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Phytopathogenic fungal species can cause enormous losses in quantity and quality of
crop yields and this is a major economic issue in the global agricultural sector. Precise and
rapid detection and identification of plant infecting fungi are essential to facilitate effective
management of disease. DNA-based methods have become popular methods for
accurate plant disease diagnostics. Recent developments in standard and variant
polymerase chain reaction (PCR) assays including nested, multiplex, quantitative, bio
and magnetic-capture hybridization PCR techniques, post and isothermal amplification
methods, DNA and RNA based probe development, and next-generation sequencing
provide novel tools in molecular diagnostics in fungal detection and differentiation fields.
These molecular based detection techniques are effective in detecting symptomatic and
asymptomatic diseases of both culturable and unculturable fungal pathogens in sole and
co-infections. Even though the molecular diagnostic approaches have expanded
substantially in the recent past, there is a long way to go in the development and
application of molecular diagnostics in plant diseases. Molecular techniques used in plant
disease diagnostics need to be more reliable, faster, and easier than conventional
methods. Now the challenges are with scientists to develop practical techniques to be
used for molecular diagnostics of plant diseases. Recent advancement in the
improvement and application of molecular methods for diagnosing the widespread and
emerging plant pathogenic fungi are discussed in this review.

Keywords: polymerase chain reaction, molecular identification, next-generation sequencing, fungal plant diseases,
emerging fungal pathogens
INTRODUCTION

Fungal plant pathogens are among the foremost biotic factors that cause devastating disease in crops
(Doehlemann et al., 2017). About 8,000 species of fungi and oomycetes are linked with diseases in
plants (Horst, 2008; Fisher et al., 2020). Pathogenic fungi infect plants at any phase from the
seedling stage to the seed maturing stage under natural environmental conditions, either alone or in
concert with other kinds of phytopathogens (Narayanasamy, 2011). The most common diseases
caused by plant pathogenic fungi are anthracnose, blight, canker, damping off, dieback, gall, leaf
spot, powdery mildew, rust, root rot, scab, and wilt (Iqbal et al., 2018; Hussain and Usman, 2019;
Jain et al., 2019). These diseases can generate significant losses in yield (Godfray et al., 2016), quality
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and quantity (Shuping and Eloff, 2017) in various agricultural
systems (Rodriguez-Moreno et al., 2018) of economically
important agronomical (Leonard and Szabo, 2005; Asibi et al.,
2019), horticultural (Agrios, 2009; Wenneker and Thomma,
2020), floricultural and ornamental (Darras, 2016; Lecomte
et al., 2016), and forest (Ritz, 2005; Marčiulynas et al., 2020)
plant species worldwide (Malcolm et al., 2013).

The increasing world population necessitates well-organized
plant disease management and control in agriculture to assure
food security and safety (FAO et al., 2018; Sarrocco and
Vannacci, 2018). An efficient and effective framework for early
alert and quick response is a crucial element to combat against
phytopathogenic fungi (Sankarana et al., 2010; Nagrale et al.,
2016). Diagnosis of fungal plant pathogen is of significance in the
area of plant protection as it contributes to improving crop vigor
and health. Therefore, fungal disease management requires
accurate diagnosis of diseases which is chiefly based on the
identification of causative agents. Moreover, it is essential to
confirm fungal plant diseases even though the diagnosis of such
diseases based on the external symptoms is already made to a
satisfactory level. Further, an entire list that covers a known plant
disease, its typical sign and symptoms, and its known potential
phytopathogen for a precise host is a requisite for disease
diagnosis (Thind, 2015).

Various advances have beenmade in the field of phytopathogenic
fungal diagnosis. Conventional fungal disease diagnostic methods
have utilized visible signs after phytofungal infections including
propagules of fungi viz. conidia, sclerotia, or mycelia on the external
surfaces of flora, or fungal disease symptoms caused by fungal
pathogens after infection (Nezhad, 2014; Tör and Woods-Tör,
2017). These approaches are the cornerstone of fungal disease
diagnostics. Widely used conventional methods include isolation
and culturing, reinoculation, microscopic techniques and
biochemical tests (Tan et al., 2008; Sharma and Sharma, 2016),
which have some drawbacks in that they are tedious and require
knowledge and expertise in fungal plant pathology and taxonomy
(McCartney et al., 2003; Pryce et al., 2003). Immunological-based
diagnostic methods are built on the antigen-antibody binding
principle and some issues have been noted, such as low sensitivity
and affinity in assays, and potential interference from contaminants
(Meng and Doyle, 2002). Furthermore, detection of fungal plant
pathogens has not been effective due to the high inconsistency and
phenotypic serological plasticity of fungi (Luchi et al., 2020). Thus,
the implementation and development of novel and effective
diagnostic methods to thwart fungal plant disease are urgent. For
these reasons, plant-fungal diagnosis has moved to molecular
approaches that facilitate pathogen recognition and quantification.
Molecular assays can overcome drawbacks of conventional and
serological methods in fungal diagnostics.

Modern developments use high throughput molecular
detection strategies for plant infecting fungi. These include
standard polymerase chain reaction (PCR), real-time PCR,
nested PCR, loop-mediated isothermal amplification (LAMP),
rolling circle amplification (RCA), and nucleic acid sequence-
based amplification (NASBA) (Aslam et al., 2017; Cheng
et al., 2020). PCR restriction fragment length polymorphism
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
(PCR-RFLP) and PCR denaturing-gradient gel electrophoresis
(PCR-DGGE) are the methods suitable for genotyping more
than for species identification (Johnston‐Monje and Mejia,
2020). Further, molecular techniques cover magnetic capture-
hybridization PCR (MCH-PCR), in situ PCR, co-operational
PCR, multiplex PCR, DNA macro and micro arrays, next-
generation sequencing (especially RNA-Seq based), etc.
(Kumar et al., 2016). Greater confidence, accuracy, specificity,
and sensitivity of DNA based molecular techniques (Capote
et al., 2012; Midorikawa et al., 2018) permit the diagnosis of
phytopathogens at primary stages of infection even though they
are present at lower DNA concentrations (Luchi et al., 2013;
Rollins et al., 2016).

