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Abstract: In this paper, Au nanoshell arrays, serving as a photo-activated material, are fabricated via
the combination of self-assembled nanosphere lithography and the thermal decomposing polymer
method. The intensity and position of surface plasmonic resonance can be tuned from the visible
region to the near-infrared region by changing the size of Au nanoshell arrays. When resonance
absorption peaks of metal nanoparticles are matched with emission wavelengths of core-shell
CdSe/CdS quantum dots, fluorescent intensity of CdSe/CdS quantum dots can be strongly enhanced.
The physical mechanism of fluorescent enhancement is explained.

Keywords: quantum dots; enhanced luminescence; surface plasmon resonance; Au
nanoshell structures

1. Introduction

Quantum dots (QDs), as a low-cost and multifunctional material, have excellent optoelectronic
properties, such as narrow emission band width and tunable emission in the full visible spectral
range. They have been widely concerned and applied in optoelectronic devices and light-emitting
diodes [1–4] for several decades. Recently, the luminescence of QDs film has attracted more and
more attention of researchers due to special optical properties. Some experiments found that the
luminescence intensity of QDs could be enhanced due to the interaction between QDs with metal
nanoparticles [5–7]. The physical mechanisms of fluorescence enhancement are thought of as the
surface plasmon resonance effect of metal nanoparticles. In particular, when emission wavelengths of
QDs are matched with resonance absorption peaks of metal nanoparticles, the fluorescence of QDs
films will be enhanced dramatically. The intensity and position of the surface plasmon resonance
can be modulated through changing the size, shape, and distribution of metal nanoparticles. Thus,
various metal nanoparticles and two-dimensional plasmonic arrays have been designed to enhance
the photoluminescence intensity and quantum yield of the QDs in the last decade. For example, some
works mainly focused on enhancing the luminous efficiency of QDs in solution environments by
means of the interaction between Au/Ag nanoparticles and QDs [8–11]. In addition, some scholars
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focused on improving the luminous efficiency of QDs film based on metal nanostructure arrays [12–21].
However, luminous properties of core-shell CdSe/CdS QDs film based on metal nanostructure arrays
have been little investigated.

In this study, Au nanoshell (NS) arrays are used to enhance fluorescence properties of core-shell
CdSe/CdS QDs. These Au NS arrays are successfully fabricated based on polystyrene spheres (PS)
arrays combined with thermal decomposition by electron beam deposition. The size of Au NS arrays
can be controlled by choosing different PS spheres. Surface plasmon resonance of Au NS arrays may be
modulated from the visible to near infrared region by adjusting the size of Au NS arrays. In addition,
fluorescence enhancement mechanisms of core-shell CdSe/CdS QDs film based on Au NS arrays are
further explained.

2. Experimental

2.1. Fabrication of PS Arrays with Different Layers

The self-assembly of PS with different sizes were performed according to the same procedures
as those in our previous work [22–24]. Briefly, the monolayer colloidal PS arrays, with different
diameters (500, 750, and 1000 nm), were self-assembled on clean quartz substrates by the interface
self-assembly method. Figure 1a–e shows the schematic illustration of the fabrication of the colloidal
PS arrays. Figure 1a is the monolayer PS arrays, which was fabricated by interface self-assembly.
The samples were placed in an air-drying oven and the monolayer colloidal PS arrays were solidified
on the substrate at 60 ◦C for 60 min. Figure 1b is the process of fabricating the second layer of the PS
arrays. The second and third layers of PS arrays were prepared through repeating the above step, as is
showed in Figure 1c–e.
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arrays. Due to the instability of the PS sphere, all samples were annealed at 300 °C in a resistance 
heating furnace for 1 h to remove PS spheres. When the PS spheres decomposed, Au shell arrays form 
on the quartz. The scanning electron microscopy (SEM) of Au nanoshell arrays was measured after 
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we could confirm that PS spheres were removed completely. To make core-shell CdSe/CdS QDs film 
coat uniformly on Au shell arrays, all samples were placed in an O2 plasma cleaning chamber for 30 

Figure 1. The schematic illustration of the process: (a) The monolayer colloidal PS arrays; (b) fabricating
process of the two layers of the PS arrays by interface self-assembly; (c) the two layers of the PS arrays
on the substrate; (d) fabricating process of the three layers of the PS arrays by interface self-assembly;
(e) three layers of the PS arrays on the substrate; (f–h) monolayer PS arrays, double-layer PS arrays
and triple-layer PS arrays; (i–k) a 20 nm Au film on the monolayer, two layers, and three layers of the
colloidal PS arrays; (l–n) the Au shell arrays after decomposing the PS spheres; (j–l) CdSe/CdS QDs
film coating on Au shell arrays.

