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Long non-coding RNAs (lncRNAs) play critical roles in cancer through gene expression
and immune regulation. Identifying immune-related lncRNA (irlncRNA) characteristics
would contribute to dissecting the mechanism of cancer pathogenesis. Some
computational methods have been proposed to identify irlncRNA characteristics in
human cancers, but most of them are aimed at identifying irlncRNA characteristics in
specific cancer. Here, we proposed a new method, ImReLnc, to recognize irlncRNA
characteristics for 33 human cancers and predict the pathogenicity levels of these
irlncRNAs across cancer types. We first calculated the heuristic correlation coefficient
between lncRNAs and mRNAs for immune-related enrichment analysis. Especially, we
analyzed the relationship between lncRNAs and 17 immune-related pathways in 33
cancers to recognize the irlncRNA characteristics of each cancer. Then, we calculated
the Pscore of the irlncRNA characteristics to evaluate their pathogenicity levels. The results
showed that highly pathogenic irlncRNAs appeared in a higher proportion of known
disease databases and had a significant prognostic effect on cancer. In addition, it was
found that the expression of irlncRNAs in immune cells was higher than that of non-
irlncRNAs, and the proportion of irlncRNAs related to the levels of immune infiltration was
much higher than that of non-irlncRNAs. Overall, ImReLnc accurately identified the
irlncRNA characteristics in multiple cancers based on the heuristic correlation
coefficient. More importantly, ImReLnc effectively evaluated the pathogenicity levels of
irlncRNAs across cancer types. ImReLnc is freely available at https://github.com/
meihonggao/ImReLnc.
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1 INTRODUCTION

Cancer is a major threat to human health with high incidence and mortality (Siegel et al., 2015; Bray
et al., 2018; Ferlay et al., 2019; Gharib et al., 2019). In 2018, there were approximately 18.1 million
new cases and 9.6 million cancer deaths worldwide (Bray et al., 2018; Ferlay et al., 2019). Although
early detection and treatment of cancer have increased the number of survivors, the results are still
limited (Miller et al., 2016, 2019). Previous studies have reported that there is a link between lncRNA
and the occurrence of cancer, and lncRNA plays an important role in cancer by gene expression and
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immune regulation (Gibb et al., 2011; Yang et al., 2014; Jiang
et al., 2017; Li et al., 2020; Gao et al., 2021). The exploration of the
lncRNA regulation mechanism is of great significance to the
diagnosis and treatment of cancer (Bhan et al., 2017; Gharib et al.,
2019, 2021).

Long non-coding RNA (lncRNA) refers to a transcript located
in the nucleus or cytoplasm and is more than 200 nucleotides in
length and cannot encode protein. (Wang and Chang, 2011;
Ransohoff et al., 2018; Nair et al., 2020). With the development of
sequencing technology, more and more lncRNAs have been
identified and annotated (Zhao et al., 2016; Frankish et al.,
2021). Studies have shown that lncRNA is related to the
occurrence of cancer and participates in cell life activities
through epigenetic modification, transcriptional regulation,
post-transcriptional processing, and translational regulation
(Esteller, 2011; Bao et al., 2019; Chi et al., 2019; Zhao et al.,
2020). For example, GATA6-AS epigenetically regulates
endothelial gene expression by interacting with LOXL2
(Neumann et al., 2018), CCR5AS regulates the expression of
CCR5 to affect the outcome of HIV infection (Kulkarni et al.,
2019), and OIS1 regulates the activation of DPP4 to control RAS-
induced senescence (Li et al., 2018). In addition, lncRNA is
involved in various processes of immune response in the
tumor microenvironment (TME) and plays an important
immunomodulatory role in cancer. It is reported that lncRNA
NKILA promotes tumor immune escape by sensitizing T cells to
activation-induced cell death (Huang et al., 2018) and lncRNA
HOTAIR regulates the expression of the glucose transporter
Glut1 and glucose uptake in macrophages during
inflammation (Obaid et al., 2021).

