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SUPPLEMENTARY FIGURES 

 

 

Supplementary Fig. 1  The WHO framework for seasonal antigenic characterization of human 
influenza viruses. As an example, the framework is shown for the Northern Hemisphere and Southern 

Hemisphere vaccine composition meetings held respectively in the last week of Feb. 2021 and Sep. 

2021. In each season, genetic characterization is performed for most of the circulating isolates. A few 

representative isolates are then selected for antigenic characterization.  
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Supplementary Fig. 2  Data distribution and the performance of baseline model over multiple 
influenza seasons. (a) Under the seasonal framework (Fig. 1a), the data is distributed into training 
and test datasets for each of the 37 seasons from 2003NH to 2021NH. Upper panel shows the number 

of virus-antiserum pairs in the training dataset for each season, whereas lower panel depicts the same 

for the test dataset. (b) The performance of the baseline model in terms of MAE for each test dataset 

in 35 seasons from 2005NH to 2021NH. The baseline model is an AdaBoost model with unoptimized 

hyperparameters, binary encoded genetic difference, and without any metadata information. The 

vertical dashed line indicates the season after which the baseline model started to provide reliable 

predictive performance. Source data are provided as a Source Data file. 
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Supplementary Fig. 3  Optimization of AdaBoost model based on metadata information, model 
hyperparameters, and amino acid attributes. (a) MAE performance of the baseline model when a 

specific feature or group of features are incorporated in the metadata information. The MAE score was 

averaged over four validation seasons from 2012NH to 2013SH. (b) MAE performance of the baseline 

model (including all the metadata information) with unoptimized and optimized hyperparameters (see 

Methods). (c) Variation in MAE performance of the baseline model (including all the metadata 

information) over genetic encoding schemes (including the 92 amino acid mutation matrices as well as 
binary and one-hot encoding). The hyperparameters were optimized independently for each of these 

94 AdaBoost models corresponding to mutation matrices and encoding methods. The top five genetic 

encoding schemes with the best MAE performance are highlighted and listed. Source data are provided 

as a Source Data file. 
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Supplementary Fig. 4  Robustness of the model’s predictive capability to changes in training 
data. (a-b) Performance of models trained over a subset of training data containing (a) only 20-80% 

randomly selected HI titres, or (b) all the HI titres of only 20-80% randomly selected virus isolates, in 

each historical season from 2003NH up to the test season. Each boxplot shows the variation in the 

MAE performance of the models over 14 test seasons from 2014NH to 2020SH. The average MAE, 
mentioned over each boxplot, is the average over 50 Monte Carlo runs, where each of these 50 values 

represent average MAE over 14 test seasons. In each box plot, the middle line indicates the median, 

the edges of the box represent the first and third quartiles, and whiskers extend to span a 1.5 

interquartile range from the edges. (c) Performance of the model when training data of the most recent 

season is excluded from model training. For each test season, ‘Reference’ indicates the MAE 

performance of the model trained on the complete training dataset starting from the earliest season 
2003NH up to the test season. In the heatmap, each row corresponds to a season excluded from the 

training data. Each cell in a column shows the change in the MAE performance of the model in 

comparison to the ‘Reference’ cell in the same column. The darker cell colour indicates the worse MAE 

performance. Source data are provided as a Source Data file. 
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Supplementary Fig. 5  Classification performance of the optimized model. (a) Performance of the 

model with a classification threshold of 2 antigenic units. The darker cell colour indicates better 

performance. The ‘Average’ cell indicates the classification scores averaged over 14 test seasons from 

2014NH to 2020SH. (b) Performance of the model with an optimized classification threshold. For each 

test season from 2014NH to 2020SH, the classification threshold was optimized to maximize the 
Youden’s index (sensitivity + specificity – 1) for the previous three seasons. As the Youden’s index 

keeps a balance between the two classes, it therefore decreases the sensitivity and improves the 

specificity in comparison to the scores in (a). Source data are provided as a Source Data file. 
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Supplementary Fig. 6  Performance comparison of ML and NN models for antigenic prediction 
of IAV H3N2 under the seasonal framework. Comparison of the proposed AdaBoost model with a 
linear model (NextFlu substitution model), tree-based ML models (RF and XGBoost), and NN models 

(MLP and ResNet). See Methods for implementation details of these models.  The "AdaBoost (NextFlu-

matched-params)" model is based on AdaBoost, with parameters tailored to match those of the NextFlu 

model that uses binary-encoded genetic differences and only two metadata features: virus avidity and 

antiserum potency. For each model, MAE was computed for 14 test seasons from 2014NH to 2020SH. 

