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Abstract: Nuclear factor (NF)- B is regarded as one of the most important transcription factors and plays an essential 

role in the transcriptional activation of pro-inflammatory cytokines, cell proliferation and survival. NF- B can be 

activated via two distinct NF- B signal transduction pathways, the so-called canonical and non-canonical pathways, and 

has been demonstrated to play a key role in a wide range of inflammatory diseases and various types of cancer. Much  

effort has been put in strategies to inhibit NF- B activation, for example by the development of pharmacological com-

pounds that selectively inhibit NF- B activity and therefore would be beneficial for immunotherapy of transplantation, 

autoimmune and allergic diseases, as well as an adjuvant approach in patients treated with chemotherapy for cancer. Gene 

therapy targeting NF- B is a promising new strategy with the potential of long-term effects and has been explored in a 

wide variety of diseases, ranging from cancer to transplantation medicine and autoimmune diseases. In this review we dis-

cuss recent progress made in the development of NF- B targeted gene therapy and the evolution towards clinical applica-

tion.  
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NUCLEAR FACTOR- B SIGNALING PATHWAYS 

 The transcription factor nuclear factor- B (NF- B) is a 
key regulator of inflammation and therefore plays a key role 
in a wide range of inflammatory diseases [1].The mammal-
ian NF- B/Rel family has many members: RelA (p65), NF-

B1 (p50; p105), NF- B2 (p52; p100), c-Rel and RelB. Each 
member, except for RelB, can form homodimers, as well as 
heterodimers with each other. The dimeric structure of NF-

B allows many different combinations to form, each exert-
ing a distinct biologic function (reviewed in [2]). The main 
activated form of NF- B is a heterodimer, consisting of a 
p50 or p52 subunit and the transactivating subunit p65. Inac-
tive NF- B resides in the cytoplasm associated with eight 
regulatory proteins called inhibitors of B (I B), of which 
I B , I B  and I B  may be the most common. Importantly, 
the precursor proteins p100 and p105 can also function as 
I B-like proteins. Different I B proteins have distinct and 
overlapping specificities for NF- B proteins and tissue dis-
tribution of I Bs may also differ, making them attractive 
targets for specific therapies [1]. For most known stimuli, 
degradation of I B  is essential for release and activation of 
NF- B. NF- B can be activated via two different NF- B 
signal transduction pathways.  

 The canonical (also known as classical) NF- B pathway 
requires activation of the inhibitor of B (I B) kinase (IKK) 
complex, consisting of the catalytic subunits IKK  (IKK1) 
and IKK  (IKK2) [3,4], and the regulatory subunit IKK  (or  
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NEMO, NF- B essential modifier) [5,6], followed by IKK-
mediated degradation of the inhibitory I B proteins. This 
results predominantly in the activation and nuclear transloca-
tion of the classical NF- B dimer p50-RelA (Fig. 1). Multi-
ple signaling pathways that lead to NF- B activation, like 
tumor necrosis factor (TNF)  signaling, Toll-like receptor 
(TLR) signaling and T cell receptor signaling, converge at 
the level of the IKK complex. In this pathway IKK  is es-
sential for NF- B activation in response to pro-inflammatory 
stimuli [7-10], whereas IKK  is dispensable for IKK activa-
tion and induction of NF- B DNA-binding activity in most 
cell types [10-12].  

 In contrast, the non-canonical (also known as alternative) 
pathway is strictly dependent on IKK  homodimers and 
does not require IKK  and NEMO/IKK  [13,14]. The target 
for IKK  homodimers is NF- B2/p100, which is incom-
pletely degraded into p52 upon activation of IKK  by NF-

B-inducing kinase (NIK), resulting in the release and nu-
clear translocation of p52-RelB dimers (Fig. 1). This path-
way can be triggered by the activation of members of the 
TNF-receptor superfamily such as the lymphotoxin  recep-
tor, B-cell activating factor belonging to the TNF family 
(BAFF)-receptor and CD40L (that also induce canonical NF-

B signaling), but not via pattern recognition receptors such 
as Toll-like receptor 4 (TLR4), the receptor for LPS [15]. It 
has been suggested that the canonical and non-canonical NF-

