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Abstract

Background: Accurate and standardized descriptions of organs at risk (OARs) are essential in radiation therapy for
treatment planning and evaluation. Traditionally, physicians have contoured patient images manually, which, is
time-consuming and subject to inter-observer variability.
This study aims to a) investigate whether customized, deep-learning-based auto-segmentation could overcome the
limitations of manual contouring and b) compare its performance against a typical, atlas-based auto-segmentation
method organ structures in liver cancer.

Methods: On-contrast computer tomography image sets of 70 liver cancer patients were used, and four OARs
(heart, liver, kidney, and stomach) were manually delineated by three experienced physicians as reference
structures. Atlas and deep learning auto-segmentations were respectively performed with MIM Maestro 6.5
(MIM Software Inc., Cleveland, OH) and, with a deep convolution neural network (DCNN). The Hausdorff
distance (HD) and, dice similarity coefficient (DSC), volume overlap error (VOE), and relative volume difference
(RVD) were used
to quantitatively evaluate the four different methods in the case of the reference set of the four OAR structures.

Results: The atlas-based method yielded the following average DSC and standard deviation values (SD) for the
heart, liver, right kidney, left kidney, and stomach: 0.92 ± 0.04 (DSC ± SD), 0.93 ± 0.02, 0.86 ± 0.07, 0.85 ± 0.11, and
0.60 ± 0.13 respectively. The deep-learning-based method yielded corresponding values for the OARs of 0.94 ±
0.01, 0.93 ± 0.01, 0.88 ± 0.03, 0.86 ± 0.03, and 0.73 ± 0.09. The segmentation results show that the deep learning
framework is superior to the atlas-based framwork except in the case of the liver. Specifically, in the case of the
stomach, the DSC, VOE, and RVD showed a maximum difference of 21.67, 25.11, 28.80% respectively.

Conclusions: In this study, we demonstrated that a deep learning framework could be used more effectively
and efficiently compared to atlas-based auto-segmentation for most OARs in human liver cancer. Extended use
of the deep-learning-based framework is anticipated for auto-segmentations of other body sites.

Keywords: Contouring, Atlas-based auto-segmentation, Deep-learning-based auto-segmentation, Deep
convolution neural network (DCNN)
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Background
Accuracy and precision of the delineated target vol-
umes and surrounding organs at risk (OARs) is crit-
ical in radiotherapy treatment processing. However,
to-this-date, these segmentation-based delineations
are completed manually by physicians in the majority
of clinical cases, which is a time-consuming task asso-
ciated with an increased workload. Consequently, the
reproducibility of this process is not always guaran-
teed, and ultimately depends on the physician’s ex-
perience [1]. In addition, manual re-segmentation is
often necessary owing to anatomical changes and/or
tumor responses over the course of the radiotherapy.
As such, model-based [2, 3] and atlas-based [4–7]

auto-segmentation methods have been developed to
maximize the efficiency gain, and concurrently
minimize inter-observer variation. Various model-
based methods have been published. Specifically, Qazi
et al. [3] demonstrated use of adaptive model-based
auto-segmentation of the normal and target struc-
tures for the head and neck, and Chen et al. [2]
showed that active shape model-based segmentation
could yield accuracy improvements of the order of
10.7% over atlas-based segmentation for lymph node
regions. In the last few years, machine learning tech-
nology has been actively applied to various medical
fields, such as for cancer diagnosis [8–10], medical
imaging [11], radiation treatment [11, 12], and
pharmacokinetics [13]. The application of one of the
deep learning models [14], the convolutional neural
network (CNN) [15], has recently yielded remarkable
results in medical image segmentation [16–20].
The main advantage of deep learning methods is that

they automatically generate the most suitable model
from given training datasets. Therefore, a comparative
study of the accuracy of each model is required to use
auto-segmentation in clinical practice. Recently, Lust-
berg et al. [21] compared the auto contouring results
in five organ structures with the use of the prototype
of a commercial deep-learning contouring program
(Mirada DLC Expert, Mirada Medical Ltd., Oxford,
United Kingdom) with those obtained from an atlas-
based contouring program (Mirada Medical Ltd., Ox-
ford, United Kingdom).
In this study, we used the open source deep learning

library, Keras (where the model can be loaded into the

Tensorflow backend) instead of the commercial pro-
gram. In addition, our neural network is based on Fu-
sion net, an extension of the U-net suitable for medical
image segmentation. This study aims to evaluate the
clinical feasibility of an open source deep learning
framework, using 70 liver cancer patients by compar-
ing its performance against a commercially available
atlas-based auto-segmentation framework.