Additionally, bioinformatics databases such as GenBank at the
National Centre for Biotechnology Information (NCBI), Nucleotide
Sequence Database Collaboration at the European Bioinformatics
Institute (EBI), MycoBank, etc. offer platforms for documenting
mycological nomenclatural novelties, storing and retrieving facilities
of nucleotide sequences of plant infecting fungi which further
accelerate the molecular tools to potentially diagnose and perform
species delimitation among existing and evolving fungal species.
Rapidly emerging and novel fungal plant pathogens threaten the
global economy. Hence, rapid and accurate detection and
identification of phytopathogenic fungi is crucial. This review
aims to summarize various molecular techniques in fungal plant
pathogen diagnosis along with their advantages and drawbacks. It
also examines the available molecular tools used to diagnose
previously present, emerging, and re-emerging plant pathogenic
fungi in various agricultural crops.
MOLECULAR TOOLS FOR DETECTION
OF FUNGI

Preanalytical Steps in Molecular-Based
Diagnosis of Plant-Infecting Fungi
Detection and diagnosis of fungal plant pathogens using
molecular techniques require preanalytical steps such as
genomic DNA extraction that efficiently lyse fungal cells and
recover the DNA, purification and quantification of extracted
DNA. Several protocols for isolation of DNA from plant
infecting fungi are available (Doyle, 1991; Cenis, 1992; Chi
et al., 2009; Zhang et al., 2010; Gontia-Mishra et al., 2014;
Yang et al., 2016). Recent fungal plant disease diagnostic
approaches use commercial DNA extraction kits (Martinelli
et al., 2015; Moffat et al., 2015). However, laboratories are
dependent on standard protocols embracing lyophilization of
mycelia, disruption of chitin cell wall by grinding and isolation of
DNA in a buffer containing chemicals, removal of proteins by
phenol-chloroform mixture, and precipitation with propanol.
The isolated fungal DNA can then be purified using standard
methods including pelleting, silica membrane (Mancini et al.,
2016), spin filter, and silica coated magnetic particle separation
(Tsui et al., 2011). Finally, the concentration of fungal DNA in
the samples can be determined using UV spectrophotometer and
January 2021 | Volume 10 | Article 600234
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further it can be diluted with ultrapure PCR grade water to
provide an appropriate DNA concentration (Abdullah
et al., 2018).
Polymerase Chain Reaction (PCR)
Based Assays
End-Point PCR
Advent of PCR revolutionized the accurate identification of
various plant pathogens in disease management, including
fungi (Ma and Michailides, 2007). In this in vitro technique, a
piece of DNA template is exponentially amplified (Caetano-
Anolles, 2013) through repeated cycles of denaturation,
annealing, extension, final extension, and final hold reactions at
various temperatures using specific primers, deoxyribonucleotide
triphosphates (dNTPs), and a thermostable Taq DNA polymerase
in buffer solution (Griffiths, 2014). In end-point PCR, designing
either specific oligonucleotides that target certain fungal species or
universal primers to amplify multiple pathogens followed by
sequencing allows the accurate detection of fungal plant
pathogens. For each set of nucleotide sequences of fungal isolates,
the identity of each isolate can be determined by comparison
against ex-type cultures available in the NCBI GenBank database
using Basic Local Alignment Search Tool (BLAST) analysis. The
presence of a target revealed in agarose gel electrophoresis assures
the existence of targeted phytopathogenic fungi (Mirmajlessi
et al., 2015).

End-point PCR systems are considered a cost-effective choice
compared to other existing molecular diagnosis options for
fungal plant pathogens. However, end-point PCR assays can be
time-consuming and it is difficult to design primer sets to
delineate closely-related fungal pathogens. Sikdar et al. (2014)
dealt with diagnosing Phacidiopycnis washingtonensis and
Sphaeropsis pyriputrescens (which cause speck rot and
Sphaeropsis rot diseases in apple, respectively) using end-point
PCR and real-time PCR assays. They found that the quantitative
real-time PCR approach was more sensitive than the end-point
PCR approach for rapid diagnosis. Different types of PCR-based
molecular diagnosis and examples of each type are given in
Table 1.
Nested PCR
Nested PCR is a modified version of end-point PCR that uses two
sets of primer pairs aimed at two rounds of PCR amplification to
enhance specificity and sensitivity. Nesting also aids usage of
comparatively non‐specific PCR primers in the initial round of
PCR for amplification of numerous pathogens, followed by the
use of pathogen‐specific primers in the next round (Bhat and
Browne, 2010). Twig blight and crown rot of pomegranate are
emerging diseases in pomegranate cultivation that are caused by
Pilidiella granati. A nested PCR assay improved both sensitivity
and detection of P. granati and made it possible to diagnose the
causative agent when the sample contained DNA as low as 10 pg
of P. granati (Yang X. et al., 2017). Great yam disease caused by
Colletotrichum gloeosporioides (Raj et al., 2013) and eucalyptus
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
dieback disease caused by Cylindrocladium scoparium (Qiao
et al., 2016) were also detected by this technique. Sensitivity of
detection using nested PCR could be enhanced from 10- to 1000-
fold over an end-point PCR assay (Ippolito et al., 2002; Silvar
et al., 2005). However, nested PCR assays are time-consuming
and have an increased risk of cross-contamination due to the
manipulation of previously-amplified samples, which can create
false-positive outcomes (Raj et al., 2013). Therefore, nested PCR
and end-point PCR methods that may produce amplicon
contamination would not be recommended to be used as
reliable diagnostic methods.