B pathways play distinct roles in immunity (reviewed in 
[16]). It has been demonstrated that IKK  has an important 
function in thymic organogenesis for the establishment of 
central tolerance in cooperation with NIK [17]. However, the 
precise mechanisms involved have not been fully elucidated 
yet.  
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 The non-canonical pathway also appears to have an im-
munoregulatory role in addition to its role in developmental 
biology [12,18-20]. IKK  negatively regulates inflammation 
in macrophages via either control of IKK  activity [21] or by 
accelerating the turnover of pro-inflammatory RelA and c-
Rel-containing dimers and their removal from pro-inflam-
matory gene promoters [22]. In addition, NIK has a role in 
the development of regulatory T cells (Treg)[23]. Further-
more, we found that selective knock-down of the non-
canonical pathway using siRNA for IKK  or NIK in den-
dritic cells (DC) resulted in increased pro-inflammatory cy-
tokine production [24], suggesting that a similar negative 
regulation also takes place in DC. Recent literature demon-
strates that the non-canonical NF- B pathway is also re-
quired for other regulatory functions in these cells, including 
the induction of Treg and the immunoregulatory enzyme 
indoleamine-2,3-dioxygenase (IDO) [24,25]. Based on these 
findings it is hypothesized that non-canonical NF- B signal-
ing is important in the regulation of immune responses [26].  

 Another mechanism by which transcription of NF- B 
responsive genes can be regulated is via modification of his-
tone acetylation by histone acetyltransferases (HATs) and 
histone deacetylases (HDACs) [27]. Histone acetylation 

status influences the accessibility of DNA to the transcrip-
tional machinery by changing the folding and functional 
state of the chromatin fiber [28]. NF- B interacts with HATs 
to positively regulate gene expression and with HDACs to 
negatively regulate transcription of NF- B responsive genes 
[29]. Recently, a novel mechanism of p65 transcriptional 
regulation was described as pro-inflammatory stimuli acti-
vate IKK -mediated sumoylation-dependent phosphoryla-
tion of PIAS1. This results in the repression of NF- B- and 
STAT1-dependent transcriptional responses [30]. These and 
other regulatory mechanisms are described in great detail in 
an excellent recent review article [31]. 

NF- B INHIBITION: GENE THERAPY VS. PHARMA-
COLOGICAL INHIBITORS 

 NF- B plays a key role in the expression of pro-
inflammatory genes and is abundant in a wide variety of  
inflamed tissues like rheumatoid arthritis (RA) synovium and 
colonic epithelium in inflammatory bowel diseases [1,32,33]. 
NF- B not only induces the transcription of pro-inflam-
matory cytokines [34-36] and chemokines [37], but also 
regulates the expression of cell adhesion molecules like E-
selectin, vascular cell adhesion molecule (VCAM)-1 and 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Schematic representation of the NF- B signal transduction pathways. 

Nuclear factor- B (NF- B) can be activated by a multitude of different stimuli, like TNF , LPS and CD40L. Activation of the canonical 

(also known as classical) pathway via Toll-like receptor (TLR) or cytokine receptor signaling depends on the IKK complex, which is com-

posed of the kinases IKK  and IKK , and the regulatory subunit IKK  (NEMO). Activated IKK phosphorylates (P) I B  to induce its deg-

radation by the 26S proteasome, allowing NF- B dimers (p50-p65) to translocate to the nucleus and bind to DNA to induce NF- B target 

gene transcription. Activation of the non-canonical (also known as alternative) pathway is strictly dependent on IKK  homodimers. The 

target for IKK  homodimers is NF- B2/p100, which upon activation of IKK  by NIK is phosphorylated and incompletely degraded into 

p52, resulting in the release and nuclear translocation of p52-RelB dimers. This pathway can be triggered by the activation of members of the 

TNF-receptor superfamily such as CD40 (that also induce canonical NF- B signaling), but not via pattern recognition receptors such as 

TLRs.  
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intercellular adhesion molecule (ICAM)-1 [38,39], indicating 
an important role in leukocyte adhesion and transmigration 
resulting in accumulation of immune cells at sites of inflam-
mation. NF- B also functionally interacts with other path-
ways and transcription factors, like activator protein 1 (AP-
1) to coordinate stimulation of matrix metalloproteinase 
(MMP) production leading to tissue destruction [40,41]. In 
many cell types NF- B also plays an anti-apoptotic role [42-
44], which may be regulated via Akt, the suppression of 
caspase-8 activation or IKK  related functions [7,45,46].  

