
A genetic basis for friendship? Homophily for membrane-
associated PDE11A-cAMP-CREB signaling in CA1 of 
hippocampus dictates mutual social preference in male and 
female mice

Abigail J. Smith1, Reagan Farmer1, Katy Pilarzyk1, Latarsha Porcher1, Michy P. Kelly1,2,*

1.Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201 USA

2.Center for Research on Aging, University of Maryland School of Medicine, Baltimore, MD 21201 
USA

Abstract

Although the physical and mental benefits of friendships are clear, the neurobiological 

mechanisms driving mutual social preferences are not well understood. Studies in humans suggest 

friends are more genetically similar, particularly for targets within the 3’,5’-cyclic adenosine 

monophosphate (cAMP) cascade. Unfortunately, human studies can not provide conclusive 

evidence for such a biological driver of friendship given that other genetically-related factors 

tend to co-segregate with friendship (e.g., geographical proximity). As such, here we use mice 

under controlled conditions to test the hypothesis that homophily in the cAMP-degrading enzyme 

phosphodiesterase 11A4 (PDE11A4) can dictate mutual social preference. Using C57BL/6J and 

BALB/cJ mice in 2 different behavioral assays, we showed that mice with 2 intact alleles of 

Pde11a prefer to interact with Pde11 wild-type (WT) mice of the same genetic background 

over knockout (KO) mice or novel objects; whereas, Pde11 KO mice prefer to interact with 

Pde11 KO mice over WT mice or novel objects. This mutual social preference was seen in both 

adult and adolescent mice, and social preference could be eliminated or artificially elicited by 

strengthening or weakening PDE11A homodimerization, respectively. Stereotactic delivery of an 

isolated PDE11A GAF-B domain to the mouse hippocampus revealed the membrane-associated 

pool of PDE11A-cAMP-CREB signaling specifically within the CA1 subfield of hippocampus 

is most critical for regulating social preference. Our study here not only identifies PDE11A 

homophily as a key driver of mutual social preference across the lifespan, it offers a paradigm in 

which other mechanisms can be identified in a controlled fashion.
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Friendships—relationships characterized by compatibility and mutual reciprocity1—provide 

both physical and mental benefits to those involved. For example, a stronger social network 

decreases all-cause mortality risk2–4 as well as risk of mortality from cardiovascular disease, 

diabetes, Alzheimer’s disease, and chronic lower respiratory diseases3. Further, greater 

social engagement protects against age-related cognitive decline5–7 and depression8–13. 

While the physical and mental benefits of friendship are clear, the neurobiological 

mechanisms driving mutual social preferences are not well understood.

Some studies suggest there may be molecular mechanisms driving mutual social preference. 

Friends are more genetically similar than non-friends, with friends demonstrating genetic 

“relatedness” at the level of 4th cousins14. Several genes have been associated with 

friendship in humans, including homophily for the dopamine D2 receptor (D2Rs) and 

odorant receptors, both of which transduce signals via the intracellular 3’,5’-cyclic 

adenosine monophosphate (cAMP) cascade15, 16. These genetic findings complement those 

from mechanistic studies in rodents showing cAMP signaling in brain regions like the 

striatum and hippocampus regulates not only social interactions but also how social isolation 

impacts the brain17–23. Although the studies described above point to genetic similarities 

in the cAMP cascade as a potential molecular mechanism that promotes friendship in 

humans, there are alternative explanations for why friends are more genetically related than 

non-friends. Factors such as social inequality or racial stratification may influence genetic 

homophily due to societal constructs limiting the choices available for friendship selection16. 

In addition, friendships typically develop among individuals who are geographically near 

each other24, and geographical proximity is associated with genetic similarity25, 26. Thus, 

to definitively establish a molecular mechanism underlying mutual social preference, more 

controlled studies are required.

Fortunately, long-term, non-mating relationships are seen across a wide variety of 

species27, suggesting the mechanisms underlying mutual social preference are evolutionarily 

conserved. Here, we use mouse models to test the hypothesis that genetic similarities 

within the cAMP-hydrolyzing enzyme phosphodiesterase 11A (PDE11A) may be a key 

neurobiological mechanism underlying mutual social preference. Several PDE families 

are known to influence social interactions in rodents28–30, but PDE11A is particularly 

interesting in the context of mutual social preference. First, PDE11A expression in the 

brain is enriched in neurons of the ventral hippocampal formation, a brain region critical to 

social behaviors31, and deletion of Pde11a alters gene expression in the oxytocin signaling 

cascade (i.e., a key regulator of social bonding32). Second, Pde11a has been genetically 

associated with major depressive disorder in humans33–35 and appears to be a key molecular 

mechanism by which social isolation shapes subsequent social behavior in mice20. Third—

and of greatest interest to the present topic—when given the choice of interacting with either 

a novel Pde11a wild-type (WT) mouse or its Pde11a knockout (KO) littermate, mice with 
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two WT alleles preferred to interact with the Pde11a WT mice while the Pde11a KO mice 

preferred to interact with the KO mice20. This led us to suggest that PDE11A regulates 

mutual social preference; however, this report was limited to a single mouse model and a 

single behavioral paradigm. Here, we use multiple mouse models and behavioral paradigms 

to explicitly test the hypothesis that homophily in PDE11A function can dictate mutual 

social preference.