Multiplex PCR
Multiplex PCR assay uses one reaction mixture with various
primer pairs, and allows simultaneous amplification of several
pathogens (Sint et al., 2012). The generated amplicons can then
be separated and visualized using electrophoresis. Designing
primers for the multiplex assay is crucial, and specific sets of
primers should have similar annealing temperatures for successful
amplification (Zhao X et al., 2014). A concurrent diagnostic assay
to detect 12 fungi associated with fruit rot in cranberry was
established using the multiplex PCR method. Fungal pathogens
Allantophomopsis cytisporea, A. lycopodina, Phyllosticta elongate,
Coleophoma empetri, Colletotrichum fiorinae, C. fructivorum,
Fusicoccum putrefaciens, Monilinia oxycocci, Phomopsis vaccinia,
Phyllosticta vaccinia, Physalospora vaccinia, and Strasseria
geniculate linked with cranberry fruit rot were effectively
identified with the use of ITS-LSU and TEF-1a gene regions
(Conti et al., 2019). The pathogenic fungi Fusarium oxysporum,
Bipolaris cactivora, Phytophthora nicotinae, and Phytophthora
cactorum are threats to the cactus industry that potentially affect
its export sector. This problem has been resolved using multiplex
PCR assays. It was noted that the diagnosing tool was sufficient to
detect and identify these quarantine fungal pathogens in grafted
cacti (Cho et al., 2016). Though multiplex PCR assays are quick
and reliable in nature, the assays are potentially expensive and
resource-intensive, and decreased sensitivity associated with the
multiplex methods (Pallás et al., 2018).

Quantitative PCR
Quantitative PCR (qPCR), permits detection and quantification
of particular DNA or RNA sequences of phytopathogenic fungi
in a PCR reaction mixture in real-time. The relative number of
copies of target DNA and RNA sequences can be estimated by
projecting a Ct (cycle threshold) value of the fungal samples
using sequence-specific primers (Balodi et al., 2017). Fluorescent
dyes such as SYBR Green I, Eva Green, Molecular Beacons, or
sequence-specific fluorescence-labeled reporter probes such as
TaqMan (Badali and Nabili, 2012) are used to monitor the
reaction during amplification steps. The basic principle is that
the fluorescent signal is proportional to the amount of amplicon
produced in each cycle and can be generated by an intercalating
dye or from the breakdown of a dye-labeled reporter probe
during amplification (Alemu, 2014). A hypervirulent and
emerging fungal plant pathogen, Cryphonectria parasitica
causes various diseases (blight, lethal bark cankers, wilting, and
January 2021 | Volume 10 | Article 600234
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dieback) in chestnut trees, Castanea dentata and C. sativa
(Murolo et al., 2018; Jain et al., 2019). Molecular diagnosis by
qPCR allowed the detection of C. parasitica using rDNA ITS
sequences with a sensitivity of 2 fg of genomic DNA which was
equivalent to the single spore of a pathogen (Chandelier
et al., 2019).

An emerging fungal pathogen Ramularia collo-cygni shows
typical symptoms of small, brown spots on leaves, sheaths, and
awns, which made it difficult to accurately diagnose this disease
using conventional techniques (Havis et al., 2015). A qPCR test
was developed and submitted as the first report on molecular
detection of R. collo-cygni in barley seed (Havis et al., 2014). An
aggressive and emerging British Verticillium longisporum is
another example of a novel fungal pathogen that was
diagnosed with a qPCR approach (Depotter et al., 2017). A
qPCR was able to distinguish and quantify Diaporthe helianthi
and D. gulyae, the fungal pathogens of Phomopsis stem canker in
sunflower. These causative agents from the same genus were
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
successfully screened using the assay (Elverson et al., 2020).
Pyrenophora tritici-repentis and Parastagonospora nodorum
cause co-infections in wheat and share common physiognomies,
making it a challenge for traditional disease diagnosis. Two dual-
labeled probes with unique fluorogenic reporters (permitting
DNA sequences from P. triticirepentis and Pa. nodorum to be
amplified in parallel but independently of each other) were
custom designed to perform a duplex qPCR assay, and results
obtained were accurate and appropriate to simultaneous
differentiation and suitable for high throughput screening of
multiple pathogens (Abdullah et al., 2018). This technique is
fast and very sensitive (Sikdar et al., 2014), and can provide
reliable information on pathogen load (Garrido et al., 2009) and
high throughput quantification of target DNA in biological areas
(Schena et al., 2013). Further, the TaqMan probe offers an extra
level of specificity (Shuey et al., 2014). However, qPCR needs a
specialized instrument and cost of the instrument and probe can
be high (Abdullah et al., 2018).
TABLE 1 | PCR based approaches to diagnose pathogenic fungi in different crops.

Assay Diagnosed fungi Host Disease Target genea Reference

End-point PCR Cercospora tezpurensis sp. nov. Capsicum
assamicum

Leaf spot ACT, CAL, HIS and
TEF-1a

Meghvansi et al.,
2013

End-point PCR Exobasidium maculosum Blueberry Leaf and fruit spot LSU-rDNA Brewer et al., 2014
End-point PCR Golovinomyces cichoracearum sensu

lato
Cannabis sativa Hemp powdery mildew ITS Pépin et al., 2018

End-point PCR Cercospora cf. flagellaris Cannabis sativa Hemp leaf spot ITS, TEF-1a, CAL, HIS
and ACT

Doyle et al., 2019

End-point PCR Neopestalotiopsis clavispora and
Colletotrichum siamense

Macadamia Leaf spot ITS, TUB2, TEF-1a,
ACT and GAPDH

Prasannath et al.,
2020

Nested PCR Puccinia striiformis f. sp. tritici Wheat Stripe rust PSR Wang et al., 2009
Nested PCR Phytophthora cactorum Strawberry Crown rot ITS Bhat and Browne,