 Because of its pivotal role in inflammation and cell pro-
liferation a lot of attention has been given to strategies that 
inhibit NF- B activity. NF- B inhibition may be beneficial 
in wide variety of diseases including cancer, many immune-
mediated inflammatory diseases and the prevention of trans-
plant rejection. NF- B activity can be targeted at virtually 
every step of the signaling cascade(s) that lead to NF- B 
activation. However, the biologic consequences may vary 
widely, depending on the level of disruption in the signal 
transduction pathway, since more and more data indicate that 
complex cross-talk with other signaling pathways exists. 
Therefore, it is conceivable that with an increasing under-
standing of the function of individual NF- B subunits, I B 
proteins, and kinases in different cell types and their contri-
bution to the pathogenesis of different diseases, one might 
attain therapeutic efficacy with minimized systemic toxicity 
by selectively targeting proteins that play a pivotal role in a 
diseased tissue, allowing normal function of other proteins.  

 Interestingly, many of the drugs that are currently used 
for treating inflammatory conditions like non-steroidal anti-
inflammatory drugs (NSAIDs), disease-modifying anti-rheu-
matic drugs, cyclosporine A and corticosteroids have inhibi-
tory effects on NF- B activity (reviewed in [47]). It should 
be noted, however, that these drugs lack specificity for inhib-
iting NF- B activity and consequently require relatively high 
concentrations, raising the issue of toxicity and adverse 
events. Therefore, much effort has been put in the develop-
ment of highly specific pharmacological NF- B inhibitors 
[48-50]. Most of these targeted, more specific NF- B inhibi-
tors exert their action at the level of the IKK complex 
(mainly IKK ) or I B . Recent literature suggests that IKK  
inhibition is particularly beneficial in chronic inflammatory 
conditions [51,52]. Small molecule IKK  inhibitors are more 
selective and might cause less severe side effects than other 
systemic approaches targeting NF- B activity.  

 Various systemic and local pharmacological approaches 
to specifically inhibit the activation of this transcription fac-
tor in vivo by targeting the IKK complex have proven very 
successful in the amelioration of inflammation in animal 
models of diseases like arthritis or multiple sclerosis [53-57], 
and other diseases such as cancer [48,50,58-61]. Although 
some of these compounds display highly specific NF- B 
blocking activity, these pharmacological inhibitors will not 
be discussed here, as this review is primarily focused on 
gene therapy, but they are extensively discussed in recent 
review articles [56,62]. So far, no potent specific IKK  in-
hibitors have been described. 

 In comparison with pharmacological inhibitors the appli-
cation of gene therapy to target NF- B has several advan-
tages, especially in chronic immune-mediated inflammatory 

diseases [63]. Gene therapy can offer a sustained (in theory 
life-long) beneficial effect, resulting in long term action 
without the need of frequent re-administration of a recombi-
nant protein. Therapeutic vectors can be administrated either 
systemically or locally at the site of inflammation, the latter 
approach reducing the risk of toxic side-effects and resulting 
in constant therapeutic levels in the desired target tissue. 
Gene therapy targeting proteins involved in signal transduc-
tion has some potential limitations. Since signal transduction 
molecules are expressed intracellularly, this type of construct 
should preferably be expressed in all target cells in order to 
exert maximal effect, whereas introduction of a gene enco-
ding a secretory therapeutic protein only requires transduc-
tion of a stable cell population at the target site to ensure 
continuous production and consequently exerts its effects 
also on non-transduced cells [63,64]. Furthermore, compared 
to low-molecular compounds that target NF- B in virtually 
all cell types, a gene therapeutic approach may not reach all 
preferred cell types since viral vectors require certain spe-
cific receptors for cell entry. On the other hand, it can also be 
advantageous to target specific cells in order to reduce un-
wanted side-effects. In addition, gene therapy mostly uses 
viral vectors that may evoke immune responses resulting in 
limited transgene expression. However, these limitations 
may be circumvented by choosing the right vector and opti-
mal promoter for a specific target tissue (see below). 

GENE THERAPEUTIC STRATEGIES TARGETING 

NF- B 

Strategies Using Viral Vectors  

 Viral-mediated gene transfer is currently the most effi-
cient system for delivering therapeutic proteins in vivo [63-
65]. There is a continuous need for optimizing vectors for 
gene therapy in order to achieve highly efficient transduction 
of the target tissue and to reduce immune responses, to en-
sure stable expression of the therapeutic transgene over time. 
These topics are mostly defined by the route of administra-
tion and tropism of the vector, i.e. the cell type(s) that a cer-
tain viral vector is capable to transduce. Therefore, the type 
of vector should be chosen carefully based on the cell 
types/tissue that will be targeted and the nature of the dis-
ease, in order to achieve maximal therapeutic effects. Tissue-
specific and disease-regulated transgene expression (for ex-
ample by using an NF- B responsive promoter) could also 
further improve the overall safety of gene therapy ap-
proaches. The use of these promoters that are only active in 
the target cell or are regulated by pharmacological systems 
or physiological stimuli has been described in several re-
views [63,66-69] and research is still ongoing to further im-
prove such promoters. In future pre-clinical and clinical stud-
ies it must be determined if the use of such promoters is ap-
plicable and advantageous in human subjects. 

