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A B S T R A C T   

An intelligent cooling management system with a smart home application is proposed to evaluate 
optimal target temperatures and air conditioner fan modes, thereby maximizing energy efficiency 
while ensuring residents’ comfort. The proposed system integrates a home energy management 
system with a sophisticated backend infrastructure designed to enable seamless hardware con-
nectivity for real-time data acquisition from various sensors, a gateway, internet of things (IoT) 
devices, and servers. Furthermore, it serves as a platform for implementing a software data an-
alytics model, structured upon a microservice architecture, aimed at providing optimal feedback 
control. The data analytics platform utilized in this research integrates two sets of artificial neural 
networks (ANNs) and a particle swarm optimization (PSO) algorithm for computation and con-
trol. This platform is designed not only to gather real-time ambient data and air conditioner usage 
records but also to regulate the air conditioner’s operation autonomously. By considering apre-
vailing ambient air condition, the ANNs accurately predict power consumption, indoor temper-
ature, and indoor humidity following adjustments in target temperature and fan mode. The PSO- 
based data analytics model efficiently selects the most suitable target temperature and fan mode, 
thereby achieving a dual purpose of enhancing energy conservation while minimizing potential 
occupant discomfort. This optimization is driven by utilizing the predicted mean vote (PMV) 
calculated through the analysis performed by the ANNs. Validation of the developed intelligent 
cooling management system was conducted in a real smart home environment inside a single 
detached two-story house, using an 8,000 BTU air conditioner as the testbed within an 8 × 5 m2 

space accommodating four occupants. The implementation results indicate that the proposed 
intelligent cooling management system can reliably predict the behavior and ambient data of the 
air conditioner and give the best-operating settings in any different environment scenarios and 
therefore shows potential for energy savings in smart home applications.   

1. Introduction 

In the contemporary digital landscape, the seamless integration of technology, digital services, and online platforms reflects in-
dividuals’ pursuit of convenience and efficiency in everyday life. This integration firmly establishes technology as an indispensable 

* Corresponding author. 
E-mail address: somporn.s@eng.kmutnb.ac.th (S. Sirisumrannukul).  

Contents lists available at ScienceDirect 

Heliyon 

journal homepage: www.cell.com/heliyon 

https://doi.org/10.1016/j.heliyon.2024.e26937 
Received 8 May 2023; Received in revised form 19 February 2024; Accepted 21 February 2024   

mailto:somporn.s@eng.kmutnb.ac.th
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2024.e26937
https://doi.org/10.1016/j.heliyon.2024.e26937
https://doi.org/10.1016/j.heliyon.2024.e26937
http://creativecommons.org/licenses/by-nc-nd/4.0/


Heliyon 10 (2024) e26937

2

facet of routines across personal and professional domains. The profound impact of the COVID-19 pandemic has necessitated un-
precedented global adaptation, compelling government and private sectors worldwide to help their people change the ways they work 
and live with technological support. This concerted effort has fostered increased acceptance and reliance on technology for 
communication and daily activities. Consequently, individuals are progressively embracing technology, leading to its pervasive 
adoption across diverse demographics at an unprecedented scale. 

The pandemic has acted as a transformative force for reshaping societal dynamics, particularly attitudes toward technology. In 
response to stringent social distancing measures, numerous organizations have implemented remote work arrangements, allowing 
their employees to operate from home. As a result, they have gradually adapted and have been getting accustomed to this new normal 
working lifestyle. Remarkably, this transition has been met with positive reception due to savings in travel costs and time without 
significantly compromising productivity. Therefore, the house is no longer just a place to live but can also be a place to work, hold 
meetings, or do leisure activities. This transformative shift emphasizes a growing reliance on technology and online platforms to 
facilitate home-based activities, thereby leading to a new lifestyle trend and economic model called the "stay-at-home economy," 
which is fundamentally based on people doing things at home. 

An illustrative example of the stay-at-home economy exhibits the increasing prevalence of online communication, meetings, and 
business transactions facilitated by application services. These activities require the perfect combination of technology for the con-
venience of living in the home, and smart home technology offers an attractive solution to achieve the objectives. Within this context, 
home energy management systems represent a key application domain for smart home technology, leveraging a suite of components 
such as sensors, multimedia devices, and communication protocols [1]. Home energy management has recently been in greater 
attention, and most of the research and development has been focused on enabling the integration of a wide range of devices and 
sensors to increase residents’ comfort. Another significant and indispensable feature is the integration of energy savings into smart 
home applications because cost savings, in particular, emerge as a compelling factor driving the widespread adoption of smart home 
technology, especially in scenarios where prolonged periods of home occupancy are anticipated. 

Addressing the challenges above, utilizing energy within households most effectively and ensuring widespread access to this so-
lution becomes imperative, explicitly targeting residential electricity consumers. This objective demands a keen focus on developing 
innovative technologies leveraging the functionalities of internet of things (IoT) devices commonly installed within contemporary 
smart homes. For instance, with IoT functionalities, smart home devices can be programmed to preset operating schedules and detect 
occupancy within the home. These devices possess the capability to autonomously regulate energy usage by automatically powering 
off lights, air conditioners, fans, or other electrical appliances when unoccupied, and subsequently restoring them to operation upon 
detecting human presence. 

One significant research challenge lies in the development of adaptive home energy-saving systems capable of adjusting to resi-
dents’ habits and behaviors. These systems can include features like automatically adjusting air conditioner settings or controlling 
window openings to reduce heat buildup in the house. Thailand, like many other regions, has experienced rising temperatures due to 
climate change, particularly during the summer months. Consequently, there is a heightened demand for air conditioning in house-
holds, with a significant portion of electricity costs attributed to air conditioner usage. Technological solutions such as sensors and 
smart controllers have been extensively studied for their potential to enhance energy efficiency and reduce electricity expenses. The 
current market offers a range of smart home products at competitive prices, making them accessible to households of varying economic 
means. Furthermore, these products are designed to be user-friendly and can often be installed by homeowners themselves, further 
increasing their appeal for achieving energy savings. 

Numerous studies have investigated the affordability and accessibility of current smart home products, including sensors and smart 
controllers. These studiesare emphasized on how these products can enhance energy efficiency and reduce electricity expenses. The 
user-friendly design and easy installation of these products make them attractive to consumers from diverse economic backgrounds, 
increasing their potential for widespread adoption in home energy conservation efforts. The adoption of modern technology, digital 
services, and online platforms has significantly increased, making technology an indispensable part of daily life. Artificial intelligence 
(AI) and machine learning (ML) have demonstrated remarkable versatility across various disciplines. In electrical engineering, they are 
utilized in the smart grid and energy internet [2]. Energy science leverages AI and ML for energy prediction, using historical data to 
forecast future consumption under different constraints [3]. In structural engineering, AI and ML improve design by overcoming 
traditional model limitations, employing pattern recognition (PR) and deep learning (DL) [4]. Agriculture benefits from AI and ML 
through real-time detection of plant diseases [5], such as using deep-learning methods to detect and categorize leaf diseases in to-
matoes [6], and even in medical analysis for diabetes diagnosis [7]. Additionally, AI has seamlessly integrated with IoT systems, 
enhancing efficiency and security in various industries [8]. 