Methods
Clinical datasets
Seventy patients with liver cancer diagnosed at the Na-
tional Cancer Center in South Korea between the year
of 2016–2017 were included in this study. All patients
were treated with proton therapy, using 10 fractions of
660 or 700 cGy, with respective total doses of 6600 cGy
and 7000 cGy. The characteristics of the patients are
listed in Table 1. All computer tomography (CT) im-
ages were acquired using a General Electric (GE) Light
speed radiotherapy (RT) system (GE Medical Systems,
Milwaukee, WI). We used abdominal CT images with,
the following dimensions for each axial slice: image
matrix = 512 × 512, slice numbers = 80–128, pixel spa-
cing = 1.00–1.04 mm, and slice thickness = 2.50 mm.
Manually segmented contours for each organ were de-
lineated by three senior expert physicians, and in-
cluded segmentations of the heart, liver, kidney (left,
right), and stomach. Manually segmented contours in-
cluded the organ contours of the heart, liver, kidney
(left, right), and stomach, which were mutually ac-
cepted by the three senior physicians following a joint
discussion.
The study protocol conformed to the ethical guide-

lines of the Declaration of Helsinki as revised in 1983,
and was approved by institutional review board (IRB)
of National Cancer Center without IRB number. All
patient data has been fully anonymized, and all
methods were performed in accordance with the rele-
vant guidelines and regulations outlined by our
institution.

Deep convolutional neural network
The network used was based on the open-source li-
brary Keras (version 2.2.4) [22] and the reference im-
plementation of Fusion Net [23]. This network is a
deep neural network which was developed based on

Table 1 Patient characteristics in this study

Patients Male Female Average
age

Location of liver cancer lesion

S1 S2 S3 S4 S5 S6 S7 S8 M

Training set 52 8 67 2 1 3 6 6 2 5 24 11

Testing set 8 2 69 – – 1 1 1 1 – 3 3

M: Multiple lesion location
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the application of a residual CNN as an extension of
U-net [24] to enable more accurate end-to-end image
segmentation. It consists of a down-sampling (encod-
ing) path and an up-sampling (decoding) path, as
shown in Fig. 1. On the encoding path, we used a re-
sidual block layer (three convolution layer and one
skip connection) between the two 3 × 3 convolution
layers. Each of these layers was followed by a rectified
linear unit (ReLu) [25], and one maximum pooling. On
the decoding path, we used a 2 × 2 transposed convolu-
tion and a residual block layer between the two 3 × 3
convolution layers followed by a ReLu activation func-
tion. To avoid overfitting during the training stage,
batch normalization [26] and dropout [27] were added
to the layers. In the final layer, we used a 1 × 1 convo-
lution network with a sigmoid activation function and
a dice similarity coefficient loss function [28]. We used
Adam [29] as an optimizer with the following training
parameters: a learning rate of 1.0E-05, mini-batch size
of twelves images, and a weight decay. A more detailed
specification of our deep neural network, such as the
number of feature maps, their sizes and ingredients,
are listed Table 2. The experiments were conducted on
a computer workstation with an Intel i7 central pro-
cessing unit (CPU) with a 24 GB main memory, and a
computer unified device architecture (CUDA) library

on the graphics processing unit (GPU) (NVIDIA
GeForce TITAN-Xp with 12 GB of memory). Network
training of the deep convolutional neural network
(DCNN) took approximately 48 h to run 2000 epochs
on the training and validation datasets.