Adenoviral Vectors 

 Adenoviruses have certain features, which make them 
attractive vectors for gene transfer to target cells. Some of 
these characteristics include their ability to infect a broad 
range of cell types, including dividing as well as non-
dividing cells, the ease with which the adenovirus genome 
can be manipulated, and the ability to obtain high titers. 
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However, although gene therapy with adenoviral vectors has 
proven to be efficient for target validation in animal models 
of disease, adenoviral vectors are not widely used in clinical 
trials for chronic diseases because they may evoke serious 
host immune responses and as a consequence give only tran-
sient expression of the transgene [63,70]. For the treatment 
of tumors, however, adenoviral vectors are widely utilized 
for clinical application, since life-long expression is not re-
quired because the strategy is aimed at reducing or even 
eliminating the tumor.  

 In the past one death has been contributed to gene ther-
apy using an adenoviral vector: in 1999 a patient suffering 
from an X-linked genetic disease of the liver (ornithine tran-
scarbamylase deficiency) died after receiving an adenovirus 
containing the corrective gene. The virus triggered a massive 
immune response, leading to multiple organ failure and brain 
death [71]. The Food and Drug Administration (FDA) inves-
tigation of this case of death concluded that the scientists 
involved in the trial broke several rules of conduct. They did 
not report that two patients who had already been treated in 
this trial had experienced serious side effects from the gene 
therapy and it was not mentioned in the informed consent 
documentation that monkeys given a similar treatment died 
in the study. If these data had been available the death, in 
this case related to the study drug, could most likely have 
been prevented [72]. 

 Adenoviral vectors targeting NF- B have been used in 
vitro and in a variety of animal models. A pioneering study 
employing intra-articular injection with a dominant-negative 
adenoviral IKK  construct (Ad.IKK dn) in rats with adju-
vant arthritis showed a reduction of NF- B nuclear translo-
cation in cells of the synovial tissue and a significant de-
crease in paw swelling [52]. Inhibition of IKK  also resulted 
in reduced pro-inflammatory cytokine production in synovial 
tissue [73]. Furthermore, Ad.IKK dn has demonstrated to 
potently inhibit the response of human endothelial cells to 
inflammatory stimuli [74]. In addition, this construct exhib-
ited anti-inflammatory effects in primary human airway 
smooth muscle cells [75] and reduced IL-13-induced tissue 
inflammation, fibrosis and alveolar remodelling in a mouse 
model of asthma [76]. Ad.IKK dn was also tested as anti-
cancer therapy and sensitized human prostate carcinoma 
cells, neuroblastoma cells, and lung cancer cells to TRAIL- 
or TNF-induced apoptosis [77-79]. From these experimental 
data it can be concluded that targeting NF- B at the level of 
IKK  appears promising in inflammatory conditions as well 
as cancer.  

 Adenoviral vectors carrying an I B  super-repressor 
(Ad.I B SR) have been used extensively, predominantly in 
vitro in cell types associated with inflammatory conditions 
[75,80-88]. Blocking the NF- B pathway by Ad.I B SR 
resulted in suppressed constitutive and TNF -induced NF-

B activity and increased sensitivity to pro-apoptotic stimuli 
in vitro, both in normal human macrophages and in RA 
synovial cell cultures and macrophages [34,43,89]. Ad. 
I B SR also inhibited the spontaneous production of TNF  
and other pro-inflammatory cytokines in cultured explants of 
rheumatoid synovial tissue and inhibited the production of 
MMPs 1 and 3 while not affecting their tissue inhibitor [90]. 
Studies in osteoarthritis synovial cells also resulted in re-

duced production of inflammatory and destructive mediators 
[91,92].  

 An interesting in vivo model in which adenovirus-
mediated I B  over-expression was shown to have benefi-
cial effects is ischemia-reperfusion injury in rats. This was 
demonstrated in experimental lung transplantation [93], after 
myocardial infarction [94], and in liver ischaemia/reperfu- 
sion injury [95, 96]. In addition, this approach was also suc-
cessful in the prevention of post-angioplasty lumen loss in a 
rabbit iliac artery restenosis model [97]. 