TME is a complex environment around tumors and is crucial
for tumor growth, invasion, and metastasis (Quail and Joyce,
2013; Yuan et al., 2016). The composition of TME varies by tumor
type, but hallmark features include immune cells, stromal cells,
blood vessels, and extracellular matrix (Joyce and Fearon, 2015;
Spill et al., 2016; Anderson and Simon, 2020). There is a close
interaction between tumor cells and their surrounding TME, and
the phenomenon of other cells entering the tumor tissue is called
infiltration (Fridman et al., 2011). The infiltration of immune
cells in tumor tissue significantly impacts tumor proliferation and
metastasis. Lymphocytes that infiltrate tumor tissues are called
tumor-infiltrating lymphocytes, which include T cells and B cells
and are part of the larger category of tumor-infiltrating immune
cells (Fridman et al., 2011; Nazemalhosseini-Mojarad et al., 2019).
The abundance of tumor-infiltrating lymphocytes varies with
tumor type and stage and is related to the prognosis of the disease
in some cases (Fridman et al., 2011; Hanahan and Coussens,
2012; Coussens et al., 2013). Tumor-infiltrating lymphocytes can
usually be found in tumor stroma and tumor itself, where they
can help tumor cells escape and promote the development of
malignant tumors. LncRNAs participate in tumor-stroma
crosstalk and stimulate a distinctive and suitable tumor
microenvironment (Sun et al., 2020; Zhou et al., 2020). Thus,
it is necessary to identify immune-related lncRNA (irlncRNA) to
explore the immune regulation mechanism of lncRNA in tumors.

Identifying irlncRNA helps us understand the mechanism of
cancer at the molecular level, contributing to the diagnosis and

treatment of cancer. However, due to lncRNA’s specific
expression, its pathogenicity level across cancer types is
difficult to estimate. The development of computational
methods for identifying irlncRNA in cancer and assessing its
pathogenicity can help solve this problem. Several methods have
been proposed to identify irlncRNAs for human cancers (Shen
et al., 2020; Sun et al., 2020; Zhang et al., 2020; Gao et al., 2021),
but the common goal of these methods is to identify irlncRNAs
associated with single cancer. There is only one method named
ImmLnc that can identify irlncRNAs for multiple cancers (Li
et al., 2020). ImmLnc has a good performance on the given cancer
dataset, but it has two limitations that need to be improved. On
the one hand, ImmLnc uses partial correlation to calculate the
ranking score, but direct correlation and partial correlation
coexist in cancer tissues. On the other hand, ImmLnc uses the
number of cancers in which irlncRNA-pathway pair is involved
and the number of cancers in which irlncRNA is differentially
expressed to calculate the pathogenicity level of irlncRNA, but
other factors may also affect the pathogenicity level of irlncRNA.
Therefore, it is necessary to integrate direct correlation and partial
correlation to identify irlncRNA for human cancers and consider
adding other factors to evaluate the pathogenic level of irlncRNA
effectively.

Here, we proposed a new method ImReLnc for two main
objectives. Firstly, we used heuristic correlation coefficients to
provide ranking scores for immune-related enrichment analysis to
identify irlncRNAs in human cancers. Especially, we integrated direct
correlation coefficients and partial correlation coefficients based on
the logistic function to obtain the heuristic correlation coefficients.
We identified the irlncRNAs of 33 cancers and found that these
irlncRNAswere highly expressed in immune cells, showed expression
differences in cancers, and were significantly related to immune
infiltration levels. The second goal of this method is to evaluate the
pathogenicity levels of the identified irlncRNAs. For each irlncRNA
identified by ImReLnc, we calculated not only the number of cancers
in which lncRNA-pathway pair was involved but also the number of
cancers in which irlncRNA was differentially expressed and its
average fold change in those differentially expressed cancers. By
comparing irlncRNAs with disease-related lncRNAs (drlncRNAs) in
LncRNADisease2.0 (Bao et al., 2018) and Lnc2Cancer2.0 (Gao et al.,
2018), we found that highly pathogenic irlncRNAs appeared in a
higher proportion of known disease database than low pathogenic
irlncRNAs. This demonstrates that ImReLnc is a valuable resource
for predicting the pathogenicity of irlncRNA in human cancers.

2 MATERIALS AND METHODS

Figure 1 shows the framework of ImReLnc for identifying
irlncRNAs and evaluating their pathogenicity levels.