Segmentation image preprocessing
CT planning images from patients and the required con-
touring information used for training of the DCNN were
obtained using the Eclipse planning software (version
13.6, Varian Oncology Systems, Palo Alto, CA, USA). All
CT images were converted to grayscale images, and the
contouring points were converted to segmented label
images in a binary format, as shown in Fig. 2. Hounsfield
unit (HU) values were windowed in the range of − 100–
600 to exclude irrelevant organs All images were down-
sampled from the conventional size of 512 × 512 pixels
to the size of 256 × 256 pixels owing to graph card mem-
ory resource limitations and reduced DCNN training
time constraints.

Deep-learning-based segmentation
The deep-learning-based segmentation process consisted
of three steps. The first was the random separation into
training and validation sets consisting of 45 and 15 pa-
tient datasets, respectively, and the preprocessing and

Fig. 1 Segmentation of two-dimensional computer tomography (2D-CT) slice image using a (a) Fusion-Net-based deep convolutional neural
network, b Atlas segmentation of MIM software. (conv: convolutional layer, res: residual layer, drop: dropout layer, batchnorm: batch
normalization, max: maximum pooling layer, deconv: deconvolutional layer, merge: addition with the feature map from the encoding path by
using a skip connection)
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preparation of 10 independent test dataset images for
the deep convolutional neural network.
In the second step, we trained the DCNN using the training

datasets for each of the organs. In the final step, the test image
set was segmented into a test dataset with DCNN (Fig. 3).

Atlas-based-segmentation
Atlas-based segmentation is a method used to locate
the interface between the test image and the optimally

matched organs from labeled, segmented reference
image data [30].
The commercial atlas-based contouring software

MIM Maestro 6.5 (MIM Software Inc., Cleveland, OH,
USA) was used to generate the contours of the ten pa-
tients automatically test datasets for the OARs. Seg-
mentation processing was performed on a single organ
basis instead of multiple organ segmentation, and the
outcomes were compared with those of the deep-

Table 2 Architecture of the proposed convolutional neural network

Block type Ingredients Size of feature maps

Input – 256 × 256 ×1

Down layer (D1) conv+res + drop+conv+batchnorm+max 128 ×128 × 64

Down layer (D2) conv+res + drop+conv+batchnorm+max 64 ×64 × 128

Down layer (D3) conv+res + drop+conv+batchnorm+max 32 ×32× 256

Down layer (D4) conv+res + drop+conv+batchnorm+max 16 ×16 × 512

Bridge layer (B) conv+res + conv 16 ×16 × 1024

Upscaling layer (U1) deconv+merge+conv+res + conv 32 × 32 × 512

Upscaling layer (U2) deconv+merge+conv+res + conv 64 × 64 × 256

Upscaling layer (U3) deconv+merge+conv+res + conv 128 × 128 × 128

Upscaling layer (U4) deconv+merge+conv+res + conv 256 × 256 × 64

Output conv 256 × 256 ×1

Fig. 2 Grayscale CT and segmented label images of the (a) heart (H), b liver (L), c right kidney (RK), d left kidney (LK), and e stomach (S) used for
DCNN model learning
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learning-based segmentation conducted using the same
conditions. We used MIM supported label fusion algo-
rithms based on the majority vote (MV) algorithm.
For segmentation, a training set with data from 60

patients was registered to the MIM Maestro 6.5 atlas
library with CT planning images alongside the re-
spective manual contours of the heart, liver, kidney,
and stomach. The slice thicknesses of the CT images
were not changed during their registration with the
atlas library.

Quantitative evaluations of auto-segmentation
To quantitatively evaluate the accuracy of deep learning
and atlas-based auto-segmentations, the Dice similarity
coefficient (DSC) and Hausdorff distance (HD) were
used for quantitative analyses on accuracy [31]. The
DSC method, calculates the overlapping results of two
different volumes according to the equation,

DSC dice similarity coefficientð Þ ¼ 2 A∩Bj j
Aj j þ Bj j ; ð1Þ

where A is the manual contouring volume, and B is the
auto-segmentation volume (deep learning and atlas seg-
mentation results). DSC takes values between zero and

one. When the DSC value approaches zero, the manual
and auto-segmentation outcomes differ significantly.
However, as the DSC value approaches unity, the two-
volumes exhibit increased similarities.
The second method is the HD method. After calculat-

ing the Euclidean distance of the surfaces of each con-
tour point between A and B, the similarity of A and B is
determined according to the distance of the nearest
maximum distance. HD is thus defined as,