 Accordingly, Ad.I B SR decreased hepatocyte prolifera-
tion in a rat model of obstructive jaundice [98]. Interestingly, 
adenoviral I B  over-expression may also improve wound 
healing in rats, demonstrated by increased collagen deposi-
tion due to decreased inflammation [99]. In addition to tar-
geting inflammation, adenovirus-mediated I B  gene trans-
fer has been applied to improve the sensitivity of various 
tumors to anticancer drugs or radiation both in vitro and in 
vivo in pre-clinical models by increasing apoptosis [100-
109]. 

Adeno-Associated Virus 

 Adeno-associated virus (AAV) has emerged as a poten-
tial novel vector that lacks many of the immunogenic charac-
teristics of adenoviral vectors and appears to be safe [110]. 
AAV is a single-stranded DNA virus that, compared to ade-
noviral vectors, induces a significantly reduced immune re-
sponse and is not associated with disease in humans. Re-
combinant (r)AAV vectors typically remain episomal as con-
catemers and integrate only at very low frequency 
throughout the genome. Therefore, the risk of activation of 
oncogenes is considered extremely low, although a recent 
study identified AAV vector integration sites in mouse hepa-
tocellular carcinoma that developed after -glucuronidase 
gene therapy, suggesting insertional mutagenesis is possible 
[111]. rAAV vectors have gained much attention due to their 
ability to mediate efficient transduction of both dividing and 
non-dividing cells and their capability to induce long-term 
gene expression in the absence of toxicity in a variety of 
tissues. Recently, transgene expression was demonstrated in 
dog muscle tissue for over 8 years [112]. Moreover, AAV 
gene therapy has become more feasible as a consequence of 
the improvement of the production of clinical grade AAV 
vectors, resulting in production of large vector quantities. In 
addition, efforts to produce clinical-grade empty-capsid free 
vector batches have met with success [113] and should sig-
nificantly reduce the antigen load, because many early trials 
and even current clinical vector batches contain a full : 
empty capsid ratio of 1 : 3 to 1 : 100 (only the full capsids 
contain the transgene). Although rAAV generally transduces 
cells less efficiently than an adenoviral vector expressing the 
same transgene, the stable longterm expression of the trans-
gene makes it an attractive candidate for treating chronic 
inflammatory diseases [63,114]. In total at least 46 clinical 
trials have been conducted or are in progress with rAAV 
vectors carrying different transgenes, all showing a good 
safety profile. One subject enrolled in an RA trial receiving 
systemic anti-TNF therapy in combination with an rAAV2 
vector expressing a TNF-blocking agent locally in the joint 
developed fatal disseminated histoplasmosis. However, after 
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careful evaluation this tragic event was ultimately considered 
unrelated to the study agent [115].  

 Recently, we compared the efficiency of five different 
rAAV serotypes (rAAV1-rAAV5) to transduce arthritic 
synovium in both mouse and rat models of arthritis. We 
demonstrated that rAAV5 is an excellent potential vector for 
local gene therapy in patients with RA, allowing long-term 
expression of the transgene [116,117]. Importantly, although 
25% to 60% of humans have neutralizing antibodies against 
different AAV serotypes, RA patients exhibit only low titers 
of neutralizing antibodies against AAV5 compared to AAV2 
(Vervoordeldonk et al., unpublished results), and these low 
titers are not anticipated to interfere with local transduction 
in the joint. As a next step towards development of gene 
therapy for arthritis, we constructed an rAAV5 vector con-
taining the IKK dn transgene (AAV5.IKK dn) and demon-
strated that local NF- B blockade by IKK dn using rAAV5 
as a vector significantly reduced established arthritis in vivo 
in rats, resulting in a significant reduction of synovial in-
flammation. Importantly, we also unambiguously showed 
that rAAV5 can be used to target NF- B in human synovial 
tissue ex vivo, resulting in reduced TNF -induced IL-6 pro-
duction when AAV5. IKK dn was used to inhibit NF- B 
[118]. Local rAAV2-mediated gene transfer of I B  has 
been demonstrated to limit infarct size in a mouse model of 
myocardial ischemia-reperfusion injury [119] and to reduce 
neointimal hyperplasia induced by flow cessation in the 
mouse carotid artery, suggesting that rAAV-mediated gene 
transfer of I B  might represent a novel therapeutic ap-
proach for the treatment of restenosis [120]. 