2.2. Fabrication of Au Nanoshell Arrays and Core-Shell QDs Coated on Au Nanoshell Arrays

The 20-nm thick gold film was deposited on PS arrays by the electron beam deposition method.
Figure 1i–k shows the monolayer, two layers, and three layers of the PS arrays coated with Au shell
arrays. Due to the instability of the PS sphere, all samples were annealed at 300 ◦C in a resistance
heating furnace for 1 h to remove PS spheres. When the PS spheres decomposed, Au shell arrays form
on the quartz. The scanning electron microscopy (SEM) of Au nanoshell arrays was measured after
the Au nanoshell arrays were pasted on tape. From SEM of figure supporting-information Figure S1,
we could confirm that PS spheres were removed completely. To make core-shell CdSe/CdS QDs film
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coat uniformly on Au shell arrays, all samples were placed in an O2 plasma cleaning chamber for
30 s plasma treatment, with the oxygen flow rate of 200 mL/min and a radio-frequency power of
70 W. Then, 20 microlitre core-shell CdSe/CdS QDs solution was dropped on the surface of Au NS
arrays, which showed a strong hydrophilic interaction after O2 plasma cleaning. Thus, the core-shell
CdSe/CdS solution formed a uniform layer on Au NS arrays, as shown in Figure 1l–n.

2.3. Characterization

The morphology and composition of the samples were investigated using a field-emission SEM
(JEOL Ltd., Tokyo, Japan). A UV-visible spectrophotometer (Varian Cary 300, Shanghai Sunny
Hengping scientific Instrument Co., Shanghai, China) was used to characterize optical properties of
QDs coated on Au NPs. Photoluminescence (PL) measurements were performed by the excitation
from a 325-nm line of a continuous-wave He–Cd laser to analyze the efficiency of fluorescent spectra.

3. Results and Discussion

3.1. Morphologies of Au Film Coated on PS Arrays

Figure 2a,c,e show the SEM images of 500, 750, and 1000 nm PS arrays, respectively, coated with
20-nm thick Au film on the substrate by an interface self-assembly and transferred method. From
the SEM images, it was obviously seen that the PS arrays kept their hexagonal distribution during
the interface self-assembly process, according to the principle of minimum energy. This interface
self-assembly and transferred method provided us an effective and simple way to fabricate two
and three layers of PS arrays. When PS arrays were removed by annealing in a resistance heating
furnace, the morphologies of the Au nano-shells still remained in the hexagonal arrangement. After
20 microlitre core-shell CdSe/CdS QDs solution drops on the surface of Au NS arrays, it was obviously
seen that the morphologies of Au nano-shell arrays coated with CdSe/CdS QDs became blurred, from
the Figure 2b,d,f, due to the poor electric conductibility of CdSe/CdS QDs. In addition, it was difficult
to differentiate single CdSe/CdS QDs by SEM due to the small size.
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Figure 2. Scanning electron microscopy (SEM) images of PS arrays and CdSe/CdS QDs film coated on
Au nanoshell arrays: (a) 500 nm PS arrays; (c) 750 nm PS arrays; (e) 1000 nm PS arrays; (b,d,f) CdSe/CdS
QDs film coated on Au nanoshell arrays with 500 nm, 750 nm, and 1000 nm, respectively. Scale bar is
1 um.
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Figure 3 shows SEM of 500 nm PS arrays with different layers. From the SEM of Figure 3a, it
was clearly seen that PS arrays were arranged orderly with a closed honeycomb structure. To confirm
the as-prepared PS arrays with three layers, the 30◦ cross-sectional views of 500 nm PS arrays with
different layers were investigated using SEM. Figure 3b shows that 500 nm PS spheres formed a
monolayer ordered self-assembled structure, from the 30◦ cross-sectional view. The second layer of the
PS arrays were transferred onto the first layer of the PS arrays by the interface self-assembly method.
From Figure 3c, we could obviously see that the PS arrays uniformly covered the surface of the first
layer of the PS arrays. The 30◦ cross-sectional SEM of the third layer of the PS arrays, in Figure 3d,
showed that the PS arrays still remained ordered structures. So, the PS arrays with controlled layers
could successfully be prepared by the interface self-assembly method.
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Figure 3. SEM of 500 nm PS arrays with different layers: (a) the top view of 500nm PS arrays; (b) the
tilting 30◦ cross-sectional view of monolayer 500 nm PS arrays; (c) the tilting 30◦ cross-sectional view of
double-layer 500 nm PS arrays; (d) the tilting 30◦ cross-sectional view of triple-layer 500 nm PS arrays,
respectively. Scale bar is 2 um.

