OGT
range of 15-90° and genome-wide GC content (GC) of 30—
70% (supplementary fig. S16B, Supplementary Material on-
line). As archaea are much less represented in the BioProject
database, we performed a manual literature search for OGT of
617 species of archaea available in GenBank. The search yielded
223 species with known OGT and sufficient annotation (whole
genome shotgun assemblies were included if at least 600 pro-
tein coding sequences were annotated). Genomes of 83 hal-
ophiles have been excluded from analysis, as they experience a
strong evolutionary pressure of hypersaline environment
(Fukuchi et al. 2003), and appear as outliers on the overall
monotonous OGT trends of amino acid usage. The scatter
plots in genomic GC-OGT coordinates for archaea (supple-
mentary fig. S16A, Supplementary Material online) reveal a
relatively homogeneous coverage, with the GC range 30-
70% and OGT 25-110° with a lower coverage at ~60° OGT,
which may be attributed to the lack of corresponding environ-
ments. The analyzed data set comprised 262 bacteria and 140
archaea with sufficient annotation and known OGT, acces-
sions numbers and OGT are listed in supplementary tables S2
and S3, Supplementary Material online. Analysis scripts
and protocols are available at http://github.com/sergpolly/
Thermal_adapt_scripts, last accessed November 1, 2017.
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Identification of Highly Abundant Proteins
Protein abundance and expression level are important factors
to consider when calculating energetic costs. Unfortunately,
for most of prokaryotes with completely sequenced genomes
neither protein abundance nor expression have been directly
characterized, for example, there are only two archaeal entries
in the major protein abundance database, PaxDB (Wang et al.
2015). We used a sequence based approach to identify puta-
tively highly expressed proteins using CAl (Sharp and Li 1987).
Ribosomal proteins were used as a reference of highly
expressed proteins (Pedersen et al. 1978; Srivastava and
Schlessinger 1990) to establish the codon usage pattern. We
selected all species with at least 25 annotated ribosomal pro-
teins, and used CAl as a proxy for expression and abundance
level.

Previously, it has been shown that CAl has its limitations as
a predictor of gene expression (Botzman and Margalit 2011),
as in some species the CAl distribution is very narrow and
codon usage of ribosomal protein genes is nearly indistin-
guishable from other genes (supplementary fig. S17B,
Supplementary Material online). To address this issue, we
selected a group of genomes where at least 85% of ribosomal
protein genes are within the 25% of all genes with the highest
CAl rank. This empirical criterion selects genomes with wide
distributions of CAl and a marked difference in codon usage
between ribosomal and other proteins (supplementary fig.
S17A, Supplementary Material online), which in turn implies
strong codon usage selection (CUS). We assume that in
organisms with CUS, CAl can be used as a proxy for gene
expression and, statistically, abundance (Sharp and Li 1987;
Jansen et al. 2003; Supek and Vlahovicek 2005; Maier et al.
2009). CUS was identified in ~50% of species used in this
study, 167 bacteria out of 262 and 65 archaea out of 140. Our
CUS criterion is compatible with the criteria proposed in
Botzman and Margalit (2011) (supplementary fig. S18,
Supplementary Material online), and preserves a relatively
uniform GC-OGT distribution of species (supplementary fig.
S16, Supplementary Material online). For CUS organisms,
highly expressed genes (abundant proteins) were defined as
the genes within the top 10% of CAl values. Thus we avoided
using CAl-ranking for individual genes, which in turn miti-
gates the problem of poor expression versus abundance cor-
relation (Maier et al. 2009).

Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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