This research proposes an intelligent cooling management system integrated into a home energy management system. The system 
includes backend infrastructure developed to enable hardware connectivity for real-time data acquisition from sensors, a gateway, IoT 
devices, and servers. Additionally, it facilitates a software data analytics model based on microservice architecture for optimal 
feedback control. The key advantage of the microservice design is its flexibility to scale and independent modification of functionality. 
The data analytics platform embedded in the system features two main processes: artificial neural networks (ANNs) [9,10] and particle 
swarm optimization (PSO) [11,12]. The ANNs serve for parameter predictions by analyzing ambient conditions, the air conditioner’s 
usage behavior, and the air conditioner’s specific performance data. For a given prevailing ambient air condition, the PSO algorithm 
selects the optimal target temperature and fan mode to maximize energy savings while ensuring occupants’ comfort or minimizing 
possible impacts on occupants using the predicted mean vote (PMV) [13,14]. The PMV, an industry-standard index for assessing 
thermal comfort, is calculated from the room’s temperature and humidity by the ANNs. 

The research places a strong emphasis on the practical implications and applications of its findings. To achieve this, particular 
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attention is given to developing budget-friendly hardware and software solutions, as well as conducting real experiments for vali-
dation. The cost-effectiveness of the platform’s design allows for easy replication in various contexts. While the methodology is 
adaptable to different customer sectors, the primary focus is on the residential domain, highlighting the utilization of budget hardware 
and software implementation. By prioritizing the residential sector, the aim is to showcase the feasibility and practicality of the 
approach in everyday settings, using a real smart home environment. This approach makes it more accessible and beneficial to a 
broader range of users within the context of a testing environment in Thailand. 

The subsequent sections of the paper are organized as follows. Section 2 provides related research work on cooling management 
systems. The research contribution is given in Section 3. The architecture design of the proposed cooling management system is 
described in Section 4. Section 5 details the implementation results of the intelligent cooling management system tested in a real smart 
home environment with analysis and discussion. Section 6 concludes the paper. 

2. Related research work 

In the domain of air conditioning systems, achieving optimal energy efficiency typically involves adopting one of three primary 
approaches. The first approach focuses on enhancing hardware components and entails investigating the impact of incorporating 
complementary accessories, such as smart curtains, to improve the efficiency of air conditioning systems. For example, Mohammed 
et al. [15] proposed a split air conditioning system tailored for energy savings in hot and arid climates. This innovative system utilized 
a hybrid proportional integral derivative (PID) controller to effectively manage fan and mist generation. Recent advancements have 
introduced novel methodologies for evaluating and predicting energy savings in air conditioning systems. One such technique employs 
the refrigeration operation energy saving effect ratio (ROEER) as a key parameter, used in conjunction with ANNs. This methodology, 
exemplified by relevant research [16], provides a comprehensive evaluation of the energy efficiency of the system and enables precise 
forecasts of energy conservation. Another emerging approach is a data-driven methodology that underlines forecasting energy con-
sumption patterns in air conditioning systems. This method utilizes meteorological data and historical records of energy consumption 
to leverage the capabilities of Gaussian process regression, ensuring accurate and dependable forecasts of energy consumption patterns 
[17]. 

The second approach centers on implementing load control strategies during periods characterized by elevated energy demand. 
This approach has been extensively studied by Ilic et al. [18] and Singaravelan et al. [19] as a crucial component of smart home 
systems. These strategies allow users to tacticallyadjust the operation of electrical appliances during peak demand periods, when 
energy prices are high, to off-peak periods when energy costs are lower. However, direct load control is more suitable for non-air 
conditioning appliances due to their greater flexibility in modifying usage schedules. In contrast, applying direct load control solely 
to air conditioning systems during periods of high energy demand could significantly impact the comfort and well-being of residents. 
Therefore, it is advisable to adopt a comprehensive approach that combines direct load control with other energy-saving methodol-
ogies while minimizing any potential user discomfort. 

The third approach to achieving optimal energy efficiency in air conditioning systems revolves around considering occupancy and 
ambient factors. Researchers have proposed innovative methods to optimize air conditioning system operation based on real-time 
occupant presence and environmental conditions. For example, Cheng and Lee [20] introduced a smart air conditioning control 
system with a mobile phone interface. Motion sensors installed in the area detected occupant activity, and a proportional integral 
derivative (PID) system intelligently regulated the air conditioning operation based on temperature variations and user activity data. 
In a related study, Erickson et al. [21] presented an air conditioning control predictive demand model to estimate the number of 
occupants in a room accurately. The model used occupancy-based system for efficient reduction of heating, ventilation, and air 
conditioning energy (OBSERVE)trained on data from various sensors in the environment to obtain a real-time count of the number of 
persons present, enabling the air conditioning system to optimize its settings accordingly. Additionally, Yang [13] explored the use of 
an ANN to determine the optimal pre-cooling time in an office building. By analyzing environmental data such as ambient temper-
ature, outdoor sunlight, and temperature variations within the room, the ANN model estimated the projected room temperature and 
the time required to achieve optimal cooling. This proactive approach ensured energy efficiency by pre-cooling the space as needed, 
minimizing energy wastage during high-demand periods. 

Models in the third category offer potential solutions for controlling air conditioning systems to optimize energy efficiency while 
maintaining users’ comfort. To achieve this goal, the PMV index [22] has been adopted as an effective tool for evaluating an in-
dividual’s perception of their ambient climate. Hawila et al. [23] investigated the energy-saving potential and thermal comfort in 
glass-fronted buildings during European winter conditions, using a PMV index as a criterion for verifying comfort levels. Simplifying 
resident comfort assessments, Zhang and Lin [24] proposed the utilization of model-derived skin temperature instead of measured skin 
temperature in PMV index calculation. Additionally, Yamada et al. [25] addressed the dynamic setting of target temperatures for office 
workers based on the environment, employing a PMV index to gauge comfort levels effectively. 

The success of such comfort assessments critically depends on accurate environmental data collection. Consequently, when 
adjusting air conditioning systems, it is crucial to consider both energy consumption and its impact on occupant comfort. Numerous 
studies have explored these aspects. For instance, Yonezawa [26] presented an air conditioning control system that utilized ANNs and a 
PMV index to dynamically adjust the target temperature, ensuring both comfort and energy savings. Chinnakani et al. [27] conducted a 
comparative study on air conditioner energy consumption under three distinct comfort control scenarios: maintaining temperature and 
humidity within predefined ranges, predicting the duration for heaters and humidifiers to sustain optimal conditions, and controlling 
temperature and humidity within the PMV comfort criteria. 