3.2. Optical Properties of Au Shell Arrays with Different PS Layers

To contrast the influences of Au film on PS arrays, the absorption spectra of Au nanoshell
structures with PS spheres, and those without PS spheres, were tested by UV-visible spectrophotometer.
For different layers of PS arrays coated with Au shell arrays, we could obviously see that the main
absorption valleys occurred at about 650 nm and secondary absorption valleys occurred at about
790 nm, as shown in Figure 4a. In addition, these valleys showed a weak red-shift with the increase
of the number of layers. In the absorption spectra, the intensity of absorbance peaks with monolayer
PS arrays was stronger than those of other layers, as shown in Figure 4a. Thus, we can conclude
that the number of PS array layers has almost no effect on the position of absorption peaks. A small
variation of the intensity of absorption peaks with layers could be caused by the order of arrangement
between layers.

To obtain stable Au NS arrays, all samples were annealed at 300 ◦C in a resistance heating furnace
for 1 h. Due to the thermal instability of PS spheres, PS spheres decomposed at 300 ◦C and Au film
coated on PS arrays formed Au shell arrays. Optical properties of Au NS arrays were further detected
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by the UV-visible spectrophotometer. From the results, we could see that absorption peaks of the
Au NS arrays were significantly different from those of Au film coated on PS arrays, as is shown
in Figure 4b. The main absorption valley of Au NS arrays occurred at 500 nm and the secondary
absorption valley occurred at 720 nm. It is deduced that PS spheres were decomposed by annealing
at 300 ◦C for 1 h by the variety of absorption spectra before and after annealing. In addition, we can
observe Au NS arrays from the SEM in Figure S1. When PS spheres were removed, Au film coated on
PS sphere arrays attached to the substrate and formed Au NS arrays. From the spectrum of Figure 4b,
it can be seen that the position of the absorption peaks of the Au NS arrays, prepared with multilayer
PS arrays, and the monolayer PS arrays were almost the same. However, the intensity of absorption
peaks of Au NS arrays prepared with the monolayer PS arrays was superior to others.
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3.3. Tunable Optical Properties of Au Shell Arrays with Different Diameter PS Arrays

To achieve tunable optical properties of Au shell arrays, different diameter PS spheres were used
to prepare Au NS arrays. Figure 5 shows the absorbance spectra of Au shell arrays with the diameters
of 750 and 1000 nm. We could obviously see that the main absorbance valleys of both the 750 and 1000
nm Au NS arrays were all located at 500 nm, or nearby, which was consistent with the 500 nm Au NS
arrays. Therefore, it could be deduced that the resonance valleys of Au NS arrays was determined
by the intrinsic properties of the Au material. For 1000 nm Au NS arrays, there were two absorbance
peaks, located at 700 and 900 nm, respectively. Secondary absorbance peaks of 750 nm Au NS arrays
were located at 780 nm, or nearby. It was not hard to find that absorbance peaks of 750 and 1000 nm
Au NS arrays, as they were obviously red-shifted compared with those of 500 nm Au NS arrays. The
above results indicated that the absorbance peaks were determined by the period of the Au shell arrays.
Therefore, tunable resonance peaks of Au shell arrays could be regulated by choosing appropriate
PS arrays.