2.1 Data Acquisition and Processing
2.1.1 Expression Data Collection
The expression profiles of 33 types of cancer were downloaded
from TCGA (See Supplementary Table S1, Data Sheet 1). For
each type of cancer, we used Perl to process the expression
profiles of all samples into an expression matrix, which was
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filtered by the annotation file in GENECODE (v22) to obtain the
expression matrix of mRNA and lncRNA.

Hepatic carcinoma-related single-cell sequencing data was
downloaded from Panglaodb. We performed cluster analysis
on single-cell sequencing data to obtain the expression matrix
of immune and non-immune cells through the Seurat package in
R software. We further analyzed the expression matrix of lncRNA
in these two types of cells and obtained the expression matrix of
irlncRNA and non-irlncRNA in them.

2.1.2 Immunization Data Collection
Immune-related gene lists were downloaded from Immport,
which is one of the largest public databases for collecting and
sharing immunology-related research resources. A total of 17
immune pathways and 1793 immune-related mRNAs were
obtained for immune-related enrichment analysis, and the
number of mRNAs associated with immune pathways ranged
from 3 to 505 (See Supplementary Table S2, Data Sheet 1).

The immune infiltration levels of TCGA cancer samples (33
types of cancer samples) were downloaded from Timer. We
obtained the infiltration levels of these cancer samples in six
types of cells: B cell, T cell CD4+, T cell CD8+, Neutrophil,
Macrophage, and Myeloid dendritic cell.

2.1.3 LncRNA-Disease Interactions Collection
We collected the human lncRNA–disease interactions from
LncRNADisease and Lnc2Cancer. Specifically, 2665 drlncRNAs
were collected from Lnc2Cancer, and 6,105 drlncRNAs were
collected from Lnc2Cancer. After preprocessing (removal of
duplicate items), there were 2665 drlncRNAs left in Lnc2Cancer
and 5,714 drlncRNAs left in LncRNADisease.

2.2 Heuristic Correlation Optimization
LncRNA can regulate the expression of mRNA to cause cancer,
and there are two regulatory patterns: direct regulation and
indirect regulation (Figure 2). In the first pattern, the

expression values of lncRNA and mRNAlncRNA and mRNA
expression values are directly related, while in the second pattern,
they are partially related.

2.2.1 Direct Correlation Between mRNAs and lncRNAs
The direct correlation was computed through the method of
Pearson and Spearman (Benesty et al., 2009; Sedgwick, 2014). The
Pearson’s rank correlation coefficient between mRNA m and
lncRNA l is defined as follows:

R m, l( ) � E ml( ) − E m( )E l( )�������������
E m2( ) − E2 m( )√ �����������

E l2( ) − E2 l( )√ (1)

where function E is used to calculate the mathematical
expectation of variables. Similarly, the Spearman’s correlation
coefficient between mRNA m and lncRNA l is defined as follows:

S m, l( ) � 1 − 6∑d2
i

r r2 − 1( ) (2)

where di represents the difference between the rank of m and l,
and r represents the number of cancer samples. Although Pearson
correlation and Spearman correlation can effectively fit the
correlation between mRNA and lncRNA in cancer samples,
they have some limitations. To make the value of direct
correlation more accurate, we combined these two types of
correlation coefficients to represent the direct correlation
coefficient as follows:

D m, l( ) � R m, l( ) + S m, l( )
2

(3)

2.2.2 Partial Correlation Between mRNAs and
lncRNAs
Tumor purity affects the expression of mRNA and lncRNA in
cancer samples. To eliminate this effect, we calculated the partial
correlation between mRNA and lncRNA based on tumor purity.

FIGURE 1 | The flowchart of ImReLnc. The expression matrix in step 1 refers to the normalized expression profile of 33 cancers. The correlation in step 2 refers to
the correlation between mRNA and lncRNA.
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The tumor purity of the sample was calculated by analyzing its
mRNA expression profile using the estimate package of R
software. The partial correlation coefficient between mRNA m
and lncRNA l in sample t is defined as follows:

P m, l( ) t( ) � D m, l( ) −D m, t( )D t, l( )�����������
1 −D2 m, t( )√ ���������

1 −D2 t, l( )√ (4)