In an alternative approach, Mei et al. [28] utilized a model predictive control (MPC) to regulate multiple components of an 
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conditioning system, including compressors, fans, and valves. By predicting the indoor environment and energy consumption, optimal 
configurations were determined to improve energy efficiency. Similarly, Xu et al. [29] proposed a collaborative control approach for 
heating, ventilation, and air conditioning (HVAC) systems that integrated natural ventilation during the initial phase in a meeting 
room to reduce the overall energy consumption of the building. They devised a rule-based framework to approximate the optimal 
control policy for the joint control of an HVAC system and natural ventilation, employing threshold policies for this purpose. 

In a study conducted by Ref. [30], the application of a PSO process in conjunction with a generalized regression neural network 
(GRNN) was investigated for forecasting a PMV index in office environments concerning air conditioning utilization. The PSO opti-
mized the parameters of the GRNN model, resulting in improved learning accuracy and speed. The GRNN predicted the PMV index 
using multiple data variables, including indoor temperature, humidity, wind speed in the shade, tube temperature, average radiation 
temperature, and clothing surface temperature. The study demonstrated that using the PSO with the GRNN produced superior pre-
dictive capabilities compared to using a radial basis function network and a non-optimized GRNN, while also reducing both training 
and prediction time. In a separate investigation [31], a PSO model was applied in conjunction with an MPC to regulate the air flow rate 
and establish the desired temperature of the air conditioning system. This approach aimed to mitigate energy consumption and ensure 
optimal user comfort amid changing environmental conditions and occupancy patterns. The PSO determined the optimal parameters 
of the MPC strategy to maximize the efficiency of a variable air volume (VAV) air conditioning system. 

A significant body of research has been devoted to energy savings, load control, and the determination of optimal settings for air 
conditioning systems. Innovations in this area include the use of PID controllers, the ROEER, and ANNs for energy predictions. Load 
control schemes, which are components of smart home systems, aim to shift energy demand from high to low-cost periods. Various 
strategies have been developed to determine optimal air conditioning settings based on occupancy and ambient factors, with many 
studies utilizing the PMV index to evaluate comfort levels. Comparative studies on energy consumption under different comfort control 
conditions have been conducted, and MPC has been applied to find optimal settings [26–29]. 

These studies collectively emphasize the importance of the PMV index and advanced control strategies in attaining a harmonious 
equilibrium between energy efficiency and occupant comfort within air conditioning systems. Through the integration of advanced 
modeling techniques and data-driven approaches, these methodologies play a significant role in the progression of intelligent and 
environmentally friendly building management practices. Further investigation in this field is essential to enhance and optimize the 
efficiency of air conditioning systems, thereby promoting a balanced integration of energy preservation and the comfort of occupants. 

Despite the advancements achieved in the domain, there is a pertinent area of inquiry regarding the feasibility of integrating cost- 
effective hardware and sensors into machine learning and optimization algorithms to facilitate the reduction of energy consumption in 
practical scenarios, specifically concentrating on air conditioning systems. Therefore, there remains an unaddressed issue concerning 
the application of artificial intelligence to define the optimal target air temperature using PMV data. Furthermore, the practical 
implementation of this approach with budget-friendly hardware to improve its accessibility and applicability in everyday scenarios 
remains largely unexplored and challenging. The central highlight is on leveraging affordable hardware components and sensors with 
advanced machine-learning techniques and optimization algorithms to improve the energy efficiency of air conditioning operations. 
Although previous studies have made significant progress in investigating different approaches to energy conservation, there exists a 
research gap on how the integration of budget-friendly technologies can effectively contribute to this endeavor remains generally 
unaddressed. 

This research seeks to formulate several critical research questions related to the integration of budget-friendly hardware com-
ponents, sensors, sophisticated machine learning techniques, and optimization algorithms to enhance energy efficiency in air con-
ditioning operations. Firstly, we aim to investigate how the combination of these cost-effective technologies can effectively contribute 
to improving energy efficiency in air conditioning systems. This exploration will show the potential benefits of utilizing budget- 
friendly solutions to energy conservation. Secondly, the study’s objective is to identify viable means to optimally regulate air con-
ditioning settings using ANNs and a PSO algorithm based on data from PMV assessments. By doing so, we intend to achieve reduced 
energy consumption without compromising the thermal comfort of the occupants. This investigation will offer insights into the 
practicality and effectiveness of employing advanced AI techniques for enhancing energy efficiency in air conditioning operations. 
Furthermore, a key focus of this research is on the practical implementation and testing of the proposed approach in real-world settings 
using budget hardware. The significance of this aspect is to ensure the feasibility and viability of the energy-saving approach across 
various conditions and dynamic situations. By conducting thorough testing and experimentation, our ultimate goal is to establish the 
validity of the proposed approach in real-life scenarios, thus bridging the gap between theoretical advancements and practical 
application. 

3. Research contribution 

The methodology developed and experiments conducted herein have made the following noteworthy contribution.  

• Intelligent cooling management system: In this study, an advanced intelligent cooling management system has been developed, 
which effectively utilizes backend infrastructure to integrate hardware components and employs a combined ANNs-PSO data 
analytics platform. The system is fully automated, enabling real-time data gathering and demonstrating remarkable adaptability to 
changing conditions, including user behavior and environmental variations. Leveraging the predictive capabilities of the ANNs and 
the optimization competence of the PSO, the system ensures optimal energy conservation without compromising user comfort. The 
effectiveness of this system was validated through practical experiments conducted in a real smart home environment. 
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• Microservice-based architecture platform: The implementation of a microservice-based architecture enhances the flexibility 
and scalability of the data analytics model. This framework enables seamless customization to meet specific requirements and 
facilitates easy expansion to accommodate a growing user base. Moreover, the microservice-based approach demonstrates 
remarkable compatibility with automated demand response programs, which aim to optimize electricity consumption in response 
to price incentives. Utilizing a cloud-based server system, the proposed architecture ensures effortless and cost-effective imple-
mentation, operation, and maintenance, making it highly suitable for large-scale deployment in practical scenarios.  

• Economically efficient design: Previous studies on smart homes have highlighted the potential energy savings of air conditioning 
systems that can be adjusted based on occupancy or user activity. Existing discussions have explored various approaches to control 
air conditioning systems based on factors like the number of occupants or users’ activities. However, the development of such 
models often necessitates the use of more costly and specialized sensors, surpassing the affordability of common household ones 
typically available. To address this concern, the hardware and software design of the intelligent cooling system in our research was 
thoughtfully tailored to align with commonly accessible and economical IoT devices or sensors, including temperature and hu-
midity sensors, smart meters, and an infrared (IR) blaster, commonly found in embedded systems and readily available in the 
market. This deliberate implementation approach was aimed at promoting practical adoption among smart home users, facilitating 
energy savings, and encouraging sustainable practices.  

• Advanced comfort prediction model: While most existing models use only future temperature forecasts to estimate room 
comfort, our research introduces an advanced data analytics model capable of predicting both temperature and humidity for the 
PMV comfort indicator as well as power consumption as a key indicator of energy conservation. These predictions are used to 
determine the optimal settings for the cooling management system, thus enabling a more accurate and holistic evaluation of the 
system’s performance.  