Hausdorff distance HDð Þ
¼ max h A;Bð Þ; h B;Að Þð Þ;

ð2Þ
where h(A, B) is the directed HD from A to B and is
given by.

h ¼ max min a−bk kð Þð Þ
ð3Þ

a∈A; b∈B

As the HD approaches zeros, the difference between
the manual contouring and auto contouring becomes
smaller. By contrast, if the coefficient is greater than
zero, the similarity between the two volumes decreases.

Fig. 3 Work flowchart for deep convolution neural network (DCNN) training and testing

Ahn et al. Radiation Oncology          (2019) 14:213 Page 5 of 13



The third method is the volume overlap error (VOE)
[32]. VOE can be calculated by subtracting the Jaccard
coefficient from the value of unit by comparing dissimi-
larities between the two volumes.

VOE volume overlap errorð Þ ¼ 1−
A∩Bj j
A∪Bj j ;

The last method is the relative volume difference
(RVD) [32]. RVD compares the sizes between two
volumes.

RVD relative volume differenceð Þ ¼ Bj j− Aj j
Aj j ;

Contrary to DSC, as the VOE and RVD approach zero,
the manual contouring and auto contouring volumes
only yield small volume differences, and values larger
than zero reduce the similarity between the two
volumes.

Results
For quantitative evaluations, the DSC and HD were
calculated for each test dataset, and the results are
shown in Tables 3 and 4. For qualitative visual assess-
ment, Fig. 4 shows, a specific patient case where the
three delineation methods are compared, i.e., the atlas-
based (Catlas), deep-learning-based (Cdeep), and manual
contouring methods (Cmanual). In all the organ cases
studied herein (i.e., heart, liver, kidney, and stomach),
the Cdeep results more accurate matched to the Cmanual

compared to the Catlas results. However, both Catlas

and Cdeep were not excluded in the hepatic artery re-
gion (Fig. 4, red arrow). For the kidney case, neither

the Catlas nor the Cdeep outcomes differed significantly
from the evoked Cmanual outcomes from DSC.
The methods of auto-segmentation were quantita-

tively compared using DSC, HD, VOE and RVD met-
rics against manual contours (i.e., the reference), and
are presented in Tables 3, 4, 5, and 6, respectively.
The average DSC values (± SD) of Catlas are 0.92 (±

0.04), 0.93 (±0.02), 0.86 (±0.07), 0.85 (±0.11), and 0.60 (±
0.13) for the heart, liver, right kidney, left kidney, and
stomach, respectively. The respective outcomes for the
same DSC analyses for Cdeep are 0.94 (±0.01), 0.93 (±
0.01), 0.88 (±0.03), 0.86 (±0.03), and 0.73 (±0.09), for the
heart, liver, right kidney, left kidney, and stomach,
respectively.
The HD values (± SD) for Catlas are 2.16 (±1.52) mm,

2.23 (±0.81) mm, 1.78 (±1.34) mm, 1.90 (±1.24) mm,
and 6.76 (±2.31) mm, for the heart, liver, right kidney,
left kidney, and stomach, respectively. The respective
outcomes for the HD values based on the same ana-
lysis for Cdeep are 1.61 (±0.28) mm, 2.17 (±0.39) mm,
1.61 (±0.52) mm, 1.88 (±0.31) mm, and 4.86 (±1.57)
mm, for the heart, liver, right kidney, left kidney, and
stomach, respectively, as shown in Fig. 6. The average
DSC outcomes for Cdeep are higher in all the cases ex-
cept for the liver. Specifically, there was a maximum
difference of 21.67% in the stomach case, as shown in
Table 8. It is important to note that the standard devi-
ations of the DSC values for Catlas were higher than
those of Cdeep for all the studied structures, i.e., Catlas

exhibits broader interquartile ranges than Cdeep in the
boxplot, as shown in Fig. 5.
The VOE and RVD results showed significant dif-

ferences between Catlas and Cdeep compared to DSC,

Table 3 Comparison of dice similarity coefficients (DSC) obtained from atlas and deep-learning-based segmentations in the cases of
the four tested organs (heart, liver, kidney, stomach). Averages and standard deviations are listed for all the ten tested cases