2010
Nested PCR Colletotrichum gloeosporioides Dioscorea spp. Greater yam anthracnose ITS Raj et al., 2013
Nested PCR Pilidiella granati Pomegranate Twig blight and

crown rot
SSU-rDNA Yang X. et al., 2017

Multiplex PCR Fusarium
Verticillioides and F. subglutinans

Maize Stalk rot and ear rot gaoB Faria et al., 2012

Multiplex PCR Neofabraea alba,
N. perennans and
N. keinholzii

Apple Bull’s eye rot TUB2 Michalecka et al.,
2016

Multiplex PCR Fusarium oxysporum f.
sp. cubense lineage VI strains

Musa spp. Dessert/beer bananas TEF-1a and RPC2 Ndayihanzamaso
et al., 2020

Quantitative PCR Didymella bryoniae Cucurbits Gummy stem blight RAPD Ling et al., 2010
Quantitative PCR Ramularia

collo-cygni
Barely Ramularia leaf spot Not mentioned Havis et al., 2014

Quantitative PCR Rhizoctonia solani Tobacco Target spot ITS Zhao Y. Q. et al.,
2014

Quantitative PCR Magnaporthe oryzae Rice Rice blast 18S-28S rDNA Sun et al., 2015
Quantitative PCR Verticillium longisporum Brassica napus Wilt and stem stripe TUB2 Depotter et al., 2017
Quantitative PCR Pyrenophora tritici-repentis and

Parastagonospora nodorum
Wheat Tan (yellow) spot and

Septoria blotch
ToxA Abdulla et al., 2018

Quantitative PCR Fusarium culmorum Cereals Foot and root rot and Fusarium
head blight

COX2 Bilska et al., 2018

Quantitative PCR Fusarium guttiforme Pineapple Fusariosis TEF-1a and TUB2 Carnielli-Queiroz
et al., 2019

End-point PCR and
quantitative PCR

Phacidiopycnis washingtonensis and
Sphaeropsis pyriputrescens

Apple Speck rot and
Sphaeropsis rot

ITS Sikdar et al., 2014

End-point PCR and
quantitative PCR

Guignardia citricarpa Citrus spp. Citrus black spot ITS Faganello et al.,
2017
January 2021 | Volum
aITS, internal transcribed spacer; LSU-rDNA, large subunit ribosomal DNA; SSU-rDNA, small subunit ribosomal DNA; TUB2, b-tubulin 2; TEF-1a, translation elongation factor 1-a;
GAPDH, glyceraldehyde-3-phosphate dehydrogenase; ACT, actin; CAL, calmodulin; HIS, histone H3; PSR, Puccinia striiformis f. sp. tritici repeat sequence; gaoB, galactose oxidase B;
RPC2, DNA-directed RNA polymerase III subunit RPC2; RAPD, random amplified polymorphic DNA; ToxA, exotoxin A; COX-2, cyclooxygenase-2.
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BIO-PCR
BIO-PCR assay is a modification of end-point PCR technique which
involves a pre-assay incubation step in a diseased sample to increase
the biomass of the causal agent. This technique is mainly used to
concentrate target pathogens by growing the target pathogen in a
growing media that prevent the growth of non-target
microorganisms to improve detection (Schaad et al., 1995) and
has been effectively used to detect seed-borne fungal pathogens
(Kumar et al., 2020). A seed and airborne lupin anthracnose disease
caused by Colletotrichum lupini was diagnosed using the BIO-PCR
method. Incubation of the seeds with amended Yeast Malt
Broth was done to enrich C. lupine biomass and a species-specific
primer pair was developed based on rDNA IGS sequence. The
established BIO-PCR protocol allowed the detection of C. lupine in
Lupinus spp. (Pecchia et al., 2019). The seed-borne fungal pathogens
Alternaria alternata, A. radicina, and A. dauci were detected using
specific primers of ITS in rDNA with the help of a deep-freeze-
blotter method during the BIO-PCR assay (Konstantinova et al.,
2002). High sensitivity, elimination of PCR inhibitors and detection
of living cells to avoid false positives are the advantages over end-
point PCR techniques (Marcinkowska, 2002; Fatmi et al., 2005).
Limitations of this technique are that it is time consuming and costs
are incurred when selectivemedia is used for the assay (Schena et al.,
2004; Mancini et al., 2016).

Magnetic-Capture Hybridization PCR
Magnetic-capture hybridization PCR (MCH-PCR) uses DNA
isolation with a purification phase that contains hybridization
with single stranded DNA (ssDNA) probe on magnetic beads
followed by the PCR amplification of target DNA sequences
(Jacobsen, 1995). This PCR assay was chiefly established to deal
with PCR inhibitors in plant extracts during DNA isolation steps.
The magnetic beads used are coated with a biotinylated
oligonucleotide that is specific to a DNA region of the fungal
pathogen of interest (Walcott et al., 2004). The hybridization of
double stranded DNA (dsDNA) and magnetic beads allows for
separation of the complex from inhibitors (Capote et al., 2012).
MCH and real-time based PCR assays were evaluated for two
cucurbit seed pathogens, Acidovorax avenae subsp. citrulli and
Didymella bryoniae, that cause bacterial fruit blotch and gummy
stem blight, respectively. The assay facilitated simultaneous
detection of both tested pathogens in cucurbit seed samples (Ha
et al., 2009). Designing of a capture probe used in MCH-PCR
involves selection of oligonucleotide probe sequence from highly
conserved regions of fungal pathogens (Langrell and Barbara, 2001).
The selected sequence can be examined in silico for specificity using
BLAST. The 5’ end of the probe is then biotin-labeled (Chen and
Griffiths, 2001) to allow attachment with streptavidin-coated
magnetic beads (Johnson et al., 2013). MCH-PCR would decrease
the total detection time, increase PCR sensitivity, and remove most
of the inhibitors of the amplification reaction and excess of
nontarget DNA (Amagliani et al., 2006).