• Balancing energy conservation and comfort: The system’s utilization of the PMV index, an industry-standard index for thermal 
comfort assessment, features its commitment to minimizing occupants’ potential discomfort while enhancing energy conservation. 
This dual objective highlights the system’s adaptive nature. 

4. Proposed methodology for intelligent cooling management system 

4.1. Hardware and software development for data analytics microservice platform 

The intelligent cooling management system has been designed based on the microservices architectural concept. This approach 
involves segmenting a comprehensive application into smaller, self-contained modules, each with specific and well-defined re-
sponsibilities. By adopting this methodology, the system achieves a higher level of modularity, scalability, and flexibility in its 
development process. An illustrative example of this concept is the implementation of containers, which allow developers to focus 
independently on individual services without being hindered by interdependencies with other modules. This approach enhances the 
agility and efficiency of system development. In contemporary practices, cloud-based applications predominantly adopt containers 
and microservices as fundamental building blocks. Containers provide an environment where applications can run consistently across 
various platforms, thus simplifying deployment, and ensuring consistency. The system architecture of the proposed cooling energy 
management system with a data analytics model in a smart home environment is depicted in Fig. 1, consisting of three main parts. 

Fig. 1. Proposed intelligent cooling management system with a data analytics model in a smart home system.  
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• The Application Server serves as a central hub within the system, playing a pivotal role in efficiently receiving commands from 
various sources, including mobile applications, web admin applications, and IoT gateways, achieved by utilizing a REST API. The 
server aggregates and analyzes essential user data including significant data elements such as user identification, home identifi-
cation, gateways, and sensors. These data elements collectively contribute to the efficient functioning and coordination of the entire 
cooling energy management system.  

• The Worker Server functions in a supplementary role, enhancing the capabilities of the Application Server by actively monitoring 
and responding to instructions transmitted via the Queue Server. The range of duties it undertakes encompasses various tasks such 
as the gathering of sensor data, which is then intended for archival purposes or storage within the database. The data that have been 
gathered assist the system in understanding the prevailing conditions within the home and making informed decisions regarding 
cooling management. The system consistently receives real-time data from multiple sensors, and the Worker Server stores this 
information for future reference and analysis. The utilization of historical data is a significant process for system optimization, 
allowing for insights into long-term patterns and trends related to cooling energy consumption and indoor environmental 
conditions.  

• The Queue Server plays an important role in effectively distributing sub-tasks to a variety of servers after receiving data from the 
Application Server. The system effectively manages the task allocation process by efficiently directing assignments to the Worker 
Server for optimal data storage. Additionally, the Queue Server is responsible for issuing control commands to sensors and other 
internet of things (IoT) devices deployed within the home environment. The Queue Server ensures an efficient data storage 
mechanism through well-organized management of the task allocation process. 

The home energy management system was architecturally structured to function as a microservice, and by this design, the data 
analytics model was developed as a microservice platform. The data analytics models operate on separate servers, distinct from a single 
home energy management system server, and run on Docker with the Python interpreter in Python 3.8. Utilizing a container makes the 
data analytics model easily implementable and scalable to accommodate future user groups [32]. The data analytics model is equipped 
with necessary Python packages comprising pika 1.2.0 for retrieving data through RabbitMQ [33], elasticsearch 7 7.17.2 for retrieving 
data [34], keras 2.4.3 for ANNs [35], scikit-learn 1.2.0 for splitting datasets and calculating the mean squared error [36], and 
pythermalcomfort 2.1.0 for evaluating the PMV index of the ambient conditions in the room from temperature and humidity [37]. 

The data connection, as outlined in Fig. 1, is divided into two primary components: real-time data transmission and historical data 
retrieval. The real-time data transmission involves acquiring current temperature or humidity data from sensors and dispatching 
control commands to the IoT devices. This process is facilitated by transmitting data in the form of messages, utilizing the RabbitMQ 
messaging platform. In the second component, historical data is retrieved from the database server via Elasticsearch. Additionally, a 
local database is instantiated using SQLite to store essential data. Configuration files are generated and saved in the.json file format to 
store connection settings. The trained data acquired from the analytical model are saved in either the.h5 file format or the.bin file 
format. All the files are stored within the model’s container. 

Fig. 2 illustrates the operational framework of the data analytics model within the context of the cooling energy management 
system. Central to this model is the collection of crucial environmental air condition data from deployed sensors. The model acquires 
data on ambient air conditions through sensors, capturing vital variables such as indoor temperature, indoor humidity, and outdoor 
temperature before any alterations are made to the air conditioning system. Subsequently, the data analytics model utilizes the 
gathered information to evaluate the process of adjusting the air conditioning system, giving priority to both energy conservation and 
occupant comfort factors. 

After collecting ambient data, the data analytics model conducts a comprehensive analysis for adjusting the air conditioning 
setting. The model’s primary goal is to achieve an optimal balance between two fundamental factors: energy conservation and 
occupant comfort. By analyzing the collected data, the model investigates the relationship among multiple variables, enabling the 
identification of the most efficient and comfortable air conditioning settings. 

The data analytics model performs a comprehensive evaluation of the potential effects of various cooling adjustments on both 
energy consumption and indoor comfort levels. It considers a range of variables, including ambient temperature, humidity, and 
outdoor conditions. Prioritizing energy conservation while maintaining occupant comfort, the model ensures the optimal operation of 
the cooling energy management system. This approach effectively achieves the dual goals of improving energy efficiency and meeting 

Fig. 2. Control process of the proposed intelligent cooling management system.  
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user needs. By achieving an optimal equilibrium between energy conservation and occupant comfort, the data analytics model con-
tributes significantly to the system’s ability to enhance cooling efficiency and maintain a desirable indoor environment within the 
smart home setting. 

4.2. Prediction of power consumption and indoor environment by ANNs 

ANNs are a mathematical model with learning capabilities [9,10]. In the context of this study, two sets of ANNs are utilized within 
the intelligent cooling management system: one for predicting power consumption and the other for predicting indoor temperature 
and indoor humidity. The development process of the ANNs in this research comprises two stages: learning and evaluation. During the 
learning phase, data that have been collected and stored in the local database are used to train the ANNs. This enables the ANNs to 
learn and retain information about weights and biases, generating an activation function that is then employed in the evaluation phase. 
The training process is based on a comprehensive set of data that includes patterns of the indoor environment and how the air con-
ditioning unit is used by occupants. The objective is to give enough examples so that appropriate weights can be set for the different 
situations that can happen during use. For this study, the training data include the typical weather conditions of Thailand, which are 
hot and humid, as well as the actual usage patterns of occupants in the smart home, which are typically between 23 ◦C and 27 ◦C and 
range from 0 (low) to 2 (high) for the air conditioner fan mode. For other weather conditions, like a cold climate with the use of heating 
devices, correct and accurate predictions of energy use and indoor conditions require collecting the right data for training, which 
should matchthe behavior of the population in using heating devices. 