To compare the effects of the influence of different PS arrays on Au NS arrays, the optical
properties of Au NS arrays, prepared by monolayer PS arrays, were discussed in detail. The resonance
absorption peaks of 500, 750, and 1000 nm Au NS arrays red-shifted from 590 to 800 nm with the
increase of the Au shell size, as is shown in Figure 6. For 500 nm Au NS arrays, the resonance peak
was located at 600 nm, which was consistent with the emission peak of CdSe/CdS QDs. The resonance
peak of 750 nm Au NS arrays is located at 780 nm, or nearby, and we deduce that of 1000 nm Au
NS arrays is located at the near infrared region, which were mismatched with the emission peak of
CdSe/CdS QDs. That is to say, 750 and 1000 nm Au NS arrays could not provide more energy to
CdSe/CdS QDs film compared with 500 nm Au NS arrays. We deduced that the fluorescence signal of
CdSe/CdS QDs coated on 500 nm Au NS arrays may be enhanced effectively based on the surface
plasmonic resonance effect.
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3.4. Enhanced Fluorescence of CdSe/CdS QDs Based on Au NS Arrays

To verify the above assumptions, the room temperature PL spectra of bare CdSe/CdS QDs
film and CdSe/CdS QDs coated on Au NS arrays, with the NS diameters of 500, 750, and 1000 nm,
respectively, are detected by the fluorescence spectrum. From the PL spectra in Figure 7, we could
clearly see that the emission peak of bare CdSe/CdS QDs was located at about 570 nm. However, the
luminescence intensity of CdSe/CdS QDs film was very weak. The main reason is that CdSe/CdS QDs
film coated on the substrate was very thin, and even sparse, and thus resulted in the low efficiency of
luminescence. To enhance the luminescence efficiency of CdSe/CdS QDs, CdSe/CdS QDs film coated
on Au NS arrays were prepared by monolayer and multilayer PS arrays. The resonance absorption
peaks of Au NS arrays can be tuned by adjusting the size of the PS sphere. When the absorption peak
of Au NS arrays matches with the emission peak of the CdSe/CdS QDs, surface plasmon resonance
produced by Au NS arrays would more effectively enhance the luminescence efficiency of CdSe/CdS
QDs. From the results, as shown in Figure 7d, it can be seen that the PL intensity of CdSe/CdS QDs
coated on 1000 nm Au NS arrays was nearly as much as bare CdSe/CdS QDs film. That is to say, the
surface plasmon resonance peak based on 1000 nm Au NS arrays mismatched with the emission peak
of CdSe/CdS QDs. Therefore, Au NS arrays prepared by monolayer and multilayer PS sphere arrays
also do not bring about more energy to CdSe/CdS QDs. For CdSe/CdS QDs coated on 750 nm Au
NS arrays, the luminescence of CdSe/CdS QDs was more significantly improved than 1000 nm Au
NS arrays. That is to say, the 750 nm Au NS arrays can provide more energy to CdSe/CdS QDs film
than 1000 nm Au NS arrays. From the absorption spectra, we could obviously see that the intensity
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of the absorption peak of 750 nm Au NS arrays, at 570 nm or nearby, was stronger than 1000 nm Au
NS arrays. As far as 500 nm Au NS arrays are concerned, the luminescence intensity of CdSe/CdS
QDs film was demonstrably better than the others. The luminescence intensity increased by about
quintuple, compared with bare CdSe/CdS QDs film. At the same time, it was not difficult to find, as
shown in Figure 6, that the intensity of the absorption peak of 500 nm Au NS arrays was stronger
than other Au NS arrays. Therefore, the intensity and position of the absorption peak of Au NS arrays
determines the luminescence efficiency of CdSe/CdS QDs film. In addition, we calculates the relative
fluorescence quantum efficiency of QDs based on monolayer Au nanoshell arrays according to the
procedure [25]:

Yu = Ys × (Fu/Fs)× (As/Au)× (n2
u/n2

s)