Test
Case

Heart Liver Right kidney Left kidney Stomach

Catlas Cdeep Catlas Cdeep Catlas Cdeep Catlas Cdeep Catlas Cdeep

# 1 0.95 0.96 0.93 0.93 0.85 0.86 0.78 0.83 0.41 0.80

# 2 0.93 0.93 0.92 0.93 0.93 0.92 0.93 0.88 0.78 0.71

# 3 0.96 0.95 0.95 0.94 0.87 0.88 0.61 0.84 0.58 0.71

# 4 0.96 0.96 0.95 0.94 0.85 0.86 0.93 0.89 0.53 0.57

# 5 0.92 0.93 0.94 0.93 0.84 0.89 0.89 0.78 0.63 0.88

# 6 0.85 0.94 0.89 0.92 0.89 0.89 0.91 0.88 0.61 0.79

# 7 0.85 0.94 0.90 0.93 0.95 0.93 0.94 0.86 0.79 0.72

# 8 0.86 0.93 0.92 0.93 0.91 0.84 0.92 0.85 0.74 0.83

# 9 0.96 0.94 0.92 0.93 0.70 0.84 0.88 0.88 0.38 0.61

# 10 0.91 0.93 0.94 0.94 0.78 0.84 0.70 0.88 0.56 0.64

Avg SD 0.92 0.94 0.93 0.93 0.86 0.88 0.85 0.86 0.60 0.73

0.04 0.01 0.02 0.01 0.07 0.03 0.11 0.03 0.13 0.09

Avg: Average
SD: Standard deviation

Ahn et al. Radiation Oncology          (2019) 14:213 Page 6 of 13



Table 4 Comparison of Hausdorff distances (HD) for atlas against deep-learning-based segmentation for the with four organs (heart,
liver, kidney, stomach). Averages and standard deviations are listed for ten tested cases

Test
Case

Heart Liver Right kidney Left kidney Stomach

Catlas Cdeep Catlas Cdeep Catlas Cdeep Catlas Cdeep Catlas Cdeep

# 1 1.06 1.15 1.90 1.89 1.03 1.80 2.26 1.49 8.88 3.47

# 2 1.36 1.88 1.79 1.72 1.14 1.29 0.95 1.51 3.09 3.57

# 3 0.66 1.45 1.37 2.85 1.35 1.69 4.82 1.79 6.70 5.54

# 4 0.65 1.23 2.05 2.16 0.55 0.52 0.85 1.58 7.69 5.35

# 5 1.53 1.46 1.34 1.56 1.16 1.95 1.22 2.37 6.83 2.65

# 6 4.70 1.80 4.09 2.27 1.59 1.95 1.33 2.04 8.35 5.99

# 7 4.70 1.63 2.84 1.84 0.76 1.20 1.02 2.37 3.35 4.62

# 8 3.47 1.59 2.06 2.31 1.46 1.32 1.00 1.77 4.58 3.38

# 9 0.92 1.80 3.05 2.63 4.66 2.48 2.10 1.80 10.67 5.89

# 10 2.51 2.10 1.83 2.45 4.11 1.91 3.45 2.10 7.42 8.14

Avg SD 2.16 1.61 2.23 2.17 1.78 1.61 1.90 1.88 6.76 4.86

1.52 0.28 0.81 0.39 1.34 0.52 1.24 0.31 2.31 1.57

Avg: Average
SD: Standard deviation

Fig. 4 Selected CT slices of one of the studied patients with a manual contour (green), atlas-based contour (red), and deep-learning-based
contour (blue) for the (a) heart, (b) liver, (c) right kidney, (d) left kidney, and (e) stomach
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as shown in Figs. 7 and 8. In Table 8, average of
DSC results in the liver case were not different, but
the VOE and RVD showed a more accurate differ-
ence of ~ 3%, and the heart, kidney (left, right) and
stomach also showed significantly differences than
DSC, as shown in Tables 9 and 10. In addition,
Christ et al. [32] have also published a liver case
auto segmentation study, whereby VOE and RVD
yielded more sensitive differences compared to the
DSC results.