RESULTS

To test the hypothesis that PDE11A genotype dictates mutual social preference, here we 

compare and contrast behavior of Pde11a wild-type (WT), heterozygous (HT) and knockout 

(KO) mice on either a C57BL/6J background (as originally reported20, 29) or a BALB/cJ 

background. The choice of the BALB/cJ background as a comparator strain was driven by 

the fact that the BALB/cJ and C57BL/6J strains differ in their sequence for PDE11A4. 

Whereas the C57BL/6J strain encodes an alanine at amino acid 499, the BALB/cJ encodes 

a threonine, leading to increased expression of PDE11A4 in the BALB/cJ hippocampus as 

well as increased homodimerization and accumulation of PDE11A4 in vitro36.

Validation of BALB/cJ knockout (KO) mice.

Consistent with our previous in vitro findings36, here we show that PDE11A4 protein is 

compartmentalized very differently in the hippocampus of C57BL/6J mice vs. BALB/cJ 

mice (Figure 1A). Whereas, PDE11A4 expression is found throughout neuronal cell bodies 

in the ventral subiculum of young adult C57BL/6J mice as previously described31, it is 

also found to accumulate in filamentous linear structures in ventral subiculum of young 

adult male and female BALB/cJ mice (Figure 1A). This suggests PDE11A may function 

somewhat differently between the 2 strains given that the location of a PDE is just as 

important to its overall function as is its catalytic activity37. After backcrossing the Pde11a 
KO from the largely C57BL/6J background to a BALB/cJ background, we confirmed a lack 

of PDE11A4 protein expression in both the ventral hippocampus (Figure 1B; see Figure 

S1 for images of full-length blots) and dorsal hippocampus (Figure 1C) of the BALB/cJ 

KO. We also confirmed reduced expression in the Pde11a heterozygous BALB/cJ mice 

(HT; Figure 1B–C). Importantly, deletion of PDE11A does not trigger a compensatory 

upregulation of PDE2A (WT, 0.92 ±0.14 A.U.; HT, 0.95 ±0.16 A.U.; KO, 0.92 ±0.14 

A.U.; F(2,21)=0.007, P=0.99), the closest-related PDE with substantial expression in the 

hippocampus38, 39.

Social approach behavior of Pde11a WT and KO mice on a BALB/cJ background varies as 
a function of the stimulus mouse Pde11a genotype.

Previously, we showed that male, but not female, Pde11a KO mice on a C57BL/6J 

background exhibited significantly reduced social approach relative to Pde11a WT mice 

when given a choice between a novel object vs a novel Pde11a WT mouse20, 29. Here, we 

show that while male and female Pde11a WT and HT mice on the BALB/cJ background 

exhibited significant social approach behavior by spending more time with the novel Pde11a 
WT mouse vs. a novel object, male and female Pde11a KO mice did not (Figure 2B). 

To determine if deletion of PDE11A reduces all social approach behavior, or only social 
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approach toward Pde11a WTs, we repeated the experiment with a new group of mice and 

replaced the novel Pde11a WT mouse with a novel KO mouse. We found that both male and 

female Pde11a HT and KO mice exhibited significant social approach behavior by spending 

more time interacting with the novel Pde11a KO mouse vs the novel object; however, the 

Pde11a WT mice did not (Figure 2C). Together, these data suggest 1) the impact of PDE11A 

deletion on this behavior is stronger on the BALB/cJ background in that it affects both males 

and females compared to only males on the C57BL/6J background and 2) that PDE11A 

deletion does not reduce all social approach but rather shifts social preferences.

Pde11a genotype of stimulus and subject mice must match for C57BL/6J and BALB/cJ 
mice to exhibit social preference for one mouse over another.

Previously, we showed that while adult male and female C57BL/6J mice prefer to interact 

with adult Pde11a WT vs KO mice, adult Pde11a KO mice preferred to interact with adult 

Pde11a KO vs WT mice (all mice on a C57BL/6J background20). Here we replicate and 

extend these findings. Although adult male and female C57BL/6J mice preferred to interact 

with adult Pde11a WT vs KO mice on a C57BL/6J background during the last 5 minutes 

of the session (Figure 3B), C57BL/6J mice showed no such preference for Pde11a WT over 

KO mice on the BALB/cJ background (Figure 3D), consistent with the fact that the protein 

sequence for PDE11A differs between C57BL/6J and BALB/cJ mice (see above). Similarly, 

adult male and female BALB/cJ mice preferred to interact with adult Pde11a WT vs. KO 

mice on the BALB/cJ background (Figure 3E) but not Pde11a WT vs. KO mice on the 

C57BL/6J background (Figure 3G). On both the C57BL/6J background (Figure 3D) and the 

BALB/cJ background (Figure 3F), adult Pde11a KO mice preferred to interact with adult 

Pde11a KO vs WT mice on the same genetic background. Together, these data suggest that 

in adult mice, Pde11a genotype dictates mutual social preference.