2.2.3 Heuristic Correlation Between mRNAs and
lncRNAs
Both direct and partial correlations play an important role in
lncRNA regulating mRNA expression. Thus, we integrated these
two correlations to calculate the heuristic correlation between
mRNA and lncRNA. To highlight the strong correlation and to
fade the weak correlation, we defined a logistic function as
follows:

L x( ) � 1
ecx+d + 1

(5)

where x is the absolute value of the correlation coefficient.When c
is equal to -15 and d is equal to ln (1999), L(x) is approximately
equal to 0 in the interval [0, 0.3], and L(x) is approximately equal
to 1 in the interval [0, 0.7] (See Supplementary Figure S1, Data
Sheet 1). Furthermore, we define the heuristic correlation
coefficient between mRNA m and lncRNA l as follows:

H m, l( ) t( ) � L βD m, l( ) + 1 − β( )P m, l( ) t( )[ ] (6)

where β ranges from 0 to 1 and is limitid as follows:

arg min
β

1 − |βD m, l( ) + 1 − β( )P m, l( ) t( )|{ } (7)

2.3 Identification of Immune-Related
lncRNAs
2.3.1 Immune-Related Enrichment Analysis
The immune regulation mechanism of lncRNA was explored by
analyzing the relationship between lncRNA-related mRNA and
immune pathways. First, we performed a screening on the
heuristic correlation matrix to obtain the rank matrix RML (the
filtering threshold is 0.5). As a result, v lncRNA-related mRNA

classes were obtained. Each class was composed of heuristic
correlation coefficients between a lncRNA and the
corresponding u mRNAs and was sorted in descending order
according to these coefficients. Then we conducted enrichment
analysis for the lncRNA-related mRNA classes on 17 immune
pathways using fgsea package in R software. The minimum and
maximum sizes of the mRNA class were set to 1 and 5,000,
respectively, and the number of permutations was set to 10 000.
The enrichment analysis result was a 17v × 10 matrix, whose
column information includes lncRNA, immune pathway,
p-value, adjusted p-value, enrichment score, and five other
enrichment parameters.

2.3.2 Extraction of Immune-Related lncRNAs
We evaluated the relationship between lncRNA and immune
pathway based on the enrichment score and p value as follows (Li
et al., 2020):

lncRES l, w( ) � 1 − 2p, E l, w( )≥ 0
2p − 1, E l, w( )< 0{ (8)

where p represents the p-value of the enrichment result, and E (l,
w) represents the enrichment score of lncRNA l on pathway w.
Obviously, the range of lncRES (l, w) is [ − 1, 1], and the greater
the absolute value, the higher the enrichment degree. For each
type of cancer c, |Ic| irlncRNAs were obtained by setting the
absolute value of lncRES (l, w) to be greater than 0.995 and setting
the FDR to be less than 0.05. Finally, the set of all irlncRNAs in 33
types of cancer can be defined as follows:

I � ⋃
33

c�1
Ic (9)

Each irlncRNA in set I has several corresponding immune
pathways to form lncRNA-pathway pairs, in which the
lncRNA plays an immunomodulatory role in cancer by acting
on the immune pathway.

2.4 Pathogenicity Evaluation of
Immune-Related lncRNAs
After identifying cancer-related irlncRNAs, we further analyzed
these irlncRNAs to explore their pathogenicity levels.

FIGURE 2 | Direct correlation and Partial correlation. Here, m, l, t represents mRNA, lncRNA, tumor purity, respectively.
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2.4.1 Differential Expression Analysis of
Immune-Related lncRNAs
Since the differential expression level of lncRNA greatly influences on
the pathogenicity of lncRNA, we performed differential expression
analysis of the identified irlncRNAs in 33 cancers by using the edger
package of R software. Here, the fold change and the adjusted p values
were used to evaluate the expression differences of irlncRNAs, and
the differentially expressed irlncRNAs were acquired by setting the
adjusted p-value < 0.01 and the absolute value of logFC > 1.5.RDE(l)
is used to reflect the range of differential expression of irlncRNA l in
set I and is defined as follows:

RDE l( ) � N NC l( )[ ] (10)

where function N is used for normalization, and NC(l) represents
the number of cancers in which irlncRNA l from set I is
differentially expressed. The range of NC(l) is [0, 24], and the
upper limit depends on the number of cancers (with tumor and
normal samples) for which we performed differential expression
analysis. RFC(l) is used to reflect the intensity of differential
expression of irlncRNA l in set I and is defined as follows:

RFC l( ) � N
∑NC l( )

c�1 FC c, l( )
NC l( )[ ] (11)

where function N is used for normalization, and FC(c, l)
represents the fold change of the expression value of irlncRNA
l in cancer c.