 Taken together, these limited data on the feasibility of 
gene therapy targeting NF- B using rAAV vectors are very 
promising, as these vectors are currently almost certainly the 
most attractive candidates for treating (chronic) inflamma-
tory diseases, because of the stable longterm expression of 
the transgene. However, more research should be done on 
vector optimization to improve transduction of target cells. 

Other Viral Vectors 

 Compared to adenoviral and AAV vectors, not many 
studies have been performed targeting NF- B using other 
viral vectors such as lentivirus or retrovirus. Retroviral vec-
tors have been used extensively in the laboratory and in the 
majority of gene therapy clinical trials. Most retroviral vec-
tors are based on the Moloney murine leukemia virus 
(MMLV) and have as major limitation their inability to in-
fect non-dividing cells. MMLV-based vectors are usually 
employed for ex vivo gene therapy. A possible drawback of 
this virus is the random manner in which retroviruses can 
integrate into the host genome and can induce insertional 
mutagenesis leading to pathology, potentially including ma-
lignancies.  

 Lentiviral vectors are based on complex retroviruses (len-
tiviruses) such as human immunodeficiency virus (HIV). 
There are several advantages with the use of a lentiviral vec-
tor. The vector has a relatively high cloning capacity, the 
production process of the vector is relatively simple and the 
host-inflammatory reactions are moderate. Moreover, in con-
trast to murine retroviral vectors, lentiviral vectors transduce 
a variety of quiescent cells very efficiently. Over the past 

years it has been shown that lentiviral vectors mediate effi-
cient transduction of various cell types in vitro and in vivo. 
However, more development is required to employ these 
vectors for clinical applications.  

 In a pioneering in vitro study the feasibility of suppres-
sion of inflammatory responses in appropriate target cells 
(monocytic THP-1 and immortalized human endometrial 
stromal cell lines) by suppression of NF- B activity was 
established using a retroviral vector overexpressing I B  
[121]. Another, more recent, interesting study demonstrated 
that lentiviral-mediated I B  overexpression in dorsal spinal 
cord glia attenuates sciatic nerve injury-induced neuropathic 
pain in the rat [122].  

Non-Viral Strategies 

NF- B Decoy Oligodeoxynucleotides  

 One of the first methods described to regulate NF- B 
gene expression was the use of synthetic double-stranded 
DNA oligodeoxynucleotides (ODN) containing the NF- B 
target sequence that can be introduced in vivo as “decoy” cis 
elements to bind the transcription factor and thereby interfere 
with binding of NF- B to promotor regions in genes [123]. 
This method has been used extensively to specifically inhibit 
NF- B activity in numerous cells in vitro, as well as in many 
animal models of inflammation, transplant tolerance, ischa-
emia-reperfusion injury, and cancer (reviewed in [124,125]). 
Due to limitations in space, we will only focus on several 
highlights of this approach in this review.  

 Revolutionary work by Morishita and colleagues has 
demonstrated that in vivo transfection of NF- B decoy ODN 
reduced the extent of myocardial infarction following reper-
fusion in rats [123]. Of note, this method also proved to at-
tenuate in-stent restenosis in cardio-vascular medicine both 
in a rabbit model [126] and in humans [127,128]. 

 NF- B blockade with NF- B decoy ODN has also been 
shown to inhibit the development of arthritis and joint de-
struction in various animal models of arthritis [44,129,130], 
and to inhibit NF- B activity ex vivo in human synovial cells 
derived from patients with RA [131]. Interestingly, this 
method may also be successful in the amelioration of osteo-
porosis through inhibition of osteoclast activation and differ-
entiation, as demonstrated by a study in rats [132]. In addi-
tion, this technique has been proven to reduce inflammation 
in mouse models of allergic airway disease [133], inflamma-
tory bowel disease [134,135] and endotoxic shock [136], as 
well as in glomerulonephritis both in mice and rats [137, 
138]. When applied locally NF- B decoy ODN have been 
demonstrated to reduce skin inflammation [139,140]. An-
other interesting area in which decoy ODN were tested is 
transplant tolerance. NF- B decoy ODN reduced inflamma-
tion and prolonged graft survival in a rat renal allograft 
model [141,142] and a rat model of lung transplantation 
[143]. Furthermore, decoy ODN were tested in several 
mouse models of cancer. NF- B decoy ODN inhibited 
cachexia in a mouse tumor model when injected intratu-
morally [144], inhibited hepatic metastasis when infused 
intravenously [145], and sensitized colon cancer liver metas-
tases to paclitaxel-induced apoptosis [146]. 
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 Taken together, NF- B inhibition with NF- B decoy 
ODN has generated promising results. However, this strategy 
certainly also has limitations for wide application in human 
diseases, because the therapeutic potential of decoy ODN is 
unclear as these molecules have a short half-life and need to 
be administered frequently, especially in chronic diseases. In 
addition, decoy ODN are quite large and polar, which will 
likely hinder their cellular uptake and bioavailability [62].  