To determine if this effect occurred in younger mice, we tested social preference of 

adolescent subject mice on the BALB/cJ background. We found that male and female 

adolescent Pde11a WT mice preferred to investigate adult same-sex Pde11a WT vs KO mice 

(Figure 3H) and male and female adolescent Pde11a KO mice preferred to investigate adult 

same-sex Pde11a KO vs WT mice (all on the BALB/cJ background; Figure 3J). Importantly, 

adolescent Pde11a HT mice showed no such preference between Pde11a WT and KO mice 

(Figure 3I), again consistent with the fact that they did not share an identical genotype with 

either stimulus mouse.

Pde11a genotype-dependent social preference cannot be explained by overt differences 
in locomotor activity of stimulus mice nor preference for the social odor of one genotype 
over another.

To determine if Pde11a genotype-dependent social preferences could be due to overt 

differences in the locomotor activity of the stimulus mice, videos from experiments 

presented in Figure 3B, 3D, 3E and 3F were hand scored with regard to the number of 

times the stimulus mice poked their noses through the perforated holes. This endpoint was 

chosen since the cylinders have a solid top to keep the mice inside the cylinder, which 

precludes our ability to track their movement in the videos. There was no difference in 

the extent to which Pde11a WT versus KO mice poked their nose out of the cylinders 
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in response to adult C57BL/6J subject mice (Figure 4A), adult Pde11a KO subject mice 

on the C57BL/6J background (Figure 4B), adult BALB/cJ subject mice (Figure 4C), or 

adult Pde11a KO subject mice on the BALB/cJ background (Figure 4D). To determine if 

the Pde11a genotype-dependent social preferences could be driven by a preference for one 

social odor over another, BALB/cJ mice and Pde11a KO mice on the BALB/cJ background 

were given the opportunity to investigate wooden beads saturated with the scent of either 

novel WT mice or novel KO mice on the BALB/cJ background. Both the BALB/cJ mice and 

the Pde11a KO mice on the BALB/cJ background can distinguish the scent of a Pde11a WT 

stimulus mouse from that of a KO stimulus mouse in that they dishabituate from one scent 

to the other (Figure 4E–F). Subject mice do not, however, appear to prefer the scent of one 

genotype over the other as they spend approximately the same amount of time investigating 

each scent and equally habituate to each scent over 2 training trials. Pde11a KO mice on the 

C57BL/6J background (n=4/sex) also demonstrate this pattern of behavior (data not shown; 

2-way RM ANOVA effect of genotype: F(1,7)=0.001, P=0.976; effect of trial: F(1,7)=26.48, 

P=0.001).

PDE11A appears to regulate mutual social preference via membrane-associated pools of 
cAMP in CA1 of hippocampus.

PDE11A4 is expressed in neurons of the CA1 and subiculum subfields of the hippocampus 

along with the amygdalohippocampal area29, 31. Previously, we determined that PDE11A4 

specifically within CA1 is the critical pool that regulates social memory formation40. 

Therefore, we tested the hypothesis that PDE11A4 specifically within CA1 is also key to 

regulating mutual social preferences. To test this hypothesis, we stereotatically infused into 

stimulus mice a virus that expressed either mCherry alone (negative control; note 2 mice did 

not actually express the mCherry construct but were included as “mock” controls; Figure 

5A–B) or an mCherry-tagged version of the PDE11A4 GAF-B domain (viral expression 

was verified in all GAF-B stimuli mice). We chose to disrupt PDE11A4 function using this 

isolated GAF-B construct for 2 reasons. First, the GAF-B domain is where the BALB/cJ 

point mutation resides and is the domain required for PDE11A4 homodimerization36. 

Second, by binding to PDE11A4 monomers and disrupting PDE11A4 homodimerization, 

the isolated GAF-B construct preferentially degrades membrane-associated PDE11A436, 

which is the pool of PDE11A that is reduced by social isolation20. Indeed, we were able 

to verify that the GAF-B construct disrupts PDE11A4 expression in a compartment-specific 

manner within CA1 (Figure 5D–E). Across the first and last 5-minute epoch, sex-matched 

unsurgerized C57BL/6J subject mice spent significantly more time investigating Pde11a WT 

stimulus mice on the C57BL/6J background with intact PDE11A4 homodimerization (i.e., 

mCherry treated) vs. those with disrupted PDE11A4 homodimerization (i.e., GAF-B treated; 

Figure 5F).

In vitro evidence suggests PDE11A4 may hydrolyze cAMP with a higher Km and Vmax 

than cGMP41, 42; therefore, we next determined if deletion of PDE11A would reduce 

total cAMP-PDE activity in the ventral hippocampus more so than cGMP-PDE activity. 