During the evaluation phase, the current data from the sensors and the activation function created during the learning phase are 
utilized as input data. These data points serve as the basis for the ANNs to conduct their predictive analysis. The output of the ANNs 
includes three key predictions: power consumption, indoor temperature, and indoor humidity. These predictions are activated 
whenever changes occur in the target temperature and the fan mode of the air conditioner in response to the ambient conditions in the 
room. 

As shown in Fig. 3, the prediction of power consumption by the first ANN involves the utilization of five key input data points: air- 
conditioner fan mode, indoor temperature, differential temperature, indoor humidity, and outdoor temperature. The differential 
temperature is the difference between the indoor temperature and the target temperature. When these different types of data are 
combined, the ANN can make accurate estimates about the power consumption of the air conditioner. For these calculations, the ANN 
architecture has two hidden layers, each with 150 nodes. These hidden layers are a key part of the model’s ability to find useful 
patterns and relationships in the data it receives, facilitating the model’s ability to recognize complex dependencies and correlations. 
Through this layered design, the ANN can do complex computations and improve its predictions iteratively to achieve a high level of 
precision and accuracy. 

Fig. 4 illustrates three key input data points of the second ANN: indoor temperature, indoor humidity, and predicted power 
consumption, which collectively serve as the basis for estimating the predicted indoor temperature and the predicted indoor humidity. 
The neural network architecture employed in this estimation process consists of two hidden layers, each comprising 150 nodes. This 
configuration ensures a robust and comprehensive data analysis capability, enabling sophisticated pattern recognition and data 
processing. The hidden layers of the ANN are designed to extract meaningful features and relationships from the input data, enabling 
the model to identify and capture significant dependencies among the variables. Through this iterative and dynamic process, the model 
refines its estimations iteratively, achieving greater accuracy and precision in its predictions. The ability of this ANN to estimate the 
indoor temperature and the indoor humidity is important to improve the cooling energy management system’s overall performance, 
allowing for more informed decisions and precise control of the indoor environment. 

4.3. Predicted mean vote for air comfort measurement from air conditioner adjustment 

PMV is an established index widely used to assess the overall thermal comfort experienced by individuals in a specific environment 
[13,14]. In the context of the data analytics model, the PMV index serves as a useful indicator of the ambient air condition within the 

Fig. 3. ANN architecture for predicting power consumption.  
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room with its variation directly influenced byair conditioning control settings selected by users. The PMV index is derived from 
predicted temperature and predicted humidity data, reflecting the prevailing air quality that should ideally fall within a range ensuring 
users’ comfort. For a 7-stage PMV scale, the index is evaluated as an integer value from − 3 to +3, indicating the average person’s 
perception of the environment from very cold to very hot, respectively [38,39]. It is generally recommended that the PMV index should 
be between − 0.5 and 0.5 to ensure occupants’ comfort in confined spaces. 

Fig. 5 identifies the shaded region representing the comfort zone for users, along with the correlation between temperature and 
humidity. For instance, a combination of indoor temperature at 27 ◦C and indoor humidity at 61 rh corresponds to a room environment 
with which the user feels comfortable. However, maintaining the same temperature while increasing indoor humidity leads to a 
decrease in user comfort. Both temperature and humidity jointly influence the optimal adjustments required. While air conditioners 
enable users to control the temperature, the level of dehumidification remains beyond their direct control. Consequently, each instance 
of activating the air conditioner results in varying reductions of humidity within their homes. 

In the data analytics model, the Pythermalcomfort Python package [37] is employed to calculate the PMV index from six key 
parameters. The four indoor parameters that reflect the indoor ambient condition are air temperature, mean radiant temperature, air 
velocity, and relative humidity. The other two parameters that indicate the personal condition are metabolic rate and thermal 
resistance of clothing. The parameters used in the PMV calculation and the relationship of PMV to the thermal sensation scale as shown 
in Fig. 6 are assigned as follows: the human body has a metabolic rate of 1 for minor activities like sitting or lying [40,41], an air 
velocity of 0.3 for small, enclosed rooms or bedrooms, and the thermal resistance of clothing is 0.42 for short-sleeve pajamas [35]. The 
air temperature and mean radiant temperature are set at the predicted indoor temperature, and the humidity is set at the predicted 
indoor humidity. Note that adjustment of the air conditioner determines the predicted indoor temperature and the predicted indoor 
humidity. 

4.4. PSO for selecting optimal air conditioner adjustment 

PSO is a well-known optimization technique based on the collective foraging behavior of bird flocks and fish schools. This met-
aheuristic algorithm has proven to be useful for a wide variety of optimization problems, as it employs a swarm of particles to navigate 

Fig. 4. ANN architecture for predicting indoor temperature and indoor humidity.  

Fig. 5. Temperature and humidity correlation in PMV analysis.  
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the search space and identify the best solution. Each particle represents a viable alternative [11,12]. PSO is competitive with other 
algorithms with comparable objectives, including genetic algorithms (GAs) [42], ant colony optimization (ACO) [43], and simulated 
annealing (SA) [44]. One of its primary advantages is its implementation simplicity, which facilitatesproblem-solving in comparison to 
the complex crossover and mutation operations of GA. PSO frequently outperforms other methods in terms of speed and efficiency, 
making it ideal for real-time applications and situations with limited computational resources. PSO enables particles to exchange 
information regarding the best solution, thereby accelerating convergence to the optimal solution. In this research, the PSO algorithm 
was employed with 30 particles (n) and 4 particle movements (k). It was developed to optimally select the target temperature and the 
air conditioner fan mode based on the pseudocode of the PSO algorithm given in Table 1. This decision aimed to conserve energy while 
minimally impacting user comfort. 

penaltyi(t) =

{
100 × |PMVi(t)| , − 0.5 <PMVi(t)< 0.5

0 ,PMVi(t)< − 0.5 or PMVi(t)> 0.5
; i = 1, 2, ..., n, t = 1, 2, ..., k (1)  

Pi(t) = pavg
i (t) + penaltyi(t) ; i = 1, 2, ..., n, t = 1, 2, ..., k (2)  

Pbesti = min[Pi(t)] ; i = 1, 2, ..., n, t = 1, 2, ..., k (3)  

Gbest(t) = min[Pbesti(t)] ; i = 1, 2, ..., n, t = 1, 2, ..., k (4)  

V→i(t + 1) = w V→i(t) + n1r1

[
Pbesti − X→i(t)

]
+ n2r2

[
Gbesti − X→i(t)

]
; i = 1, 2, ..., n, t = 1, 2, ..., k (5)  

X→i(t + 1) = X→i(t + 1) + V→i(t + 1) ; i = 1, 2, ..., n, t = 1, 2, ..., k (6)  

where. 

Fig. 6. Parameters used in PMV calculation and the relationship of PMV to thermal sensation scale.  

Table 1 
Pseudocode of the PSO algorithm for determining the optimal air conditioner adjustment.  