Isothermal Amplification Based Methods
Rolling Circle Amplification
Rolling circle amplification (RCA) is an isothermal enzymatic
assay that exploits DNA or RNA polymerase to generate ssDNA
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
or RNA molecules. Requirements for an RCA assay are DNA
polymerase, homologous buffer, short DNA/RNA primer, a
circular template, and deoxynucleotide triphosphates (Gu et al.,
2018). In this assay, DNA amplification using phi29 DNA
polymerase with a strand displacement activity to extend a
single or multiple primers annealing to a circular DNA
template is essential (van Emmerik et al., 2020). The strand
displacement process allows newly synthesized DNA template to
displace the formerly synthesized DNA molecule to release
ssDNA (Bhat and Rao, 2020). Long ssDNA with 100– 1,000
tandem repeats of the original targeted sequence are generated
after cascade of strand displacement events (Kieser and Budowle,
2020). Four padlock probes PLP-Nm, PLP-Np, PLP-Nk, and
PLP-Nv targeted on TEF-1a segments were designed to identify
Neofabraea malicorticis, N. perennans, N. kienholzin, and
N. vangabunda that cause bull’s eye rot in apple. An RCA
assay was used to diagnose these pathogens and provided
effective and sensitive results to monitor the pathogens in the
quarantine sector (Lin et al., 2018). In another study, RCA was
performed to detect the Fusarium head blight-causing agent
Fusarium graminearum and other pathovars, F. oxysporum,
F. incarnatum-equiseti, and F. tricinctum species complex with
the use of padlock probes that were designed based on
polymorphisms in the elongation factor TEF-1a (Davari et al.,
2012). Simplicity, efficiency, and no need of temperature cycling
devices are the advantageous of the RCA assay (Dong et al., 2013;
Goo and Kim, 2016). This method can also be used to analyze
gene expression, single nucleotide polymorphism, mRNA
splicing and post translational modification of protein
molecules (Gao et al., 2019).

Loop Mediated Amplification
Loop mediated amplification (LAMP) technique has become a
significant diagnostic tool in various plant disease diagnosis over
only a decade and holds huge potential in plant disease
management (Le and Vu, 2017). The LAMP reaction
comprises two main stages including an initial step and cycling
amplification, followed by an elongation step (Panno et al.,
2020). In a LAMP assay, a set of two internal primers, forward
inner primer (FIP) and backward inner primer (BIP), one
backward loop primer (B-Loop), and another set of two outer
primers (F3 and B3), are used to recognize six unique sequences
on the targeted nucleic acid. Each FIP and BIP comprises double
distinct sequences corresponding to sense and anti-sense strands
of targeted DNA. Inclusion of two extra loop primers such as
loop forward (LF) and loop backward (LB) and Bst DNA
polymerase may accelerate the LAMP method (Nagamine
et al., 2002; Francois et al., 2011). Its high exponential and
isothermal amplification yields 109–1010 fold target DNA in
45–60 min at 60–65°C and this temperature rage is considered
to be ideal for Bst polymerase activity (Notomi et al., 2000;
Chander et al., 2014). Examples of various fungal plant disease
diagnoses using LAMP are shown in Table 2.

Uromyces betae, sugar beet rust-causing fungi, was identified
within 30 min using LAMP assay which targeted the cytochrome
b DNA sequence (Kaczmarek et al., 2019). Conventional LAMP
(cLAMP) and a quantitative LAMP (qLAMP) assays were
January 2021 | Volume 10 | Article 600234
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performed to diagnose a quarantine fungal pathogen Fusarium
circinatum that causes pitch canker in pine and other conifers.
LAMP probes targeting TEF-1a revealed that qLAMP tests had
higher specificity than cLAMP for the detection of F. circinatum
(Stehliková et al., 2020). A widespread pathogen, Sclerotinia
sclerotiorum, with a broad host range including rape seed, was
detected using a LAMP assay targeting Ssos5 and a visualizing
indicator hydroxynaphthol blue (HNB) for detection. The
identification limit of S. sclerotiorum using the LAMP
technique was 0.1 fg µl−1 of genomic DNA per reaction which
was significantly lower (100 fg ml−1) than the end-point PCR test
(Duan Y. et al., 2014). Further, the first LAMP and qLAMP
detection systems using MGG_04322 as a target in Magnaporthe
oryzae were developed for prompt detection and accurate
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
identification of rice blast disease (Li et al., 2019). Fusarium
odoratissimum tropical race 4 (TR4), the cause of panama disease
in banana plants, was accurately diagnosed based on a LAMP
assay using TR4 markers that were sequenced from diversity
arrays technology sequencing (DArTseq) technology (Ordóñez
et al., 2019). LAMP allows analysis of crude samples as it is not
affected by inhibitors (Panno et al., 2019). This tool is extremely
sensitive and specific due to amplification of nucleic acids
accomplished by using up to six primers (Becherer et al., 2020).
Isothermal and energy efficient intensification requirements of
LAMP technology makes it a prime candidate for rapid and
inexpensive alternative assays (Waliullah et al., 2020). Thus,
LAMP is well established in several areas including medicine,
agriculture, and food industries (Mori and Notomi, 2009;
TABLE 2 | LAMP based molecular diagnosis of fungal pathogens in various crops.