Consistent with our initial report in mice on the C57BL/6J background29, we found that 

deletion of PDE11A reduced cAMP-PDE activity in the ventral hippocampus of BALB/cJ 

mice but not cGMP-PDE activity (Figure 5G). To confirm this reduction in cAMP-PDE 
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activity would be sufficient to increase output of the cAMP pathway in the ventral 

hippocampus, we next measured total cAMP response element binding protein (CREB) 

in the nucleus of ventral hippocampus. Elevations in cyclic nucleotides activate kinases 

that phosphorylate CREB, which causes CREB to translocate to the nucleus where it 

facilitates the transcription of a subset of genes. Consistent with this fact, we found that 

deletion of PDE11A increased the amount of total CREB located in the nuclear fraction 

of ventral hippocampi in both C57BL/6J and BALB/cJ mice (Figure 5H). Interestingly, the 

effect sizes for both the reduction in cAMP-PDE and the increase in nuclear CREB are 

about twice as high in the Pde11a KO mice on the BALB/cJ background vs. Pde11a KO 

mice on the C57BL/6J background, consistent with the much higher levels of PDE11A4 

expression that are found in BALB/cJ vs. C57BL/6J mice36. Together, these data suggest 

that PDE11A homophily dictates mutual social preference due to its ability to regulate 

membrane-associated pools of cAMP specifically within the CA1 subfield of hippocampus.

DISCUSSION

In this study, we showed that—across the lifespan—mice prefer to interact with other 

mice that are homophilic for Pde11a function versus those that are not. Using mice of 2 

different genetic backgrounds in 2 different behavioral assays, we showed that mice with 

2 intact alleles of Pde11a prefer to interact with Pde11a WT mice of the same genetic 

background over KO mice; whereas, Pde11a KO mice prefer to interact with Pde11a KO 

mice over WT mice (Figure 2–3). This mutual social preference was seen in both adult 

and adolescent mice and could be eliminated or artificially elicited by using stimulus mice 

with strengthened or weakened PDE11A homodimerization, respectively. More specifically, 

C57BL/6J mice failed to exhibit social preference for Pde11a WT mice on the BALB/cJ 

background (and vice versa) that harbor a mutation that strengthens homodimerization36 

(Figure 3D) and alters subcellular trafficking of PDE11A (Figure 1A). Further, C57BL/6J 

mice showed social preference for C57BL/6J mice treated with a control virus versus 

C57BL/6J mice treated with a virus expressing an isolated GAF-B domain that decreases 

PDE11A4 homodimerization36 (Figure 5F). The fact that C57BL/6J mice exhibited a social 

preference for the control mice vs. the GAF-B treated mice suggests PDE11A4 is regulating 

mutual social preference through an acute regulation of membrane-associated pools of 

cAMP-CREB signaling as opposed to a prolonged effect on the developmental trajectory of 

circuits.

PDE11A4 may be unique relative to other PDEs in its regulation of social behaviors. 

This may not be surprising given that various PDE families are differentially regulated in 

the brain across the lifespan (e.g., hippocampal PDE11A increases whereas PDE9A and 

PDE10A decrease 43–45), and no two PDEs share the exact same regional distribution 

or subcellular compartmentalization in the brain39, 46, 47. To our knowledge, PDE10A is 

the only other PDE that has been shown to alter baseline social interactions, with deletion/

inhibition of PDE10A increasing sociability of male mice18, 28 and increased expression 

of PDE10A (via knockdown of its cognate microRNA) reducing sociability of mice48. 

Thus, PDE10A appears to regulate social approach in the opposite—if not a completely 

different—manner than PDE11A (i.e., data in Figure 2A would typically be interpreted as 

reduced sociability). That said, PDE1B, PDE2A, PDE4, PDE5A, and PDE9A inhibitors 
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reverse changes in social behaviors observed in rodent models of schizophrenia and 

neurodevelopmental disorders (e.g., 30, 49–51). Note that we hesitate to characterize the social 

behaviors of these mouse models as “social deficits” since our findings show that behavior 

interpreted as a social approach deficit (as in Figure 2A) can, in fact, simply reflect a change 

in social preference when more thoroughly tested (as revealed by data in Figures 2B and 

3). In these disease models, PDE inhibitors were delivered systemically. As such, it is not 

possible to know where in the brain these drugs were acting since these PDE families each 

have a widespread distribution in the rodent brain39. In terms of subcellular localization, it is 

interesting to note that while PDE11A4 is distinctly enriched in cytosolic versus membrane 

fractions, both PDE2A and PDE10A are enriched in the membrane versus the cytosol38. 

Despite this relative enrichment, social isolation specifically decreases PDE11A4 expression 

within the membrane compartment of the VHIPP without affecting PDE2A or PDE10A 

expression20, 52. Together, these data suggest PDE11A is unique relative to other PDE 

families both in terms of regulating social behaviors and in terms of mediating the effects of 

social experiences on the brain.

The fact that homophily in PDE11A function seems to drive mutual social preference 

in mice via the cAMP cascade aligns well with previous studies in humans showing 

genetic homophily among friends for the DRD2 gene15 and odorant receptors14, both of 

which couple to the cAMP cascade. Mouse studies, of course, can be conducted in a 

more controlled setting than human studies. Thus, mouse studies do not suffer from the 

constraints that face human studies in this area. As noted above, factors such as geographical 

distance, social inequality, or racial stratification may influence genetic homophily by 

limiting the choices available for friendship selection16. Factors such as physical proximity 

are controlled for in rodent studies, thus, the mutual social preference demonstrated herein 

cannot be explained away by such influences. Social stratification based on gender is also 

common in humans, where females tend to be friends with other females and males tend to 

be friends with other males53, 54. Importantly, we saw that PDE11A function dictated mutual 

same-sex social preference in both male and female mice. It will be of interest to future 

studies to determine if PDE11A homophily also influences opposite-sex social preference, 

or if heterophily (i.e., “opposites attract”) might be preferred. Indeed, human studies have 

also reported genetic heterophily in immune-related genes among friends, which has been 

suggested to offer a survival benefit14–16.