Discussion
In this study, 70 CT patient datasets (45 for training, 15
for validation, and 10 for testing) were used to compare
the performances of the atlas-and deep-learning-based
auto-segmentation frameworks. In the study of La Mac-
chia et al. [33], the DSC results obtained from the auto-
segmentation analyses for the heart, liver, left kidney and
right kidney, with the use of the three commercially
available systems (ABAS 2.0, MIM 5.1.1, and Velocity AI
2.6.2) were in the ranges of 0.87–0.88, 0.90–0.93, 0.81–

Table 5 Comparison of volume overlap error (VOE) for atlas-based segmentation against deep-learning-based segmentation with
four organs (heart, liver, kidney, stomach). Averages and standard deviations are listed for ten test cases

Test
Case

Heart Liver Right kidney Left kidney Stomach

Catlas Cdeep Catlas Cdeep Catlas Cdeep Catlas Cdeep Catlas Cdeep

# 1 8.49 6.83 10.22 10.58 12.88 10.31 30.15 18.37 84.83 31.01

# 2 11.68 13.24 9.95 7.81 17.62 18.38 14.39 19.62 45.96 39.11

# 3 7.34 11.17 8.39 13.44 12.42 11.07 63.90 12.42 65.73 34.86

# 4 11.17 12.73 6.73 7.34 8.86 8.54 8.34 10.31 81.17 54.12

# 5 13.87 11.89 10.29 11.64 9.39 7.59 20.76 35.07 72.42 31.16

# 6 26.60 11.95 34.32 15.32 15.17 15.66 14.32 17.84 55.58 35.68

# 7 24.39 6.66 20.41 11.02 8.10 9.03 9.99 12.00 32.21 41.44

# 8 19.34 12.12 13.29 10.30 15.27 15.41 16.58 12.53 39.02 23.24

# 9 7.74 10.34 13.14 12.07 40.66 13.06 20.15 14.59 85.51 42.75

# 10 21.04 11.48 8.37 8.68 34.68 12.87 57.73 10.39 63.92 41.97

Avg SD 15.17 10.84 13.51 10.82 17.51 12.19 25.63 16.31 62.64 37.53

6.77 2.18 7.83 2.36 10.57 3.33 18.57 7.01 18.10 7.99

Avg: Average
SD: Standard deviation

Table 6 Comparison of relative volume difference (RVD) for atlas-based segmentation against deep-learning-based segmentation
with four organs (heart, liver, kidney, stomach). Averages and standard deviations are listed for ten test cases

Test
Case

Heart Liver Right kidney Left kidney Stomach

Catlas Cdeep Catlas Cdeep Catlas Cdeep Catlas Cdeep Catlas Cdeep

# 1 0.78 1.10 3.22 2.44 4.63 0.36 14.9 2.67 84.38 14.56

# 2 7.65 9.33 12.10 0.89 3.57 1.77 6.27 0.12 21.33 18.52

# 3 3.08 8.51 0.70 3.81 9.17 3.39 20.25 1.44 48.75 25.55

# 4 7.40 5.13 3.30 0.89 1.62 0.51 0.60 1.26 59.02 19.12

# 5 15.48 0.62 2.89 1.16 1.18 1.58 1.56 7.57 63.49 10.94

# 6 24.82 8.20 12.20 0.35 10.58 1.77 6.16 1.55 70.37 43.71

# 7 23.57 1.77 13.21 0.81 2.11 2.35 3.94 2.69 25.68 30.79

# 8 11.80 7.51 0.11 0.83 4.52 9.72 12.15 3.51 21.67 14.32

# 9 8.31 2.74 4.66 3.64 42.26 12.9 12.29 2.49 89.19 20.80

# 10 26.12 6.75 3.18 3.81 17.87 10.93 24.21 1.21 16.73 14.30

Avg SD 12.90 5.17 5.56 1.86 9.75 4.53 10.23 2.45 50.06 21.26

8.72 3.17 4.72 1.34 11.89 4.49 7.52 1.94 25.92 9.35

Avg: Average
SD: Standard deviation
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0.89, and 0.83–0.89, respectively. The heart yielded
lower DSC scores than our reported results, whereas the
other organ cases were similar to our segmented results.
However, poorer performance outcomes were evoked