In each box plot, the middle line indicates the median, the edges of the box represent the first and third 
quartiles, and whiskers extend to span a 1.5 interquartile range from the edges. Source data are 

provided as a Source Data file. 
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Supplementary Fig. 7  Performance of the model when partial antigenic information of 
circulating virus isolates is available. The model was trained on dataset consisting of genetic and 

antigenic information of historical isolates as well as x% of randomly selected circulating isolates, where 

x was varied from 10% to 50%. The simulations were repeated for 50 Monte Carlo runs. The MAE 

performance of the model was computed for 14 test seasons from 2014NH to 2020SH, where the 
average MAE over these seasons is mentioned above each boxplot. In each box plot, the middle line 

indicates the median, the edges of the box represent the first and third quartiles, and whiskers extend 

to span a 1.5 interquartile range from the edges. Source data are provided as a Source Data file. 
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Supplementary Fig. 8  Performance of models trained over subsets of training data containing 
only one to five most recent seasons. For reference, ‘all’ denotes the case when the complete 

training dataset is used. Each boxplot shows the variation in the MAE performance of the models over 

14 test seasons from 2014NH to 2020SH, and the average MAE over these seasons is mentioned 

above each boxplot. For each test season 𝑠, the 𝑥 recent seasons represents the case when the model 

was trained over a subset of training data consisting of 𝑥 seasons starting from season 𝑠 − 𝑥 to season 

𝑠 − 1. In each box plot, the middle line indicates the median, the edges of the box represent the first 

and third quartiles, and whiskers extend to span a 1.5 interquartile range from the edges. Source data 

are provided as a Source Data file. 
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Supplementary Fig. 9  Data distribution and performance of the AdaBoost model for seasonal 
antigenic prediction of IAV H1N1 over multiple influenza seasons. (a) Under the seasonal 

framework (Fig. 1a), the IAV H1N1 data35 is distributed into training and test datasets for each of the 

18 seasons from 2001NH to 2009SH. The upper panel shows the number of virus-antiserum pairs in 

the training dataset for each season, whereas the lower panel depicts the same for the test dataset. 

This dataset includes a total of 3,233 NHTs computed using 18,211 HI titre values after removing 

threshold values from the dataset used in ref.33. Corresponding to this dataset, a total of 506 HA 
sequences were obtained from GISAID13 using the isolate IDs provided in ref.35 and then aligned using 

MAFFT48 with reference to A/Fujian/156/2000. (b) The MAE performance of the AdaBoost model for 

seasonal antigenic prediction of IAV H1N1 over 18 seasons from 2001NH to 2009SH. The ‘Average’ 

cell indicates the score averaged over these 18 seasons. The darker coloured cells indicate better 

performance. The AdaBoost model (with same hyperparameters as used for IAV H3N2) was used (see 

Methods). The HA1 sequences (length 326 from amino acid position 18 to 343 of HA protein) of IAV 
H3N2 virus-antiserum pairs were encoded using the same mutation matrix that performed the best for 

IAV H3N2 (see Methods). As this dataset lacks the passage information, a unique virus isolate was 

identified by only its name, and hence the used metadata information only included virus avidity and 

antiserum potency estimated from corresponding names of virus isolates. Source data are provided as 

a Source Data file. 
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Supplementary Fig. 10  Variation in the MAE performance of the RF model for different mutation 
matrices. The hyperparameters were optimized to minimize the average MAE over four validation 
seasons (2012NH to 2013SH), independently for each RF model corresponding to the mutation 

matrices and binary encoding, where each model was implemented under seasonal framework (Fig. 
1). Source data are provided as a Source Data file. 
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SUPPLEMENTARY TABLES  
 

Supplementary Table 1  Hyperparameters, corresponding distribution of search space, and their 
optimal values for the compared models. (a) RF model (RandomForestRegressor under module 
Scikit-learn). (b) XGBoost model (XGBRegressor under module XGBoost). (c) MLP model (built using 

Keras). (d) ResNet model (built using Keras). The optimal values of hyperparameters for each model 

correspond to the top performing mutation matrix, which is ‘AZAE970101’ for the RF model, 

GIAG010101 for XGBoost, WEIL970102 for MLP, and MUET010101 for ResNet. 

 

a
Optimal valueSearch spaceHyperparameter

125

0.375553860442328

200

1

10

True

QUniformInt [50, 1000, 25]

Uniform [0.1, 0.75]

QUniformInt [50, 200, 10]

QUniformInt [1, 5, 1]

QUniformInt [2, 30, 1]

Choice [True, False]

n_estimators

max_features

max_depth

min_samples_leaf

min_samples_split

bootstrap

b
Optimal valueSearch spaceHyperparameter

343

23

0.790391730792872

0.0586498853490469

0.360570017142831

0.829414276718852

UniformInt [10, 500]

UniformInt [2, 100]

Uniform [0.1, 1]

Uniform [0.001, 1]

Uniform [0.1, 1]

Uniform [0.1, 1]

n_estimators

max_depth

subsample

learning_rate

colsample_bylevel

Colsample_bytree

c

Optimal valueSearch spaceHyperparameter

0.0000168309492546526

160

2

[5000, 3100]

[0.4, 0.5]

LogUniform [1e-5, 1e-1]

UniformInt [10, 200, 10]

UniformInt [1, 5]

UniformInt [100, 5000, 100]

Uniform [0.0, 0.5, 0.1]

learning_rate

epochs

# hidden layers

# units (hidden layer/s)

dropout (hidden layer/s)

d
Optimal valueSearch spaceHyperparameter

0.003494896818018

140

3200

1

1500

0.4

0

LogUniform [1e-5, 1e-1]

UniformInt [10, 200, 10]

UniformInt [100, 5000, 100]

UniformInt [1, 5]

UniformInt [100, 5000, 100]

Uniform [0.0, 0.5, 0.1]

Uniform [0.0, 0.5, 0.1]

learning_rate

epochs

# units (linear layer)

# ResNetBlocks

# units (ResNetBlock/s)

dropout (ResNetBlock/s)

Residual dropout (ResNetBlock/s)