It remains to be determined what trait or behavior is being altered by PDE11A function 

that drives the observed mutual social preference. In humans, genes play a role in regulating 

interests and hobbies, which tend to be shared by friends55. Alcoholism has a genetic 

basis and increases the likelihood of participating in activities involving alcohol56, 57. Such 

participation puts people in more frequent contact with other alcoholics or heavy drinkers, 

thus, increasing their chances of become friends. Indeed, friends of alcoholics tend to also 

be heavy drinkers58. Here, we showed that the mutual social preference being driven by 

PDE11A homophily does not appear to be due to a preference for some gross locomotor 

phenotype that differs between WT and KO mice nor a preference for the social odors that 

differ between WT vs. KO mice (Figure 4). Ultrasonic vocalizations are a key mode of 

social communication in mice that are known to vary in mice with differing genotypes59, 60. 

Thus, it will be of interest to future studies to determine if mice with differing PDE11A 
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function may emit different ultrasonic vocalizations that drive the observed differences in 

mutual social preference.

Several studies have suggested that BALB/cJ mice are less sociable than other mouse 

strains, particularly during adolescence (for review, see61); however, we see similar levels 

of social interaction with both the BALB/cJ and C57BL/6J mice when using stimulus 

mice of the same strain. It is notable that several reports suggesting BALB/cJ mice are 

less social measured interactions between a BALB/cJ mouse and a mouse from a different 

strain28, 62–64; whereas, a study that tested social approach behavior in subject mice using 

stimulus mice of the same strain actually showed increased social exploration in BALB/c 

versus C57BL/6J mice65. The difference between our observations and those of past studies 

using the 3-compartment chamber may also be related to the fact that we record time spent 

specifically investigating the cylinder as opposed to time spent in each chamber as a whole. 

Indeed, one report suggested the reduced sociability noted in BALB/cJ mice was more 

pronounced when measuring time spent in the chamber versus investigating the cylinder64. 

Taking our results together, we would suggest that BALB/cJ mice may have differences in 

social preferences relative to other mouse strains, as opposed to social deficits per se.

As more molecular mechanisms underlying mutual social preference are identified, it may 

become possible to develop a biomarker panel that predicts such compatibility. Such 

a biomarker would have far reaching implications. The ability to predict mutual social 

preference could significantly improve healthcare, given patient-therapist and patient-doctor 

compatibility is known to improve outcomes for patients66, 67. Such a biomarker might also 

hold implications for predicting romantic compatibility, thereby lowering divorce rates and 

the associated negative impact on financial, emotional, and psychosocial wellbeing68–71. 

More generally speaking, a better understanding of molecular mechanisms underlying 

mutual social preference could lead to novel treatments for patients with neuropsychiatric 

disorders where social functioning is impaired (e.g., schizophrenia72, autism73, and 

PSTD74). Our study here not only identifies PDE11A homophily as a key driver of mutual 

social preference, it offers a paradigm in which other mechanisms can be identified in a 

controlled fashion.

METHODS:

Subjects.

The Pde11a mouse line, previously described29, 40, was originally obtained from Deltagen 

(San Mateo, CA) and then maintained on a mixed C57BL6 background (99.8% multiple 

C57BL/6 substrains and 0.2% 129P2/OlaHsd as per the MiniMUGA panel (Transnetyx, 

Cordova TN). The Pde11a KO was then backcrossed to BALB/cJ for 8 generations, 

ultimately generating a Pde11a KO line that is ~98.8% BALBc/J (as per MiniMUGA). 

C57BL/6J mice and some BALB/cJ mice were purchased from Jax and allowed to acclimate 

to the facility for at least 1 week prior to testing; other BALB/cJ mice were bred onsite 

from stock originally obtained from Jax. See figure legends for specific n’s/experiment, 

which were based on past experience with these assays. Experiments were carried out in 

accordance with the National Institutes of Health Guide for the Care and Use of Laboratory 

Animals (Pub 85–23, revised 1996) and were fully approved by the Institutional Animal 
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Care and Use Committee of the University of South Carolina and the University of 

Maryland, Baltimore. For additional information, see the Supplemental Methods.

Experimental Procedures.

All studies were conducted in a blinded and counterbalanced fashion. Immunofluorescence 

and Western Blotting were conducted as previously described31, 44. Social Approach/Social 

Avoidance (SASA) and Social Preference were also assessed as previously described20 

(note: the “social preference assay” was previously named the “mouse psychiatry assay”). 

Social Odor Detection and Preference was evaluated using a modification of our previously 

published social odor recognition test31, 40. PDE Activity was measured based on75, with 

some modification. Stereotactic surgeries targeting the CA1 subfields of hippocampus 

were conducted as previously described40. For additional methodological details, see the 

Supplemental Methods.