2.4.2 Pathogenicity Prediction of Immune-Related
lncRNAs
Because the number of cancers related to lncRNA-pathway pairs
and the differential expression level of lncRNA have a great
influence on the pathogenicity level of lncRNA, we merged
these two kinds of information to evaluate the pathogenicity
level of irlncRNA l in set I as follows:

Pscore l( ) � ∑17
w�1N NC l, w( )[ ] + RDE + RFC

19
(12)

where function N is used for normalization, and NC(l, w)
represents the number of cancers in which lncRNA l regulates
immune pathway w.

3 RESULTS

We proposed a computational method, ImReLnc, to identify
irlncRNAs and predict their pathogenicity levels across cancer
types (Figure 1). The immunological and pathogenic properties of
the identified irlncRNAs have been verified in this section. In
particular, the experiment was performed on R 3.4.1 under
Ubuntu 20.04.2, the CUDA version was 11.3, and the memory
was 8 × 11019M.

3.1 Immune-Related lncRNAs and
Pathways
Through steps one to three in Figure 1, we comprehensively
analyzed the heuristic correlation between mRNA and lncRNA of

33 cancers and the enrichment of lncRNA in 17 immune
pathways. As a result, we obtained a series of lncRNA-
pathway pairs (Figure 3) for each cancer. We found that the
number of irlncRNA involved and the enriched immune
pathways differed between cancers, and the degree of
enrichment of cancers in some immune pathways tended to
be similar. We further calculated the number of cancer-related
irlncRNAs (Figure 4A) and immune pathways (Figure 4B). It
was found that the number of cancer-related irlncRNAs ranged
from 6.75 to 11.21 (after log2). Specifically, the number of UCEC-
related irlncRNAs was the least at 6.75 (after log2), and the
number of CHOL-related irlncRNAs was the highest at 11.21
(after log2). As for the number of cancer-related immune
pathways, they ranged from 11 to 17. It should be noted that
among 33 types of cancers, two types (6.1%) were enriched in 11
pathways, one type (3%) was enriched in 13 pathways, two types
(6.1%) were enriched in 14 pathways, eight types (24.2%) were
enriched in 15 pathways, thirteen types (39.4%) were enriched in
16 pathways, and the remaining seven types (21.2%) were
enriched in 17 pathways. We found that the number of cancer
types enriched in more than 16 pathways accounted for 60.6% of
the total cancer types, and the number of cancer types enriched in
more than 15 pathways accounted for 84.8% of the total cancer
types. This indicates that most of the pathways are involved in the
immune regulation process of cancer.

Compared with cancers with a small number of lncRNA-
pathway pairs, cancers with a large number of lncRNA-pathway
pairs are more likely to be enriched in the immune pathway, and
for the convenience of description, we refer to these cancers as
immune-preferred cancers in the following text. We analyzed the
enrichment of cancers in immune pathways to find immune-
preferred cancers (Figure 5A). Cholangiocarcinoma (CHOL),
Kidney Chromophobe (KICH), Testicular Germ Cell Tumors
(TGCT), Thyroid carcinoma (THCA), and Thymoma (THYM)
were found to have more obvious immune enrichment, thus they
are the so-called immune-preferred cancers. Studies have shown
that immunotherapy plays an important role in the treatment of
these five types of cancer (Schott et al., 2001; Drake and Stein,
2018; Høgdall et al., 2018; Jakopovic et al., 2020; Kalavska et al.,
2020). For these cancers, immunotherapy can achieve better
prognostic effects, and our findings can provide a reference for
their immunotherapy.