Input data Current ambient weather information is obtained from sensors that measure indoor temperature, outdoor temperature, and indoor humidity. 
Output 

data 
Best target temperature and best air conditioner fan mode 

1 For i = n, work from the first particle to the nth particle.  
Random X→i(1) and V→i(1) of each particle in the swarm with two dimensions: ttar

i (1) and Fi(1).  
End For 

2 For t = k, work from the first particle movements to the kth particle movements. 
2-1 For i = n, work from the first particle to the nth particle. 
2-1-1 Predict ppre

i (t), tpre
i (t), and rhpre

i (t) from X→i(t) (comprising ttar
i (t) and Fi(t)) and obtain the current ambient weather information from the sensors 

using the ANNs. 
2-1-2 Calculate the average predicted power pavg

i (t) from ppre
i (t). 

2-1-3 Assess PMVi(t) in the room from tpre
i (t) and rhpre

i (t) when the air conditioner is operating. 
2-1-4 Calculate penaltyi(t) from Eq. (1). 
2-1-5 Calculate Pi(t) from pavg

i (t) and penaltyi(t) from Eq. (2). 
2-1-6 Find Pbesti(t) from Eq. (3).  

End For 
2-2 Find Gbest(t) from Eq. (4). 
2-3 For i = n, work from the first particle to the nth particle. 
2-3-1 Adjust velocity V→i(t+1) from Eq. (5). 
2-3-2 Adjust position X→i(t+1) from Eq. (6).  

End For  
End For  
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X→i(t)= position of particle i at particle movement t 
V→i(t) = velocity of particle i at particle movement t 
ttar
i (t) = target temperature of particle i at particle movement t 

Fi(t) = air conditioner fan mode of particle i at particle movement t 
ppre

i (t) = predicted power consumption of particle i at particle movement t 
tpre
i (t) = predicted indoor temperature of particle i at particle movement t 

rhpre
i (t) = predicted indoor humidity of particle i at particle movement t 

pavg
i (t) = average predicted power consumption of particle i at particle movement t 

PMVi(t) = predicted mean vote index of particle i at particle movement t 
penaltyi(t) = penalty term of particle i at particle movement t 
Pi(t) = fitness of particle i at particle movement t 
Pbesti(t) = individual particle’s best of particle i at particle movement t 
Gbest(t) = global particles’ best at particle movement t 
w,n1,n2 = weight parameters 
r1, r2 = uniform random number between 0 and 1 

4.5. Data acquisition and analytics processes 

The overall architecture of the data analytics model used to determine the optimal air-conditioning adjustments is depicted in 
Fig. 7. At the core of this model lie the ANNs, which analyze the environmental conditions and power consumption associated with 
each air-conditioning adjustment case. The ANNs effectively process data from the five key variables, enabling them to make well- 
informed decisions regarding the optimal target temperature and the fan mode for the air conditioner. The sensors inside the home 
provide the ambient climate data for the three variables: indoor temperature, indoor humidity, and outdoor temperature. The PSO is 
specifically employed for its optimization capabilities, ensuring that the cooling energy management system attains the most suitable 
target temperature and fan mode to achieveoptimal energy efficiency and occupant comfort. The two output variables are determined 
by the PSO, namely the target temperature data, and the air conditioner fan mode. By combining the ANNs’ pattern recognition and 
data processing abilities, coupled with the PSO’s optimization ability, the data analytics model achieves a harmonious balance be-
tween energy conservation and occupant well-being. 

Fig. 8 (a) shows the data acquisition process for training the ANNs. The data used to train the ANNs include power consumption, 
outside temperature, room temperature, room humidity, air conditoner fan mode, and target temperature. The data are normally 
collected for 30 days with a frequency of 1 min. The ANNs train the dataset and store the learning data in the format of.h5 files. Fig. 8 
(b) presents the data analytics process to determine the optimal air conditioning adjustment in real time. The ANNs use the learning 
data stored in the.h5 file to predict the ambient temperature and the energy consumption of the air conditioner in the next 1 min ahead. 
The PSO will then select the most suitable air conditioner adjustment for a given input obtained from the ANNs. This predictive 
capability enables the system to anticipate changes in the indoor environment and the air conditioner’s energy requirements, enabling 
proactive and responsive cooling management. Through this synergy between the trained ANNs and the PSO algorithm, the proposed 
cooling energy management system navigates dynamic environmental changes effectively, optimizing cooling operations and ensuring 
user comfort and energy efficiency. 

Fig. 7. Data analytics process for the optimal air conditioner adjustment.  
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Fig. 8. Data acquisition and analytics processes. (a) training process of the ANNs, (b) real-time computation by the ANNs and the PSO.  

Fig. 9. Predicted results for different adjustments of target temperature.  
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5. Implementation results 

5.1. Testing environment 

In the air conditioner control process, the data analytics model uses the developed ANNs to predict power consumption, indoor 
temperature, and indoor humidity. The collected data were stored and used for training and testing datasets. To validate the effec-
tiveness of the cooling management system and the data analytics model, an empirical examination was conducted employing an 
8,000 BTU air conditioner as the testbed. This evaluation was carried out within a real smart home environment, situated within a 
detached two-story house spanning an area of 8 × 5 m2, accommodating four occupants. The devices and sensors used for data 
collection, such as smart meters, temperature and humidity sensors, and IR blasters, were installed in the test environment. The 
environmental weather data collected were representative of Thailand’s hot and humid climate. The air conditioning settings data 
reflected the real usage patterns of the smart home occupants, with temperatures ranging from 23 ◦C to27 ◦C and fan modes from 
0 (low) to 2 (high),which are typical usage patterns among the Thai population [45]. 

5.2. Evaluation of predicted parameters 

Under ambient conditions with an outdoor temperature of 30.25 ◦C, an indoor temperature of 29.36 ◦C, and an indoor humidity of 
64.66 rh, Fig. 9 presents a comparison of predicted outcomes resulting from different target temperature adjustments while main-
taining the same air conditioner fan mode. Specifically, Fig. 9(a) demonstrates the variations in predicted outcomes following ad-
justments of the target temperatures to 23 ◦C and 27 ◦C, with a constant fan mode of 2 (high). In Fig. 9(b), the disparities in predictions 
are shown when altering the target temperatures to 25 ◦C and 27 ◦C, with the fan mode remaining set at 2 (high). Fig. 9(c) exhibits the 
variances in predictions resulting from changes in the target temperatures to 23 ◦C and 27 ◦C, while the fan mode remains at 0 (low). 
Finally, Fig. 9(d) illustrates the differences in projected outcomes with adjustments to the target temperatures at 25 ◦C and 27 ◦C, while 
the fan mode remains at 0 (low). Fig. 10 compares predicted outcomes with different air conditioner fan mode adjustments while 
keeping the target temperature constant: a fan mode change between 1 (medium) and 0 (low) at 23 ◦C in Fig. 10(a)–a fan mode change 
between 2 (high) and 0 (low) at 23 ◦C in Fig. 10(b)–a fan mode change between 1 (medium) and 0 (low) at 27 ◦C in Fig. 10(c)–and a fan 
mode change between 2 (high) and 0 (low) at 27 ◦C in Fig. 10(d). 