Small-Interfering (si)RNA 

 Since its discovery in 1998 [147] RNA interference 
(RNAi) has attracted a great deal of interest, including a  
Nobel prize [148,149], in particular after it was demonstrated 
that double stranded small interfering RNAs (siRNA) could 
trigger RNAi in mammalian cells [150]. This discovery re-
vealed a role for RNA in the regulation of gene expression, 
in addition to its traditional role in transferring genetic in-
formation. Consequently, siRNA provided a valuable basic 
research strategy for studying the biological function of a 
gene by selective knock-down and, perhaps even more exci-
ting, offered the possibility to develop a powerful new class 
of therapeutics. Development of therapeutics using siRNA 
resulted already in five different clinical trials that are ongo-
ing and several more poised to enter the clinic in the coming 
years. In the RNAi pathway larger dsRNA molecules are 
processed by the enzyme Dicer into shorter siRNAs that are 
typically 21-23 base pairs in length and complementary to 
specific mRNA sequences. The siRNA duplexes bind to a 
larger, multi-protein RNA-induced silencing complex 
(RISC). Subsequently, the sense strand is degraded, resulting 
in hybridization of the anti-sense strand with the comple-
mentary sequence in the target mRNA. Ultimately, this leads 
to cleavage of the mRNA strand by an enzyme of the RISC, 
which prevents translation and results in posttranslational 
silencing of gene expression [151]. Although this technique 
promises to be a very powerful new treatment option for 
many diseases, the optimal in vivo delivery system has to be 
determined yet and this is the subject of intensive research 
(reviewed in [152]). Approaches that are tested include injec-
tion of “naked” siRNA, non-viral [153] or viral delivery 
methods [154,155](see below).  

 Although the phenomenon was only discovered recently, 
RNAi has been used extensively to target NF- B in vitro 
resulting in a vast amount of interesting data. Diseases for 
which NF- B inhibition via p65 or p50 siRNA may be con-
sidered include rheumatoid arthritis [156], osteoarthritis 
[157], esophageal cancer [158], head and neck squamous cell 
carcinoma [159,160], colorectal cancer [161], and myelo-
dysplastic syndrome [162].  

 Significant progress has been made in recent years in the 
delivery of siRNA in vivo using non-viral methods, and sev-
eral promising siRNA delivery platforms have begun to 
emerge. These platforms include liposomes, in which siRNA 
is encapsulated in a lipid vesicle; polyplexes, in which a 
cationic carrier is used to bind siRNA to form siRNA-
containing nanoparticles; liposome-polycation-DNA (LPD) 
complexes, in which an siRNA-containing polyplex is en-
capsulated in a lipid vesicle; and siRNA conjugates, in which 
siRNA is coupled to a targeting moiety that carries the 
siRNA into target cells via receptor-mediated endocytosis 

[155]. For siRNA therapeutics to achieve their full potential 
as a revolutionary class of drug molecules, multiple distinct 
delivery technologies will probably be needed, with selection 
of the delivery approach being dependent on the nature of 
the clinical indication, the route of administration to be used, 
and the cell types to be targeted. 

 Only a few papers describe non-viral siRNA based 
strategies to inhibit NF- B activation in animal models of 
diseases. Lipid based siRNA-mediated knock-down of p65 
via intraperitoneal administration in combination with pacli-
taxel prolonged survival in a mouse model of peritoneal me-
tastasis of gastric cancer [163], suggesting that this approach 
may also be beneficial in humans via sensitization of tumor 
cells to chemotherapy. Recently, it was demonstrated that 
siRNA-mediated reduction of IKK  prevented TNF -
induced insulin resistance in human skeletal muscle ex vivo 
[164], possibly reducing insulin resistance. 

Combinatorial Approaches 

 The aforementioned techniques to regulate NF- B activ-
ity are of course not mutually exclusive and can be com-
bined, for instance by constructing a viral vector expressing 
siRNA or via adoptive transfer of cells (i.e. dendritic cells) 
genetically modified ex vivo to ensure NF- B inhibition only 
in the desired cell type.  