Data analysis.—Data were collected with an automated system or by an experimenter 

blind to treatment and were analyzed by parametric or nonparametric statistics, as 

appropriate, using Sigmaplot 11.2 as previously described20, 40, 44 (see Supplemental 

Methods more specific details). Both males and females were included in each group 

(females data points located toward the left of each histogram and male data points are 

located toward the right), but not in sufficient number to power an analysis of the effect 

of sex with the exception of the experiment presented in Figure 3G. In cases of significant 

ANOVAs, post hoc analyses were conducted using the Student-Newman-Keuls Method. As 

previously described (e.g., 40, 44, 45), data points >2 standard deviations from the mean were 

considered statistical outliers and removed from analyses (outliers/total data points: Figure 

3E, 2/52; Figure 5E, 3/56; Figure 5F, 1/32; Figure 5G, 2/32).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. PDE11A4 protein trafficking differs in BALB/cJ vs. C57BL/6J mice; however, genetic 
deletion similarly affects total PDE11A4 expression levels on both genetic backgrounds.
A) Immunofluorescence of sagittal sections of the ventral subiculum using an antibody 

recognizing PDE11A4 (green) and a nuclear stain (blue; DAPI) shows PDE11A4 in this 

brain region is trafficked diffusely throughout neuronal cell bodies in C57BL/6J mice as 

previously described31, yet also accumulates into filamentous linear structures in BALB/cJ 

mice. This pattern is consistent with our previous in vitro work showing that a PDE11A 

point mutation harbored in the BALB/cJ sequence strengthens homodimerization and 

increases accumulation of the protein relative to the C57BL/6J sequence36. The PDE11A 

knockout was backcrossed from a largely C57BL/6J background to a BALB/cJ background 

for 8 generations, yielding a line that was 98.8% BALB/cJ. In both B) ventral hippocampus 

(n=4/genotype/sex) and C) dorsal hippocampus (n=4/genotype/sex), PDE11A heterozygous 

mice demonstrate only ~20–25% of PDE11A4 protein expression that is seen in wild-

type mice. This matches levels of expression detected in HT mice on the C57BL/6J 

background, and suggests that PDE11A4 drives its own expression20. PDE11A KO mice 

on the BALB/cJ background show no PDE11A4 protein expression as expected. VHIPP—

ventral hippocampus, DHIPP—dorsal hippocampus, WT—wild-type, HT—heterozygote, 

KO—knockout. Data plotted as individual points (females towards left of each bar, males 

towards right) and expressed as mean ±SEM. Histogram stretch, brightness, and contrast of 

images adjusted for graphical clarity.
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Figure 2. Mice spend significantly more time investigating a novel mouse vs. a novel object only 
when the novel mouse is of the same Pde11a genotype.
A) Mice from the BALB/cJ backcrossing were first habituated for 5 minutes to the 3-

compartment chamber that housed a perforated plexiglass cylinder at either end. A novel 

object was then placed in one cylinder while a novel Pde11a wild-type (WT) or knockout 

(KO) stimulus mouse from the BALB/cJ backcrossing were placed in the other cylinder. 

Mice were then allowed to explore for an additional 5 minutes with the time spent directly 

interacting with the cylinders measured. B) When given a choice between a novel object 

vs. a novel Pde11a WT stimulus mouse, Pde11a WT subject mice (F, n=4; M, n=8) and 

heterozygous subject mice (HT; F, n=5; M, n=4) explore the novel WT stimulus mouse 

significantly longer than the object (2-way RM ANOVA fails normality; paired t-test WT: 

t(11)=−3.024, P=0.011; paired t-test HT: t(8)=−3.799, P=0.005); whereas, their Pde11a 
KO littermates (F, n=5; M, n=11) do not show a significant preference (paired t-test KO: 

t(15)=−1.236, P=0.235). C) In contrast, when given a choice between a novel object vs. 

a novel Pde11a KO stimulus mouse, Pde11a KO subject mice (F, n=2; M, n=3) and HT 

subject mice (n=3/sex) explore the novel KO mouse significantly longer than the object; 

whereas, their Pde11a WT littermates (F, n=2; M, n=4) show no such preference (2-way 

RM ANOVA genotype x cylinder: F(2,14)=3.919, P=0.045; Post hoc object vs. new KO: 

KO, P=0.022; HT, P=0.0006; WT, P=0.5795). Data plotted as individual points (females 

towards left of each bar, males towards right) and expressed as mean ±SEM. *vs. object, 