Cancers also have a preference for their enriched immune
pathways. They will be mainly enriched in some immune
pathways, which we call highly enriched immune pathways,
while their enrichment in other pathways will be very limited.
We analyzed the distribution of lncRNA-pathway pairs on the
immune pathways to discover highly enriched immune pathways
in cancers (Figure 5B). Cancers weremainly enriched in 5 immune
pathways (Antigen Processing and Presentation, Antimicrobials,
Cytokine Receptors, Cytokines, and NaturalKiller Cell
Cytotoxicity), and the average enrichment ratio of lncRNA-
pathway pairs related to these pathways was 0.790 832 3.
Specifically, 18 of 33 (more than half) cancers were enriched in
these five immune pathways by more than 0.790 832 3 (Figure 6).
Obviously, these five pathways are highly enriched immune
pathways for those 33 cancers, and these pathways are active in
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the immune regulation process of the cancers. Antigen processing
and presentation is involved in the decomposition and
presentation of antigen proteins in immune regulation (Vyas
et al., 2008). Antimicrobials are related to the life activities of
bacteria (Van Harten et al., 2018). Cytokine Receptors and
Cytokines play a signal transduction role in immune regulation
(O’Shea et al., 2019). As for NaturalKiller Cell Cytotoxicity, it is
related to the immune regulation of NaturalKiller Cell (Topham
and Hewitt, 2009). The functions mentioned above are related to

the life activities of cancer cells, thus the high enrichment of these
five immune pathways is closely related to the occurrence of cancer.

3.2 The Distribution of Immune-Related
lncRNAs
Cancers are enriched in immune pathways with a series of
lncRNA-pathway pairs, and each pathway is related to a
variety of lncRNAs which are the irlncRNAs to be recognized.

FIGURE 3 | The distribution of lncRNA-pathway pairs in cancers. The lncRNAs in the lncRNA-pathway pairs refer to the immune-related lncRNAs (irlncRNAs), and
the pathways in the lncRNA-pathway pairs refer to the immune pathways. Bubbles with different colors indicate the distribution of lncRNA-pathway pairs in different
immune pathways, and the size of the bubbles is proportional to the number of irlncRNAs.

FIGURE 4 | The number of immune-related lncRNAs and immune pathways in cancer. (A) The log value of the number of immune-related lncRNAs in cancer. The
size of the bubbles is proportional to the log value of the number of immune-related lncRNAs. (B) The number of immune pathways in cancer. The size of the bubble is
proportional to the number of immune pathways.
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These irlncRNAs are involved in the immune regulation process
of cancer. We analyzed the characteristics of cancers and immune
pathways related to them (See Supplementary Table S1, 2). It
was found that the total number of irlncRNAs was 7,038, the
number of cancers related to irlncRNA ranged from 1 to 32, and
the number of immune pathways associated with irlncRNA
ranged from 1 to 15. For the number of cancers and pathways
in these ranges, we further explored the distribution of irlncRNAs
on them (See Supplementary Figure S2, Data Sheet 1). Firstly,
for the distribution of different numbers of cancers, we found that
irlncRNAs related to only one type of cancer accounted for

0.417 448 1 of the total irlncRNAs, irlncRNAs related to two
types of cancer accounted for 0.209 718 7 of the total irlncRNAs,
irlncRNAs related to three types of cancer accounted for
0.114 237 of the total irlncRNAs, and the remaining 4–32
types of cancer-related irlncRNAs accounted for 0.258 596 2 of
the total irlncRNAs. Then, for the distribution of different
numbers of immune pathways, we found that irlncRNAs
associated with one to four immune pathways accounted for
0.638 107 4 of the total irlncRNAs, and the remaining 0.361 892 6
of irlncRNAs were related to 5–15 pathways. Overall, more than
half of irlncRNAs played a regulatory role in several types of

FIGURE 5 | The enrichment of lncRNA-pathway pairs in cancers and immune pathways. The p1-17 represents Antigen Processing and Presentation,
Antimicrobials, BCRSignalingPathway, Chemokine Receptors, Chemokines, Cytokine Receptors, Cytokines, Interferons, Interferons Receptor, Interleukins, Interleukins
Receptor, NaturalKiller Cell Cytotoxicity, TCRsignalingPathway, TGFb Family Member, TGFb Family Member Receptor, TNF Family Members, and TNF Family Members
Receptors respectively. (A) The Enrichment of lncRNA-pathway pairs in cancers. (B) The Enrichment of lncRNA-pathway pairs in immune pathways.