Yu and Ys represent the fluorescence quantum yields of the measured substance and the reference
substance, respectively; Fu and Fs represent the integral area of fluorescence emission spectra
corresponding to the measured substance and the reference substance under the excitation wavelength,
respectively; As and Au indicate the absorbance of the reference substance and the measured substance
at the excitation wavelength, respectively; and nu and ns indicate the refractive index of the measured
substance and the reference substance, respectively. For QDs film based on 500 nm monolayer Au
nanoshell arrays, fluorescence quantum efficiency reaches up to 8.3%, and the QDs film based on
750 nm and 1000 nm are 6.4% and 3.2%, respectively.Materials 2018, 11, x FOR PEER REVIEW  8 of 10 
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Figure 7. Room temperature PL spectra of bare CdSe/CdS QDs and CdSe/CdS QDs on Au NS arrays
with different diameters: (a) bare CdSe/CdS QDs and CdSe/CdS QDs on different diameter—500,
750, and 1000 nm—Au NS arrays; (b) bare CdSe/CdS QDs and CdSe/CdS QDs on Au NS arrays with
different layers of 500 nm PS; (c) bare CdSe/CdS QDs and CdSe/CdS QDs on Au NS arrays with
different layers of 750 nm PS; (d) bare CdSe/CdS QDs and CdSe/CdS QDs on Au NS arrays with
different layers of 1000 nm PS. The excitation wavelength was 325 nm.
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4. Conclusions

In this paper, we demonstrate luminescence enhancement of CdSe/CdS QDs film assisted by
surface plasmon resonance on Au NS arrays. Au NS arrays are fabricated via the combination of
self-assembled nanosphere lithography and the thermal decomposing polymer method. The results
show that Au NS arrays prepared from single-layer PS could largely enhance the luminescence
efficiency of CdSe/CdS QDs film; superior to those of the two-layer and three-layer PS arrays. In
addition, the luminescence intensity could be enhanced more efficiently when the resonance peaks of
Au NS arrays are matched with the luminescence peaks of QDs. Therefore, Au NS arrays act as an
auxiliary layer to enhance the luminescence efficiency of different QDs film.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/12/3/362/s1,
Figure S1: SEM of Au nanoshell arrays of 1000 nm after annealing at 300 ◦C for 1 h.

Author Contributions: W.-G.Y. designed the research; C.-L.L. and W.Q.G. fabricated the devices; C.-M.C., S.-Y.L.,
and S.-J.Z. performed the data analysis and carried out cell studies; Z.-F.L., R.-X.Y., and G.-Z.J. co-wrote the
manuscript, and all other authors provided feedback.

Funding: This research is supported by the National Natural Science Foundation of China (61774054, 11747158,
51707128, and 61475120), Natural Science Fund of Tianjin (16JCZDJC38600 and 17JCTPJC52100), and the college
students’ science and technology innovation project (201810792038 and 201810792051).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Shirasaki, Y.; Supran, G.J.; Bawendi, M.G.; Bulovic, V. Emergence of colloidal quantum-dot light-emitting
technologies. Nat. Photonics 2013, 7, 13–23. [CrossRef]

2. Matioli, E.; Brinkley, S.; Kelchner, K.M.; Hu, Y.-L.; Nakamura, S.; DenBaars, S.; Speck, J.; Weisbuch, C.
High-brightness polarized light-emitting diodes. Light Sci. Appl. 2012, 1, 22–29. [CrossRef]

3. Xiang, C.; Koo, W.; So, F.; Sasabe, H.; Kido, J. A systematic study on efficiency enhancements in
phosphorescent green, red and blue microcavity organic light emitting devices. Light Sci. Appl. 2013,
2, 74–81. [CrossRef]

4. Kim, T.H.; Cho, K.S.; Lee, E.K.; Lee, S.J.; Chae, J.; Kim, J.W.; Kim, D.H.; Kwon, J.Y.; Amaratunga, G.; Lee, S.Y.;
et al. Full-colour quantum dot displays fabricated by transfer printing. Nat. Photonics 2011, 5, 176–182.
[CrossRef]

5. Lee, S.Y.; Kim, S.H.; Jang, S.G.; Heo, C.J.; Shim, J.W.; Yang, S.M. High-fidelity optofluidic on-chipsensors
using well-defined gold nanowell crystals. Anal. Chem. 2011, 83, 9174–9180. [CrossRef] [PubMed]

6. de la Escosura-Muñiz, A.; Parolo, C.; Merkoçi, A. Immunosensing using nanoparticles. Mater. Today 2010, 13,
24–34. [CrossRef]

7. Tabakman, S.M.; Lau, L.; Robinson, J.T.; Price, J.; Sherlock, S.P.; Wang, H.; Zhang, B.; Chen, Z.;
Tangsombatvisit, S.; Jarrel, J.A.; et al. Plasmonic substrates for multiplexed protein microarrayswith
femtomolar sensitivity and broad dynamic range. Nat. Commun. 2011, 2, 466–475. [CrossRef]