in the case of the stomach compared to the other organs
in terms of DSC owing to the fact that the performance
of our method depended on the presence of gas bubbles
and on the variation of the stomach shapes among the
studied patient cases (Table 8). Nevertheless, as shown
in Tables 7 and 8, it is important to note that the deep
learning method yielded more accurate results both in
terms of the DSC (by 21.67%) and HD (− 1.90 mm) com-
pared to the atlas-based method.
The time-efficiency was based on the average times re-

quired by the atlas and deep-learning-based segmenta-
tion methods for the four organs, which were 75 s and
76 s, respectively (i.e., there was no statistically signifi-
cant difference because p-values were larger than 0.05
when a ranked Wilcoxon test was performed).

However, in the case of the atlas-based segmentation,
the time required for multi-organ segmentation can be
reduced. A recent study by Gibson et al. [34] demon-
strated a multi-organ segmentation approach using the
deep learning framework. Our future studies will be
undertaken based on the implementation of multi-
organ segmentation using DCNN to investigate the im-
pact of discrepancies among different segmentation
methods in radiation treatment planning.
It is also important to note that this study is associated

with some limitations. First, to compare the segmenta-
tion performances of the two methods using the same
conditions, we did not use the image datasets which
were obtained by cropping the relevant regions-of-
interest [16]. Secondly, we did not perform post-image
processing. Third, the number of test sets was only ten.
Finally, the limitation associated with the use of our
deep learning network, was based on the fact that the
CT image was a three-dimensional (3D)-volume matrix,
and each two-dimensional (2D) image was structurally
connected to the previous image. However, DCNN does
not take into account this structural connectivity be-
cause it uses a 2D convolution filter. All these factors
may affect the performance of the auto-segmentation
process. In post-image processing, Kim et al. [35]
showed that the accuracy of the predicted contouring
may vary differs according to the smoothing level of the
contouring boundary surface. However, it would be

Fig. 5 Comparison of Hausdorff distances (HD) for deep learning contour (Cdeep) and atlas-based contour (Catlas) segmentations for the heart (H),
liver (L), right kidney (RK), left kidney (LK), and stomach (S)

Table 7 Differences between HD mean values associated with
the deep learning and atlas-based contouring methods

Subject organs Heart Liver Right Kidney Left Kidney Stomach

HD (mm) Cdeep 1.61 2.17 1.61 1.88 4.86

Catlas 2.16 2.23 1.78 1.90 6.76

Cdeep – Catlas (mm) −0.55 −0.06 −0.17 −0.02 −1.90
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difficult to represent statistically significant data for all
clinical cases using such a small test dataset. In addition,
recent studies have used 3D convolution filters to
perform medical image segmentation. Milletari et al.
[36] performed volumetric segmentation of magnetic

resonance (MR) prostate images with a 3D volumetric
CNN, an average dice score of 0.87 ± 0.03 and an aver-
age HD of 5.71 ± 1.02 mm.
The HD exhibited a difference in accuracy which

depended on the image size. The size of the CT and

Fig. 6 Comparison of Dice similarity coefficient (DSC) value of deep learning contour (Cdeep) and atlas-based contour (Catlas) segmentations for
the heart (H), liver (L), right kidney (RK), left kidney (LK), and stomach (S)

Fig. 7 Comparison of volume overlap error (VOE) for deep learning contour (Cdeep) and atlas-based contour (Catlas) segmentations for the heart
(H), liver (L), right kidney (RK), left kidney (LK), and stomach (S)