Fig. 10. Predicted results for different adjustments of fan mode.  
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The various predicted outcomes indicate that the air conditioner’s energy consumption initially peaked as it worked aggressively to 
reduce the room’s temperature to the predetermined level while also rapidly reducing the humidity. Once the room reached the 
desired temperature, the air conditioner switched to a mode that maintains a constant temperature and humidity level while 
consuming less energy. Changes in the fan mode had a minor impact on power consumption, while adjustments to the target tem-
perature significantly affected the air conditioner’s power consumption, especially during the initial cooling phase when the air 
conditioner had to actively lower the room temperature to meet the set target. 

5.3. Optimal selection of air conditioner adjustment 

The developed PSO algorithm was utilized in the data analytics model to determine the most optimal air conditioner adjustment. 
For an ambient air condition where the ambient temperature outside the room was 30.25 ◦C, the room temperature was 29.36 ◦C, and 
the humidity inside the room was 64.66 rh, the PSO would select the most appropriate air conditioner setting at a target temperature of 
27 ◦C and an air conditioner fan mode at 0 (low). Fig. 11 shows the convergence report of the PSO calculations. Fig. 11 (a) indicates the 
initial position of each randomized particle with two dimensions, where the horizontal axis represents the temperature target, and the 
vertical axis represents the air conditioner fan mode. The fitness of each particle would be evaluated by its PMV index and average 
predicted power consumption. A particle exhibiting a PMV index closer to zero and lower average predicted power consumption 
indicates superior fitness defined by Eq. (2). The optimal particle with the lowest fitness was set to the global best position defined by 
Eq. (4) to determine the position and speed of other particles in the next iteration. Fig. 11 (b) and (c) show the position of the particles 
that were converging more and more toward the optimum with each subsequent movement. The PSO eventually succeeded in 
identifying the optimal setting for the test environment at a temperature of 27 ◦C and fan mode 0 (low). 

Table 2 presents the predicted indoor temperature, the indoor humidity, the average predicted power consumption, the PMV index, 
and the fitness value for each air conditioner adjustment case. These adjustments reflect the typical air conditioning usage patterns 
observed among the residents of the test group. Their settings typically fall within the range of 23 ◦C–27 ◦C for temperature and 
between 0 (low) and 2 (high) for the fan mode. The results demonstrate that each air conditioner adjustment case produces a unique 
average predicted power consumption. The PSO successfully identified the optimal solution illustrated in Case No. 5, with the 
remaining other cases evaluated and listed in the table for comparison. Increasing the target temperature can lower power con-
sumption during the phase where the air conditioner lowers the indoor temperature to reach the target. Similarly, decreasing the air 
conditioner fan mode can reduce power consumption. When the indoor temperature is maintained equal to the target temperature, the 
air conditioner’s power consumption is comparable across all cases with different air conditioner fan modes (as shown in Figs. 9 and 
10). 

Regarding the use of the air conditioner, humidity decreased to 62 rh across all test air conditioner cases. The indoor temperature 
would be reduced to an equal or lower level than the target temperature. However, it is important to note that changes in the indoor 
temperature and the indoor humidity vary from one air conditioner to another. It can be observed that the PMV index for the target 
temperature of 27 ◦C of the tested air conditioner exceeded the comfort range as the resulting indoor temperature dropped to 23 ◦C. 
Finally, the PSO-based data analytics model decided to select Case No.5, in which the target temperature was set to 27 ◦C and the air 
conditioner fan mode was set to 0 (low) as this case gave the best fitness. The response time from temperature adjustment until 
reaching a steady state condition took about 5 min. 

In situations where exhaustive datasets capturing air conditioner usage patterns have been compiled and validated for training and 
testing purposes, the analysis can proceed as intended. Nonetheless, this study relied on the empirical data collected from actual smart 
home environments, where residents’ air conditioner usage was recorded. The dataset primarily consisted of daily life usage within the 
test group, with most samples falling within the 23◦C–27 ◦C temperature range. This range aligns with the typical comfort preferences 
of the majority of the population in Thailand, a region characterized by hot and humid weather. While the test air conditioner used in 
this study was able toadjust temperatures beyond this range, like 18◦C–30 ◦C as per the device specifications, the focus was on the more 
commonly targeted comfort range. 

In the context of air conditioning practices in Thailand, temperatures outside the range of 23 ◦C–27 ◦C are uncommon. Therefore, 
the test air conditioner’s capability to operate below 23 ◦C or above 27 ◦C should be considered within the context of a research 

Fig. 11. Convergence results obtained from the PSO.  
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experiment, rather than as a reflection of typical regional usage patterns. In situations where the analytical model was deployed in 
areas with diverse climate profiles or differing air conditioner usage habits involving a broader range of temperatures, it would be 
necessary to collect localized data that capture both weather conditions and the population’s air conditioner usage behaviors. The 
inclusion of such additional data sets would enhance prediction accuracy and facilitate more thorough data analysis, all without 
necessitating significant alterations to the proposed hardware and software model developed in this study. 

For the users’ setting of the air conditioner for a temperature at 23 ◦C and a fan mode at 2 (high), the average predicted power 
consumption over the 3 h of operation is 380 W, whereas the optimal setting for a temperature at 27 ◦C and a fan mode at 0 (low) 
consumed only 314 W. A saving of 66 W per hour can be obtained in this case. If the air conditioner was regularly used for 10 h a day, a 
total energy of 660 Wh a day, or equivalently about 240 kWh a year could be saved. The cost saving depends on the electric tariff of the 
users. For example, if the average cost of electricity is 4.72 Baht/kWh (about $0.137/kWh), the users would save 1,133 Baht (about 
$33) a year for each air conditioner unit. In a competitive electric market, a retailer can offer this smart home feature to its customers 
for energy-saving benefits. From the retailer’s perspective, the microservices-based data analytics model presented in this paper offers 
scalability in expansion and flexibility in customization and cost management. This is facilitated through the shared, upgradable 
hardware and software infrastructure among a large number of households. Consequently, the retailer can retain customers with 
improved satisfaction while realizing substantial cost savings related to the number of air conditioners in households and their 
operational hours. 

5.4. Discussion 

The data analytics model employs the two sets of ANNs and the PSO to analyze and determine the optimal target temperature and 
fan mode for the air conditioner. The joint utilization provides an efficient and effective method for optimizing the operation of the air 
conditioner, which contributes to energy conservation and enhanced indoor comfort. The ANNs are responsible for forecasting the 
surrounding weather conditions and the energy consumption caused by air conditioner settings. These settings include the desired 
temperature, the mode of the air conditioner’s fan, and the ambient weather data including indoor temperature, indoor humidity, and 
outdoor temperature. The predicted energy consumption results from the first ANN for each case can be used to validate the energy- 
saving capability of each setting. The comfort of the occupants can also be evaluated based on the predicted ambient weather con-
ditions derived from the second ANN. These predicted weather conditions are converted into the PMV index that is used to evaluate the 
occupants’ level of comfort. This implies that errors in the ANNs’ prediction stage could be a significant source of analysis errors. 