Viral Vectors Expressing siRNA 

 The half-life of unmodified siRNA in vivo is short due to 
rapid elimination by the kidney and degradation by endoge-
nous serum RNases (1-60 minutes). To overcome the limita-
tion of in vivo RNAi, several viral vectors are used as an 
alternative method due to their infective properties to effec-
tively deliver short hairpin siRNAs (shRNAs) resulting in 
long term silencing. In rats adenovirus-mediated expression 
of p65-specific shRNA has been demonstrated to suppress 
early experimental osteoarthritis after intra-articular injection 
[165]. Furthermore, rAAV2 coding for shRNA targeting p65 
reduced TNF -induced IL-8 production in human bronchial 
epithelial cells in vitro [166], but in vivo studies have not 
been reported yet. Using an adenoviral expression system to 
deliver a somewhat different RNA-based construct (aptamer) 
that specifically binds p50, it was demonstrated that human 
non-small cell lung cancer cells are sensitized to chemother-
apy both in vitro and in vivo in a lung tumor xenograft 
mouse model [167]. Interestingly, RNAi through lentiviral 
delivery of shRNA against p65 prevented cardiac hypertro-
phy and heart failure in a mouse model after direct delivery 
into the heart [168].  

Adoptive Transfer of Genetically Modified Cells  

 Another method to obtain long term inhibition of NF- B 
in the desired cell type is via adoptive cellular transfer, in 
which cells are genetically modified ex vivo resulting in 
reduced NF- B activation in the target cell. At present, there 
is a lot of interest in cell-based therapies for inflammatory 
disorders and cancer, especially in the ex vivo manipulation 
of DC to induce tolerance leading to remission or immuno-
regulation of autoimmune diseases [169-173]. Recently, it 
has been described that cellular immunotherapy using DC in 
which the canonical NF- B pathway was selectively blocked 
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ex vivo by adenoviral dominant-negative IKK  gene therapy 
resulted in immunoregulation both in vitro [174,175] and in 
the formation of potent CD4

+
 Treg that prevented transplant 

rejection in vivo in a rat model of kidney allotransplantation 
[176,177]. In another study, adoptive transfer of ex vivo 
siRNA-mediated RelB-silenced DC resulted in prevention of 
allograft rejection in murine heart transplantation [178]. 
Similarly, blocking of DC maturation by the combination of 
NF- B ODN with an adenoviral vector encoding CTLA4-Ig 
ex vivo resulted in prolonged cardiac allograft survival after 
adoptive transfer of these cells [179]. Altogether, these re-
sults indicate that this approach could have beneficial effects 
in immune-mediated inflammatory diseases as well. 

 The experimental approaches to generate DC for immu-
notherapy described above are based on in vitro generation 
of tolerogenic DC via gene therapy-mediated NF- B inhibi-
tion, followed by intravenous administration of the DC. This 
technique has several possible disadvantages for application 
in the clinic: (I) generation of DC from monocytes requires a 
minimum of 5-7 days culture in vitro, which may lead to 
genetic alterations in the cells; (II) tolerogenic immature DC 
are unstable and easily mature in vitro and in vivo, which 
could cause adverse effects in autoimmune diseases; (III) 
only a very small fraction of the injected DC traffic to  
secondary lymphoid organs and interact with naïve T cells 
(reviewed in [180]). To avoid these potential drawbacks, it 
would be extremely valuable to develop techniques to gener-
ate tolerogenic DC via in situ targeting of DC in vivo. Unfor-
tunately, until now no successful procedure has been discov-
ered. Therefore, a lot of research needs to be done to create 
methods that allow specific targeting of siRNA or viral vec-
tors to DC in vivo. 

CONCLUSION 

 The strategies aimed at interfering with NF- B signal 
transduction that are reviewed in this paper provide the tools 
for more effective and more specific blockade of signaling 
molecules, resulting in precisely defined biological effects. 
The ultimate benefit of targeting NF- B will obviously  
depend on the delicate balance between suppressing 
inflammation and interfering with normal cellular functions. 
By using local gene therapy or optimizing systemic targeted 
approaches to specifically interfere with signal transduction 
in target cells, this goal appears attainable. Future studies on 
disease-regulated and/or tissue-specific promoters in gene 
therapy using viral vectors, strategies to limit immune re-
sponses to vectors, and new techniques to efficiently deliver 
siRNA in vivo will guide the way towards clinical appli-
cation of gene therapy targeting NF- B. 
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