Ahn et al. Radiation Oncology          (2019) 14:213 Page 10 of 13



segmented labeled images were reduced to half the ori-
ginal sizes (i.e., to 256 × 256) because of the limitations
of the graphic card memory and training time con-
straints. The standard deviations (SD) of the HD results
after image interpolation to the matrix sizes of 64 × 64
pixels, 128 × 128 pixels, and 512 × 512 pixels, compared
to the current pixels array size 256 × 256 pixels were ±
0.63 mm, ± 0.58 mm, ± 0.97 mm, ± 0.90 mm, and ± 1.03
mm for the heart, liver, right kidney, left kidney, and
stomach, respectively. Accordingly, when the segmenta-
tion image size is changed, the HD result may yield a
difference up to approximately 1 mm.
However, comparison of the SD of the HD results of

the current pixel array size (256 × 256) and the original
CT pixel array size (512 × 512 pixels) yielded differences
which were equal to ±0.02 mm, ± 0.04 mm, ± 0.04 mm,
± 0.07 mm, and ± 0.08, in the cases of the heart, liver,
right kidney, left kidney, and stomach, respectively.
Despite the aforementioned limitations, in this study,

we compared the auto segmentation outcomes obtained
with the use of the atlas, which is the auto segmentation
tool currently used in clinical practice, with the use of

an open source-based tool [21] rather than the commer-
cial program [20].
In particular, HD is a sensitive index which indicates

whether segmentation yields localized disagreements.
Therefore, it is an important indicator for assessing the
accuracy of the segmented boundaries. Considering the
limitation of the SD differences based on pixel array size
differences (comparison of the array sizes of 256 × 256
and 512 × 512) mentioned above, the deep-learning-
based contouring is superior to the atlas-based contour-
ing method regarding the HD results.
The segmentation results of the heart, liver, kidney,

and stomach, based on the use of the auto-segmentation
with deep-learning-based contouring showed good per-
formance outcomes both in terms of DSC and HD
compared to the atlas-based contouring. Loi et al. [37]
proposed a sufficient DSC threshold > 0.85 for volumes
greater than 30 ml for auto-segmentations. In this study,
the vast majority met this criterion except in the case of
the stomach, whereby only one of the test sets yielded
DSC values greater than 0.85 in the case where, the deep
learning method was used (Table 3).
Recent technological developments in diagnostic im-

aging modalities have led to frequent fusions of images,
including the paradigms of MR–Linac, PET–CT, and
MR–CT image fusions. To apply this to adaptive RT, ef-
ficient OAR delineation is necessary in the daily adaptive
treatment protocol to minimize the total treatment time.
There is one important issue that needs to be consid-

ered to contour the OARs correctly, which pertains to

Fig. 8 Comparison of relative volume difference (RVD) for deep learning contour (Cdeep) and atlas-based contour (Catlas) segmentations for the
heart (H), liver (L), right kidney (RK), left kidney (LK), and stomach (S)

Table 8 Differences between DSC mean values associated with
the deep-learning and atlas-based contouring methods

Subject organs Heart Liver Right Kidney Left Kidney Stomach

DSC Cdeep 0.94 0.93 0.88 0.86 0.73

Catlas 0.92 0.93 0.86 0.85 0.60

1- (Cdeep / Catlas) (%) −2.17 0 −2.33 −1.18 −21.67
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the motion artifacts attributed to the respiratory motion
of the patients. The movement of the organ increases
the contour uncertainty of the OARs. Combining the
auto-segmentation with the reduction of motion artifacts
[38] will enable more accurate delineation of the organs
affected by respiration. Therefore, application of deep-
learning-based auto-segmentation possesses tremendous
potential, and is expected to have a greater impact in the
near future in achieving effective and efficient radiother-
apy workflow.

Conclusions
In summary, we applied an open-source, deep learning
framework to an auto-segmentation application in liver
cancer and demonstrated its performance improvements
compared to the atlas-based approach. Deep-learning-
based auto-segmentation is considered to yield an accept-
able accuracy as well as good reproducibility for clinical
use. Additionally, it can significantly reduce the contour-
ing time in OARs destined to undergo radiation treatment
planning. We envisage that deep learning-based auto-
segmentation will become clinically useful, especially
when it is applied in the daily adaptive plans which are
based on multi-imaging modality-guided treatments.
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