8. Wang, J.; Jiang, X.C.; Han, H.Y. Turn-on near-infrared electrochemiluminescence sensing of thrombin based
on resonance energy transfer between CdTe/CdS core(small)/shell(thick) quantum dots and gold nanorods.
Biosens. Bioelectron. 2016, 82, 26–31. [CrossRef]

9. Zeng, C.; Hu, X.G.; Shi, M.J.; Qiu, X.Z.; Li, Y.; Xia, J.S. Enhancing Light Emission from Germanium Quantum
Dots by Bowtie Antennas. J. Lightw. Technol. 2016, 34, 3283–3287. [CrossRef]

10. Liu, X.Y.; McBride, S.P.; Jaeger, H.M.; Nealey, P.F. Hybrid nanostructures of well-organized arrays of
colloidal quantum dots and a self-assembled monolayer of gold nanoparticles for enhanced fluorescence.
Nanotechnology 2016, 27, 285301–285310. [CrossRef]

11. Chen, J.; Zidek, K.; Abdellah, M.; Al-Marri, M.J.; Zheng, K.B.; Pullerits, T. Surface plasmon inhibited
photo-luminescence activation in CdSe/ZnS core-shell quantum dots. J. Phys. Matter 2016, 28, 254001–254008.
[CrossRef]

12. Cheng, M.T.; Liu, S.D.; Zhou, H.J.; Hao, Z.H.; Wang, Q.Q. Coherent exciton-plasmon interaction in the hybrid
semiconductor quantum dot and metal nanoparticle complex. Opt. Lett. 2007, 32, 2125–2127. [CrossRef]
[PubMed]

http://www.mdpi.com/1996-1944/12/3/362/s1
http://dx.doi.org/10.1038/nphoton.2012.328
http://dx.doi.org/10.1038/lsa.2012.22
http://dx.doi.org/10.1038/lsa.2013.30
http://dx.doi.org/10.1038/nphoton.2011.12
http://dx.doi.org/10.1021/ac202433x
http://www.ncbi.nlm.nih.gov/pubmed/22017272
http://dx.doi.org/10.1016/S1369-7021(10)70125-5
http://dx.doi.org/10.1038/ncomms1477
http://dx.doi.org/10.1016/j.bios.2016.03.057
http://dx.doi.org/10.1109/JLT.2016.2571305
http://dx.doi.org/10.1088/0957-4484/27/28/285301
http://dx.doi.org/10.1088/0953-8984/28/25/254001
http://dx.doi.org/10.1364/OL.32.002125
http://www.ncbi.nlm.nih.gov/pubmed/17671558


Materials 2019, 12, 362 9 of 9

13. Komarala, V.K.; Rakovich, Y.P.; Bradley, A.L.; Byrne, S.J.; Gun’ko, Y.K.; Gaponik, N.; Eychmuller, A.
Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots. Appl. Phys. Lett.
2006, 89, 253118–253120. [CrossRef]

14. Chan, Y.H.; Chen, J.X.; Wark, S.E.; Skiles, S.L.; Son, D.H.; Batteas, J.D. Using Patterned Arrays of Metal
Nanoparticles to Probe Plasmon Enhanced Luminescence of CdSe Quantum Dots. ACS Nano 2009, 3,
1735–1744. [CrossRef] [PubMed]

15. Wang, H.Y.; Xu, L.; Wu, Y.Q.; Xu, J.; Ma, Z.Y.; Chen, K.J. Plasmon resonance-induced photoluminescence
enhancement of CdTe/Cds quantum dots thin films. Appl. Surf. Sci. 2016, 387, 1281–1284. [CrossRef]

16. Komarala, V.K.; Bradley, A.L.; Rakovich, Y.P.; Byrne, S.J.; Gun’ko, Y.K.; Rogach, A.L. Surface plasmon
enhanced Forster resonance energy transfer between the CdTe quantum dots. Appl. Phys. Lett. 2008, 93,
123102–123105. [CrossRef]