P=0.022–0.0006.
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Figure 3. Pde11a genotype dictates mutual social preference in adult and adolescent mice in the 
social preference test.
A) Subject mice were first habituated for 5 minutes to the 3-compartment chamber that 

housed a perforated plexiglass cylinder at either end. A novel Pde11a wild-type (WT) and 

novel knockout (KO) stimulus mouse from either the C57BL/6J line or the BALB/cJ line 

was then placed in each cylinder, and subject mice were allowed to interact with these 

stimulus mice for 30 minutes. The time each subject mouse spent directly interacting with 

the cylinders was then scored during the first and last 5 –minute epoch of that 30-minute 

exploration. B) When adult C57BL/6J subject mice (n=3/sex) are given a choice between 

a Pde11a wild-type (WT) versus a knockout (KO) stimulus mouse from the C57BL/6J 

background, C57BL/6J subject mice prefer to interact with the Pde11a WT stimulus mouse 

during the last 5 minutes (2-way RM ANOVA fails normality; paired t-test for WT stimulus 

mouse vs. KO stimulus mouse during ‘last’: t(5)=3.145, P=0.0255; paired t-test for first vs. 

last 5-minutes interacting with KO stimulus mouse: t(5)=−7.501, P=0.0007). C) In contrast, 
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when adult Pde11a KO subject mice on the C57BL/6J background (n=5/sex) are given a 

choice between a Pde11a WT versus a KO stimulus mouse from the C57BL/6J background, 

they prefer to interact with the KO stimulus mouse across epochs (2-way RM ANOVA effect 

of stimulus mouse: F(1,9)=13.065, P=0.0056; effect of epoch: F(1,9)=8.71, P=0.0162). 

D) Interestingly, adult C57BL/6J subject mice (n=8/sex) did not show a preference for 

Pde11a WT versus Pde11a KO stimulus mice from the BALB/cJ background (2-way RM 

ANOVA effect of stimulus mouse: F(1,8)=0.195, P=0.671), suggesting the PDE11A4 point 

mutation that exists between C57BL/6J and BALB/cJ mice is sufficient to influence social 

preference. This suggestion is supported by the fact that E) adult BALB/cJ subject mice 

(F, n=3; M, n=6) did prefer to interact with a Pde11a WT versus Pde11a KO stimulus 

mouse from the BALB/cJ background across epochs (2-way RM ANOVA effect of stimulus 

mouse: F(1,8)=20.036, P=0.0021; effect of epoch: F(1,8)=6.275, P=0.0367); whereas, F) 

adult Pde11a KO subject mice (F, n=6; M, n=7) from the BALB/cJ background preferred 

to interact with a Pde11a KO versus Pde11a WT stimulus mouse from the BALB/cJ 

background across epochs (2-way RM ANOVA effect of stimulus mouse: F(1,12)=20.05, 

P=0.0005) and G) adult BALB/cJ mice (n=9/sex) showed no preference for Pde11a WT 

versus KO stimulus mice from the C57BL/6J background (3-way RM ANOVA effect of 

stimulus mouse: F(1,32)=3.00, P=0.093). H) Adolescent Pde11a WT subject mice from 

the BALB/cJ background (F, n=4; M, n=5) also preferred to interact with a Pde11a WT 

versus Pde11a KO stimulus mouse from the BALB/cJ background, but only during the first 

5 minutes (2-way RM ANOVA effect of stimulus mice x epoch: F(1,8)=11.277, P=0.001; 

Post hoc: WT vs. KO stimulus mouse within first 5-minute epoch, P=0.0265; first vs. last 

5-minute epoch with WT stimulus mouse, P=0.0008). I) In concert with data shown in 

Figure 2, adolescent Pde11a HT subject mice from the BALB/cJ background (F, n=3; M, 

n=2) showed no preference between the adult Pde11a WT versus KO stimulus mice from 

the BALB/cJ background (2-way RM ANOVA effect of stimulus mouse: F(1,4)=0.345, 

P=0.589), possibly because neither was a perfect genetic match. J) Similar to their adult 

counterparts, adolescent Pde11a KO subject mice from the BALB/cJ background (n=5/

sex) preferred to interact with a Pde11a KO versus Pde11a WT stimulus mouse from 

the BALB/cJ background across epochs (2-way RM ANOVA effect of stimulus mouse: 

F(1,7)=6.516, P=0.038). Data plotted as individual points (females towards left of each bar, 

males towards right) and expressed as mean ±SEM. *vs. WT cylinder, P= 0.038–0.0006; 

#vs. first 5-minute epoch, P=0.0367–0.0007.
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Figure 4. Pde11a genotype-dependent social preference cannot be explained by overt differences 
in locomotor activity of stimulus mice nor social odor preference of subject mice.
To determine if the Pde11a genotype-dependent effect observed in the social preference 

assay could be due to overt differences in the locomotor activity of stimulus mice, videos 

from experiments presented in Figure 3A, 3B, 3D and 3E were hand scored with regard 

to the number of times the stimulus mice poked their noses through the perforated holes. 