Pathogen Host Disease Target
genea

Detection system Reference

Phytophthora sojae Soybean Phytophthora
root rot

A3aPro Real time measurement of turbidity, gel
electrophoresis, and hydroxynaphthol blue (HNB)
visualizing indicator

Dai et al., 2012

Verticillium dahliae Olive Vascular wilt RAPD HNB visualizing indicator Moradi et al., 2014
Botrytis cinerea Fruits and

flowers
Gray mold
disease

Bcos5 HNB visualizing indicator Duan Y. B. et al., 2014

Fusarium oxysporum f. sp. ciceris Chick pea Fusarium wilt TEF-1a HNB visualizing indicator Ghosh et al., 2015
Colletotrichum falcatum Sugarcane Red rot SCAR SYBR Green I dye Chandra et al., 2015
Didymella bryoniae Cucurbitaceae Gummy stem

blight
RAPD Calcein indicator

and gel image
Yao et al., 2016

Plasmopara viticola Grape Grape downy
mildew

ITS HNB visualizing indicator Kong et al., 2016

Calonectria osedonaviculata and C.
henricotiae

Box wood Boxwood
blight

TUB2 Capillary gel electrophoresis Malapi-Wight et al.,
2016a

Fusarium oxysporum f. sp. lycopersici Tomato Tomato wilt SIX3 Melting curve analysis Ayukawa et al., 2017
Peronospora destructor Onion Downey

mildew
ITS HNB visualizing indicator Yang K. et al., 2017

Pyrenopeziza brassicae Brassica
napus

Light leaf spot ITS and
TUB2

King et al., 2018

Fusarium fujkuroi and Magnaporthe
oryzae

Rice Bakane and
rice blast

TEF-1a and
CAL

Gel electrophoresis Ortega et al., 2018

Puccinia triticina Wheat Leaf rust PTS68 HNB visualizing indicator Manjunatha et al.,
2018

Fusarium fujkuroi Rice Bakane NRPS31 HNB visualizing indicator Zhang et al., 2019
Magnaporthe oryzae Rice Rice blast MGG_04322 HNB visualizing indicator and gel electrophoresis Li et al., 2019
Ustilago tritici Wheat Loose smut LSU-rDNA

and ITS
Visual observation under natural light and gel imager Yan et al., 2019

Fusarium oxysporum f. sp. melonis Melon Fusarium wilt TEF-1a HNB visualizing indicator Almasi, 2019
Uromyces betae Sugar beet Sugar beet

rust
cyt b FAM dye Kaczmarek et al., 2019

Colletotrichum gloeosporioides Strawberry Anthracnose cyt b HNB visualizing indicator Wu et al., 2019
Talaromyces flavus Strawberry Not

mentioned
rlf Fluorescence data Panek and Frąc, 2019

Alternaria spp. Pear Pear black
spot

Aacyt-b SYBR Green I dye Yang et al., 2019

Calonectria ilicicola, Dactylonectria
macrodidyma and Dactylonectria
genus

Avocado Black root rot TUB2 and
HIS

Presence of annealing curve Parkinson et al., 2019

Phytophthora infestans Potato Potato late
blight

PiSMC HNB visualizing indicator Kong et al., 2020
January 2021 | Volu
aITS, internal transcribed spacer; LSU-rDNA, large subunit ribosomal DNA; TUB2, b -tubulin 2; TEF-1a, translation elongation factor 1-a; CAL, calmodulin; HIS, histone H3; PTS68,
Puccinia triticina sequence repeat; RAPD, random amplified polymorphic DNA; Bcos5, Botrytis cinerea mitogen-activated protein kinase; SIX3, secreted in xylem 3; NRPS31, non-
ribosomal peptide synthetase; MGG_04322, A1b1 superfamily hypothetical protein; cyt b, cytochrome b; rlf, DNA replication licensing factor; Aacyt-b, Alternaria alternata cytochrome b;
PiSMC, Phytophthora infestans specific multiple copy DNA sequence; SCAR, sequence characterized amplified region; A3aPro, an element in the upstream of the avirulent gene Avr3 in
Phytophthora sojae.
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Guan et al., 2010; Panno et al., 2020). The short size of target gene
fragments, using six primers that can generate difficulties in
experimental design, and the extreme amount of indicator and
other reaction constituents that inhibit polymerase and carryover
contaminations are considered to be the drawbacks of this
diagnostic tool (Tanner et al., 2015).

Nucleic Acid Sequence Based Amplification
Nucleic acid sequence based amplification (NASBA) amplifies
nucleic acids under isothermal conditions. It commonly uses
RNA for amplification where a single stranded RNA (ssRNA)
template is changed to complementary DNA (cDNA) by reverse
transcriptase. The temperature for NASBA is around 41°C and the
assay utilizes avian byeloblastosis virus reverse transcriptase, RNase
H, and T7 RNA polymerase (Chang et al., 2012). It has the ability to
generate over 108 copies of the desired nucleic acid sequence within
30 min (Wernecke and Mullen, 2014) and amplicons are detected
via a probe-capture hybridization using electrochemiluminescence
in molecular beacons (Heo et al., 2019). NASBA does not require a
thermal cycler and the amplification power is comparable or better
than real-time based PCR assays (Loens et al., 2006). Moreover,
NASBA requires only short reactions, has high sensitivity and
stringent control, and is not affected by inhibitors and is well
suited for lab-on-a-chip devices (Honsvall and Robertson, 2017).
The application is very rare in plant fungal pathogen detection.
However, it has potential to be used in the detection of fungal
diseases in future.