17. Hsieh, Y.P.; Liang, C.T.; Chen, Y.F.; Lai, C.W.; Chou, P.T. Mechanism of giant enhancement of light emission
from Au/CdSe nanocomposites. Nanotechnology 2007, 18, 415707–415711. [CrossRef]

18. Wang, C.H.; Chen, C.W.; Chen, Y.T.; Wei, C.M.; Chen, Y.F.; Lai, C.W.; Ho, M.L.; Chou, P.T.; Hofmann, M.
Surface plasmon enhanced energy transfer between type I CdSe/ZnS and type II CdSe/ZnTe quantum dots.
Appl. Phys. Lett. 2010, 96, 071906–071909. [CrossRef]

19. Inoue, A.; Fujii, M.; Sugimoto, H.; Imakita, K. Surface Plasmon-Enhanced Luminescence of Silicon Quantum
Dots in Gold Nanoparticle Composites. J. Phys. Chem. C 2015, 119, 25108–25113. [CrossRef]

20. Kim, N.Y.; Hong, S.H.; Kang, J.W.; Myoung, N.; Yim, S.Y.; Jung, S.; Lee, K.; Tu, C.W.; Park, S.J. Localized
surface plasmon-enhanced green quantum dot light-emitting diodes using gold nanoparticles. RSC Adv.
2015, 5, 19624–19629. [CrossRef]

21. Ragab, A.E.; Gadallah, A.S.; Da Ros, T.; Mohamed, M.B.; Azzouz, I.M. Ag surface plasmon enhances
luminescence of CdTe QDs. Opt. Commun. 2014, 314, 86–89. [CrossRef]

22. Luo, C.L.; Yan, W.G.; Han, J.H.; Chen, W.B.; Zhao, J.; Wei, X.; Qi, J.W.; Liu, Z.F. Fabrication and Photoelectric
Properties of Large Area ZnO Nanorod with Au Nanospheres. Plamonics 2016, 11, 131–137. [CrossRef]

23. Luo, C.L.; Yan, W.G.; Zhao, J.; Li, Z.B.; Tian, J.G. Surface plasmonic properties and fabrication of large area
disordered and binary ordered Au particle arrays. Superlatt. Microstruct. 2015, 85, 92–100. [CrossRef]

24. Yan, W.G.; Qi, J.W.; Li, Z.B.; Tian, J.G. Fabrication and Optical Properties of Au-Coated Polystyrene
Nanosphere Arrays with Controlled Gaps. Plasmonics 2014, 9, 565–571. [CrossRef]

25. Geissler, D.; Wurth, C.; Wolter, C.; Weller, H.; Resch-Genger, U. Excitation wavelength dependence of the
photoluminescence quantum yield and decay behavior of CdSe/CdS quantum dot/quantum rods with
different aspect ratios. Phys. Chem. Chem. Phys. 2017, 19, 12509–12516. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1063/1.2422906
http://dx.doi.org/10.1021/nn900317n
http://www.ncbi.nlm.nih.gov/pubmed/19499906
http://dx.doi.org/10.1016/j.apsusc.2016.06.092
http://dx.doi.org/10.1063/1.2981209
http://dx.doi.org/10.1088/0957-4484/18/41/415707
http://dx.doi.org/10.1063/1.3315876
http://dx.doi.org/10.1021/acs.jpcc.5b08105
http://dx.doi.org/10.1039/C4RA15585H
http://dx.doi.org/10.1016/j.optcom.2013.10.013
http://dx.doi.org/10.1007/s11468-015-0018-z
http://dx.doi.org/10.1016/j.spmi.2015.04.026
http://dx.doi.org/10.1007/s11468-013-9665-0
http://dx.doi.org/10.1039/C7CP02142A
http://www.ncbi.nlm.nih.gov/pubmed/28470291
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Experimental 
	Fabrication of PS Arrays with Different Layers 
	Fabrication of Au Nanoshell Arrays and Core-Shell QDs Coated on Au Nanoshell Arrays 
	Characterization 

	Results and Discussion 
	Morphologies of Au Film Coated on PS Arrays 
	Optical Properties of Au Shell Arrays with Different PS Layers 
	Tunable Optical Properties of Au Shell Arrays with Different Diameter PS Arrays 
	Enhanced Fluorescence of CdSe/CdS QDs Based on Au NS Arrays 

	Conclusions 
	References