The recognition of errors arising during the prediction phase by the ANNs holds a significant impact on the overall analysis. 
Overfitting, where ANNs perform well on training data but poorly on unseen data, is a common prediction error problem. Regula-
rization, dropout, and early stopping can reduce overfitting. These methods help the model generalize to unseen data, improving its 
robustness and accuracy. Training data inadequacy is another common prediction error cause. Thus, comprehensive data collection, 
including ambient weather conditions and air conditioner usage patterns among the target population, is essential. For instance, in a 
country like Thailand, characterized by a hot and humid climate with similar weather conditions and air conditioner usage patterns 
across different seasons, data collection becomes relatively straightforward. However, in areas with distinct geographical charac-
teristics and extreme variations in weather conditions across seasons, more detailed and extensive data collection efforts are required. 

The process of collecting detailed and numerous amounts of data improves the prediction accuracy of the ANNs, which can be 
determined by comparing the predicted results based on the test data inputs with the actual results. In addition, the quantity of training 
data is essential for assessing the occupants’ comfort, as the PMV index serves as a benchmark. However, the PMV calculation is 
determined by six primary variables: air temperature, mean radiant temperature, air velocity, relative humidity, metabolic rate, and 
thermal resistance of clothing. Due to the limitations of available measuring devices, air velocity, metabolic rate, and thermal resis-
tance of clothing are normally set as constants for bedroom environments. If these constants were replaced with other measurement 

Table 2 
Outcome of different air conditioner adjustments in 3 h of operation.  

Case 
No. 

Temperature 
target (◦C) 

Fan mode 
(mode) 

Predicted indoor 
temperature by ANN (◦C) 

Predicted indoor 
humidity by ANN (rh) 

Average predicted power 
consumption by ANN (W) 

PMV 
index 

Fitness 
value 

1 23 0 22.69 62 361 − 2.04 565 
2 24 0 22.89 62 351 − 1.96 547 
3 25 0 23.00 62 340 − 1.91 531 
4 26 0 23.10 62 327 − 1.86 513 
5 27 0 23.20 62 314 ¡1.82 496 
6 23 1 22.24 62 373 − 2.25 598 
7 24 1 22.49 62 363 − 2.14 577 
8 25 1 22.73 62 351 − 2.02 553 
9 26 1 22.91 62 337 − 1.95 532 
10 27 1 23.07 62 325 − 1.88 513 
11 23 2 22.06 62 380 − 2.33 613 
12 24 2 22.24 62 369 − 2.25 594 
13 25 2 22.51 62 356 − 2.12 568 
14 26 2 22.78 62 342 − 2.00 542 
15 27 2 23.01 62 329 − 1.90 519  
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devices, it would increase the accuracy of evaluating the comfort level of occupants, impacting the accuracy of selecting the most 
suitable air conditioning settings. 

PSO is an algorithm inspired by natural social behaviors. Its strengths are simplicity, rapid convergence, and a balanced exploration 
and exploitation strategy. Its ease of implementation and efficiency make it an appealing choice for optimization tasks. Nevertheless, 
PSO algorithm performance can be sensitive to parameter selection, such as the number of particles and the weights assigned to 
personal and social influences, necessitating careful tuning and experimentation. 

In summary, the proposed model in this study, which combines the ANNs and the PSO algorithm, offers a robust method for 
determining optimal air conditioner settings that maximize energy efficiency while ensuring occupants’ comfort. The research 
highlights the importance of comprehensive data collection in improving prediction accuracy and the potential for enhancing eval-
uations of occupant comfort. By utilizing the PMV as a metric for comfort evaluation, the model can be effectively applied in various 
smart home applications to achieve energy savings and enhance the overall user experience. 

6. Conclusion 

This research has introduced an intelligent cooling management system that efficiently determines the target temperature and air 
conditioner fan mode to ensure economical energy usage. The system development holds significant potential for energy conservation, 
particularly in buildings where cooling systems account for a substantial portion of energy consumption. The foundation of the 
intelligent cooling management system rests upon a range of ambient data, air conditioner operation records, and specific performance 
data. The ambient data include indoor temperature, indoor humidity, and outdoor temperature, while operation records cover usage 
patterns, target temperatures, and fan modes. The performance data delves into the power consumption in relation to the air con-
ditioner’s temperature. The hardware and software development of the intelligent cooling system was designed based on the 
microservice-based architecture that enhances flexibility and scalability, allowing for easy customization and expansion to accom-
modate growing user bases. It is highly compatible with automated demand response programs particularly relevant to air condi-
tioning systems and offers cost-effective implementation and maintenance, making it suitable for large-scale deployment. 

Two sets of ANNs were utilized in our data analytics model to forecast power consumption, indoor temperature, and indoor hu-
midity with adjustments in target temperature and fan mode. Our PSO algorithm searched for optimal adjustments to maximize energy 
savings while ensuring minimal disruption to user comfort. User comfort was quantified using the PMV index. The results have 
demonstrated that the data analytics model adapts well to real-time data collection and fast responses to changing ambient conditions. 
This adaptability facilitates energy consumption reduction, leading to cost savings for users in terms of electricity expenses. 

The challenges and limitations encountered during this research primarily originated from data collection. In the process of 
gathering data for training and testing, devices, including a smart meter, temperature and humidity sensors, and an IR blaster, were 
installed in a real-life smart home environment. However, a situation where users regularly operated the air conditioner’sremote 
control instead of the IR blaster could lead to disparities in the recorded data. Such discrepancies could compromise the accuracy of 
power consumption, indoor temperature, and humidity predictions. Therefore, for enhanced prediction accuracy, it is crucial to gather 
comprehensive data that encompass a wide range of ambient conditions and diverse air conditioner adjustments. 

Future research can expand on this study in several ways. For instance, upgrading the algorithms for predicting air conditioner 
energy consumption and forecasting indoor temperature and humidity can be achieved by using recurrent neural networks (RNNs) 
[46] or long short-term memory (LSTM) [47] instead of ANNs. Given their suitability for time-series data, RNNs or LSTM would match 
well with the sequential data used in our data analytics model, leading to improved prediction accuracy. Additionally, further 
development could focus on analyzing an individual user’s comfort index instead of the standard PMV. This individual-specific model 
can enhance comfort level evaluation accuracy. 

The developed methodology can be seamlessly extended to other smart systems, opening new avenues for energy efficiency and 
environmental sustainability, such as heating and lighting. By enabling intelligent control over these aspects of a building or facility, 
energy consumption can be optimized. For instance, the heating system can be automatically adjusted based on occupancy and 
weather patterns, while lighting can be controlled to provide the required illumination with minimal energy use. Integrating the data 
analytics model with domestic or building demand response programs can optimize energy usage and contribute to more efficient 
energy use. Future exploration could also encompass the incorporation of green energy technologies such as renewable energy re-
sources, electric vehicles (EVs), and energy storage systems into cooling management systems for smart homes and buildings. This 
strategic integration could drive sustainability and meet the commitment to carbon neutrality and zero-emission targets. 
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