Post Amplification Techniques
DNA Microarray
A DNA microarray (DNA chip, gene chip, or biochip) (Bhatia and
Dahiya, 2015) is an assemblage ofmicroscopic DNA spots attached to
a solid surface (usually glass) in defined positions. The microscopic
spots consist of thousands of specific DNA sequences (probes) that
are used to hybridize a cDNA (target) sample. Hybridized probe-
cDNA systems can be detected and quantified using fluorophore,
silver, or chemiluminescence-labeled targets to define the
comparative abundance of transcripts in the sample (Guigó, 2013).
Advancement of DNA microarray technology has led high
throughput and multiple detection of various phytopathogens
including viruses, viroids, bacteria, and fungi (Tiberini and Barba,
2012; Musser et al., 2014; Nam et al., 2014; Krawczyk et al., 2017).
PCR primers and florescent probes for targeting fungal potato
pathogens Rhizoctonia solani, Spongospora subterranea (ITS
region), Alternaria solani, A. alternata (Alt_a1 gene), Fusarium sp.
(TEF-1a), and Colletotrichum coccodes (TUB2) were used with qPCR
microarray technology in 48-well silicon microarrays (Nikitin et al.,
2018). A novel microarray assay (ArrayTube) using marker genes
ITS, TEF-1a, and 16S rDNAwith well performing probes allowed the
detection of various sugar beet root rot pathogens, Aphanomyces
cochlioides, Botrytis cinerea, and Penicillium expansum (Liebe et al.,
2016). DNA microarrays can be produced batch wise on standard
microscope slides in a rapid, easy, consistent, and cost-efficient way
(Johannes et al., 2020). A major drawback of microarray is that it can
only detect sequences that the array is designed to identify
(Bumgarner, 2013).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
DNA Macroarray
DNA macroarrays are built by designing species-specific probes
(15–30 bases of oligonucleotides) that are arrayed into well plates
and fixed on a nylon or nitrocellulose membrane. The probe
hybridization with PCR amplified and labeled target DNA
sequence can then be detected (Clark et al., 1999; Zhang et al.,
2008). An oligo-DNA macroarray assay was established with
digoxigenin-labeled RNA probes to identify the microbes in the
phyllosphere of apple trees (He et al., 2012). For the identification of
fungi, 40 bp of oligo-DNA sequences were selected from the fungal
rDNA-ITS region and fungal pathogens that inflict scab (Venturia
inaequalis), Alternaria blotch (Alternaria mali), and Marssonina
blotch (Diplocarpon mali) were detected along with several non-
phytopathogenic fungal and bacteria (He et al., 2012). DNA
macroarray based reverse-blot hybridization was performed to
target the TUB2 gene from isolated DNA and amplified using
Bt2a and Bt2b primers that were labelled with digoxygenin in PCR.
This array endorsed the detection and discrimination of 15 different
species belonging to the genera Cadophora, Campylocarpon,
Cylindrocarpon, Dactylonectria, Ilyonectria, Neonectria, and
Phaeomoniella including the black-foot pathogens Campylocarpon
fasciculare, C. pseudofasciculare, Dactylonectria macrodidyma,
D. pauciseptata, Ilyonectria europaea, I. liriodendri, and I. robusta
(Agustı-́Brisach and Armengol, 2013). Young vine decline (YVD) is
a complex disease in grapevine that causes severe mortality in young
vineyards (Úrbez-Torres et al., 2015). Sixty-one species including 34
YVD fungal pathogens were diagnosed by a DNA macroarray
(Úrbez-Torres et al., 2015). Macroarray offers a reliable and effective
method for pathogen diagnosis even if the sample contains multiple
pathogens (Zhang et al., 2008). Finite life of filters, annotations of
potential new genes showing low abundance of transcripts, and
large volume offilters needed to be hybridized are major limitations
of macroarray (Gammill and Lee, 2008). The other pitfalls of this
array are lack of pathogen quantification and the impossibility to
define whether the detected DNA is from a live organism (Úrbez-
Torres et al., 2015).

DNA or RNA Probe Based Assays
In Situ Hybridization
In situ hybridization (ISH) technique functions to detect mRNAs
present in the fixed sample. Designing of an antisense ssRNA
probe aimed to bind target mRNA (sequence of interest) is the
main step of this assay. However, synthetic oligonucleotide
probes and cDNA probes can also be used (Jensen, 2014).
Typically, probes are labeled with the radioactive isotopes 35S,
125I, and 32P for probe labeling as they are very sensitive and easily
quantified for detection. Nonisotopic probes can use biotin,
digoxigenin, tyramide, alkaline phosphatase, or bromodeoxyuridine
for probe labeling. Photography, autoradiography with X-ray film,
liquid emulsion, and microscopic techniques can be used in signal
detection (Corthell, 2014). The rust fungi Puccinia horiana isolate
PA-11, Uromyces transversalis isolate CA-07, and Phakopsora
pachyrhizi isolate Taiwan 72-1 infecting Chrysanthemum ×
morifolium, Gladiolus × hortulanus, and Glycine max respectively,
were distinguished as rust pathogens in their respective paraffin fixed
plant tissues using the ISH technique (Ellison et al., 2016). ISH
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enables maximum usage of tissue that is hard to obtain, but the main
limitations of ISH are cost and hazardous nature of radioactive
probes, and the difficulty in identification when the target has low
concentrations of DNA and RNA (Jin and Lloyd, 1997).

Fluorescent In Situ Hybridization
Fluorescent in situ hybridization (FISH) is a comparatively recent
and innovative technology in plant disease diagnostics. It combines
the specificity in DNA sequences with the sensitivity of detection
systems based on fluorochromes (Hijri, 2009; Cui et al., 2016). FISH
assays include the detection of DNA or RNA sequences in cells or
tissues using DNA or RNA probes, which are labeled directly or
indirectly with fluorochromes (Shakoori, 2017). In normal FISH
methods, fluorescently mono-labeled oligonucleotide probes are
hybridized to the ribosomal RNA (rRNA) of microbial cells, and
the stained cells are then visualized by wide field epifluorescence or
confocal laser scanning microscopy (Lukumbuzya et al., 2019).
Upon pathogen infection, pathogen-specific rRNA sequences will
be present in plants. This specific information provided by RNA can
be detected by FISH (Fang and Ramasamy, 2015). Southern blight
in tomato is caused by a soil-borne pathogen, Sclerotium rolfsii.
Soil smears in a DNA isolation with 0.06 pg µl−1of S. rolfsii was
effectively detected by FISH technique that used an oligonucleotide
probe labeled with cyanine dyes Cy3 and Cy5 (Milner et al., 2019).
Reproducibility, sensitivity, specificity, accuracy, and speed are the
best features of FISH (Bozorg-Ghalati et al., 2019). It also has
potential to deliver information about resolution, morphology, and
identification of main pathogens in mixed species specimens
(Frickmann et al., 2017). False positive results with autofluorescence
materials are a common pitfall that reduces specificity during the
assay (Moter and Göbel, 2000).