There was no difference in the extent to which Pde11a WT versus KO stimulus mice poked 

their nose out of the cylinders in response to A) adult C57BL/6J subject mice (2-way 

RM ANOVA effect of cylinder: F(1,5)=0.0009, P=0.977; effect of epoch: F(1,5)=8.224, 

P=0.0351), B) adult Pde11a KO subject mice on the C57BL/6J background (2-way 

RM ANOVA effect of cylinder: F(1,9)=1.786, P=0.214; effect of epoch: F(1,9)=9.445, 

P=0.0133), C) adult BALB/cJ subject mice (2-way RM ANOVA fails normality; paired 

t-test for ‘first’: t(8)=1.426, P=0.192; paired t-test for ‘last’: t(8)=0.728, P=0.487) or D) 

adult Pde11a KO subject mice on the BALB/cJ background (2-way RM ANOVA effect of 
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cylinder: F(1,12)=2.175, P=0.166). To determine if the Pde11a genotype-dependent effect 

in the social preference assay could be driven by a preference for each genotype’s social 

odor, wooden beads were saturated with the scent of either novel WT stimulus mice or 

novel KO stimulus mice and the duration of investigation for each scent was recorded 

across 2 trials. E) Although BALB/cJ subject mice (F, n=9; M, n=6) can distinguish the 

scent of Pde11a WT stimulus mice from that of KO stimulus mice, they do not appear 

to prefer the scent of Pde11a WT stimulus mice over that of KO stimulus mouse as they 

spend approximately the same amount of time investigating each scent and equally habituate 

to each scent over 2 training trials (2-way RM ANOVA fails normality; Friedman RM 

ANOVA on Ranks effect of trial within novel: Chi-square(3)=27.08, P=0.000006; Post hoc: 

WT-1 vs. WT-2 and KO-1 vs. KO-2, P<0.05; WT-1 vs. KO-1 or WT-2 vs. KO-2, P=”not 

significant”). F) A similar pattern is observed with Pde11a KO subject mice (F, n=6; M, 

n=7) on the BALB/cJ background (2-way RM ANOVA effect of genotype: F(1,17)=2.683, 

P=0.12; effect of trial: F(1,17)=113.769, P<0.000001). Data plotted as individual points 

(females towards left of each bar, males towards right) and expressed as mean ±SEM. #vs. 

first/T1, P=0.0351–0.0133.
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Figure 5. PDE11A appears to regulate social preference via membrane-associated pools of cAMP 
signaling in CA1 of hippocampus.
To identify the specific hippocampal subfield in which PDE11A regulates mutual social 

preference, we selectively disrupted PDE11A signaling in the CA1 region of hippocampus 

in male and female adult Pde11a WT stimulus mice on the C57BL/6J background by 

stereotatically infusing A) a virus that expressed the PDE11A4 GAF-B domain—the domain 

required for PDE11A4 homodimerization (^--insertion site). B) By acting as a negative 

sink, the isolated GAF-B construct reduces PDE11A4 homodimerization and preferentially 

degrades membrane-associated PDE11A4, as shown in36. C) Lentiviral expression of 

mCherry does not disrupt expression of PDE11A4 in ventral CA1. D) In contrast, lentiviral 

expression of the isolated mCherry-tagged GAF-B construct does reduce PDE11A4 in 

ventral CA1, particularly in dendrites and axons. Note, solid arrows are shown on the left 

triple-overlay and right PDE11A4-only images to indicate areas of high viral expression. E) 

Qualitative assessment of the staining pattern observed in mCherry-treated (mCh; n=4/sex) 

vs GAFB-treated mice (GB; n=7/sex) by an experimenter blind to treatment confirmed the 

GAF-B construct increases the patchiness (i.e., the non-uniformity) of PDE11A4 staining 

across the dendritic, cell body, and axonal layers of CA1 (Rank Sum: T(8,14)=63.0, 

P=0.024). F) Across the first and last 5-minute epoch of the social preference test, sex-

matched adult C57BL/6J subject mice (n=9 females, n=5 males) preferred to interact 

with Pde11a WT stimulus mice on the C57BL/6J background that were treated with the 

mCherry virus (negative control; note: 2 mice did not actually express mCherry but were 

included as “mock” controls) vs. those stimulus mice treated with the mCherry-tagged 

GAF-B construct (effect of stimulus mouse: F(1,10)=7.04, P=0.0173). G) To determine 

if PDE11A preferentially regulates cAMP vs. cGMP in vivo, we measured cAMP-PDE 

and cGMP-PDE activity in ventral hippocampi of BALB/cJ Pde11a WT vs. KO mice. 

Consistent with previous observations on the C57BL/6J background29, Pde11a KO mice on 
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the BALB/cJ background (n=3 females and 5 males/genotype) show a 15.7% reduction 

in ventral hippocampal cAMP-PDE activity relative to Pde11a WT mice (t(13)=2.91, 

P=0.0121), but equivalent cGMP-PDE activity relative to WT mice (t(14)=0.63, P=0.539). 

H) This reduction in cAMP-PDE activity is sufficient to increase output of the cAMP 

pathway as evidenced by the fact that Pde11a KO mice show higher levels of total CREB 

protein in the nuclear fraction of the ventral hippocampus relative to WT mice on both the 

C57BL/6J (t(14)=−2.177, P=0.0471) and BALB/cJ background (fails normality; Rank Sum 

test: T(7,7)=34.00, P=0.0175). mCh—mCherry, GB—isolated GAF-B domain tagged with 

mCherry, n=4/genotype/sex/background. Data plotted as individual points (females towards 

left, males towards right) and expressed as mean ±SEM. Histogram stretch and gamma of 

images adjusted for graphical clarity. *vs mCh or WT, P=0.047–0.012.
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