Next-Generation Sequencing
Next-generation sequencing (NGS) or high throughput sequencing
(HTS) is a new approach for diagnostics. The development of NGS
technologies has fueled innovative ways for detection and
identification of phytopathogens (Chalupowicz et al., 2019).
Isolation and fragmentation of DNA, library preparation, massive
parallel sequencing, bioinformatics analysis, and variant/mutation
annotation and interpretation are the major steps involved in DNA
based NGS (Qin, 2019). Massively parallel signature sequencing,
pyrosequencing, polony sequencing, and sequencing by
oligonucleotide ligation detection (SOLID) are some commonly
available advanced sequencing methods in HTS (Rajesh and Jaya,
2017). RNA-Sequencing (RNA-Seq) offers advanced coverage and
greater resolution of the dynamic nature of the transcriptome. The
Illumina HiSeq platform is the most universally functional NGS
platform for RNA-Seq and has established the standard for NGS. The
platform more recently released a desktop sequencer, MiSeq
(Kukurba and Montgomery, 2015).

RNA-Seq based NGS can be used in the rapid identification of
fungal plant pathogens inducing novel diseases. A whole-genome
sequencing approach using Illumina MiSeq was established to
detect the Sarcococca blight-causing novel fungal pathogen,
Calonectria pseudonaviculata in ornamental plants. A 51.4 Mb
genome of the two host isolates showed a unique single
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
nucleotide polymorphism for the two isolates and identified
both as C. pseudonaviculata (Malapi-Wight et al., 2016b).
Datasets from population genomics built on NGS can be
exploited to recuperate variations including single nucleotide
polymorphisms (SNPs), insertions and deletions (INDELS), and
structural variations (Potgieter et al., 2020). Puccinia striiformis f.
sp. tritici (PST) is an emerging or re-emerging plant infecting
fungus that causes wheat yellow (stripe) rust in wheat and
triticale. Field pathogenomics was done using RNA-Seq based
NGS of PST infested wheat leaves to gain insight into emergent
pathogen populations. The results revealed that there was a
dramatic shift in the PST population in the UK, likely due to a
current introduction of a different set of emerging and exotic PST
lineages (Hubbard et al., 2015). RNA and DNA based NGS
approach was conducted to develop molecular diagnostics for the
cucurbit downy mildew pathogen Pseudoperonospora cubensis.
Comparative genomics using RNA-Seq of close relative species
P. humuli identified seven specific regions in P. cubensis that
allowed for the development of diagnostic markers (Withers
et al., 2016).

Monilinia fructicola, a brown rot disease causing fungal
pathogen, causes post- and pre-harvest damages in stone and
pome fruits. A hybrid and hierarchical de novo association
strategy was used to sequence the genome of M. fructicola
Mfrc123 strain through an amalgamation of Illumina short read
NGS and Pacific Biosciences (PacBio) long read third-generation
sequencing platforms (Angelini et al., 2019). In another hybrid
approach, the genome of the coffee rust fungus Hemileia vastarix
was sequenced using PacBio RS II and Illumina HiSeq platforms
and a total genome of 547 Mb of H. vastatrix race XXXIII was
generated (Porto et al., 2019). The sequenced reference genomes can
be used to study the genome biology and evolution with other
species. The arrival of a novel pathogen is an instance where the
target cannot be well-defined. Since NGS involves no prior
knowledge of pathogen sequences, the whole genome of the
causal organism may be sequenced without using specific primer
pairs and PCR amplification (Hadidi et al., 2016; Malapi-Wight
et al., 2016b). Among NGS approaches, advances in single-molecule
sequencing technologies, “third-generation sequencing,” has
advantages over second-generation sequencing techniques (Schadt
et al., 2010). The major limitation in NGS is the time consumption
incurred during assembly and analysis of large amounts of sequence
data (Espindola et al., 2015). Next generation applications are often
restricted by low RNA yield and/or integrity, RNA stability, and
impurities with DNA, salts, or chemicals (Cortés-Maldonado et al.,
2020). Also, bioinformatics and mycological expertise are necessary
for NGS analysis, even if the data can be easily and quickly obtained,
so that knowledge about fungal and bioinformatics analyses are
mandatory to avoid any misinterpretation.
CONCLUSION

Recent advances in molecular biological techniques have increased
detection and diagnosis of novel, emerging, previously reported, and
re-emerging fungal plant pathogens. Traditional and variant
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polymerase chain reaction (PCR) based assays, isothermal and post
amplification tools, hybridization techniques, and next-generation
sequencing (NGS) approaches are well-known for diagnostics in
phytofungal disease detection. These molecular-based approaches
have successfully identified and diagnosed symptomatic and
asymptomatic diseases of culturable and unculturable fungal
pathogens in sole and co-infections of agriculturally important field,
horticultural, floricultural, ornamental, and forest plant species.
Among various PCR centered assays, quantitative PCR has been
extensively used in the quantification and differentiation of causal
agents when the sample load is too insignificant to detect. Currently,
loop-mediated amplification (LAMP) is showing success in the fungal
disease detection arena and has facilitated identification of Alternaria
spp., Colletotrichum spp., Fusarium spp., Verticillium spp., Puccinia
spp., Botrytis spp., etc. that cause an array of devastating diseases in
plants. NGS uses various platforms to sequence fungal genomes with
no prior knowledge of the pathogen’s sequence, and can be used to
identify novel and emerging pathogens.
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The molecular methods covered in this review are accurate,
effective, lab-oriented, and require sophisticated instruments to
identify fungal plant pathogens. However, expertise in mycology
and bioinformatics are essential to avoid any misinterpretation
of the results obtained from the molecular biological analyses.
Molecular techniques should become a point of care testing
(POCT) by combining with other emergent technological
advancements for fungal disease diagnosis. The challenges are
with scientists to develop practical approaches for molecular
diagnostics of crop diseases.
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