FIGURE 6 | The enrichment of cancers in the highly enriched immune pathways. The size of the bubbles is proportional to the ratio of cancer in the highly enriched
immune pathway.
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cancer, and these regulatory roles involved multiple immune
pathways.

The immunomodulatory effect in immune-preferred cancers
is quite active, and we further analyzed irlncRNAs related to these
cancers (See Supplementary Table S3). There were 34 irlncRNAs
related to all five immune-preferred cancers, and another 5,097
irlncRNAs were related to one to four of the five immune-
preferred cancers. The highly enriched immune pathway plays
an important role in the immune regulation of cancers. Thus we
obtained irlncRNAs related to the highly enriched pathways (See
Supplementary Table S4). There were 1,264 irlncRNAs related to
all five highly enriched immune pathways, and another 5,473
irlncRNAs were related to one to four of the five highly enriched
immune pathways. Obviously, most irlncRNAs (0.627 558) were
involved in one of the five immune-preferred cancers, and they
were almost evenly distributed in the five pathways. This was
significantly different from the distribution of irlncRNAs in total
cancers and total immune pathways due to the immune
preference of the cancers and the high enrichment of the
immune pathways.

3.3 The Expression of Immune-Related
lncRNAs
Since the immune regulation process is performed by immune
cells, the expression of irlncRNA in immune cells should be
higher than that in other cells. We compared the expression levels
of irlncRNA and non-irlncRNA in immune and non-immune
cells on single-cell sequencing data from the PanglaoDB database.
1) We normalized the single-cell sequencing data of hepatic
carcinoma. 2) The lncRNA count data was extracted. 3) The
irlncRNA count data and non-irlncRNA count data were
extracted. 4) We compared the expression of irlncRNA and
non-irlncRNA in immune and non-immune cells, respectively
(Figures 7A–C). It was found that the average expression of
irlncRNA in immune cells was higher than that of non-irlncRNA,

while in non-immune cells, their difference was slight
(Figure 7A). The distributions of irlncRNA and non-irlncRNA
in immune cells and non-immune cells further confirmed this
conclusion (Figures 7B,C). To further explore the expression
characteristics of irlncRNA, we analyzed the correlation between
lncRNA expression and the level of immune infiltration in
cancers. We first estimated the immune infiltration level of
cancer samples through the TIMER online tool (Newman
et al., 2015; Becht et al., 2016; Li et al., 2016; Aran et al., 2017;
Finotello et al., 2019). Then, we calculated the correlation
between lncRNA expression and the level of immune
infiltration to find out infiltration-related lncRNAs
(infrlncRNAs). Finally, we compared the distribution of our
method (ImReLnc) and ImmLnc on irlncRNA and
infrlncRNA. Specifically, we calculated the irlnRNA rate (IR)
in all lncRNAs, the irlnRNA rate in infrlncRNA (IRINF), the
infrlncRNA rate (INFR) in all lncRNAs, the infrlncRNA rate in
irlncRNA (INFRI) for ImReLnc and ImmLnc (See
Supplementary Table S3, S4, Data Sheet 1). It was found that
the IRINF/IR and IRINF/IR of ImReLnc were significantly higher
than ImmLnc in all 33 cancers (See Supplementary Figure S3,
Data Sheet 1). Therefore, the irlncRNAs recognized by ImReLnc
have more significant immune properties than those recognized
by ImmLnc.

In order to show that the heuristic correlation coefficient is
better than the direct or partial correlation coefficient, we
performed the following analysis on the colon cancer data set.
First, we calculated three correlation coefficients: direct
correlation coefficient, partial correlation coefficient, and
heuristic correlation coefficient. Then, we performed immune-
related enrichment analysis based on the above correlation
coefficients. Afterward, we screened the enrichment results
and obtained three sets of irlncRNAs. Finally, we performed
Cox regression analysis on the three groups of irlncRNAs.
Specifically, six highly pathogenic irlncRNAs RP5-884M6.1,
RP11-742B18.1, HOTAIR, AC004988.1, CTD-2357A8.3, and

FIGURE 7 | The expression of immune-related lncRNA (irlncRNA) and non-immune-related lncRNA (non-irlncRNA) in immune and non-immune cells. (A) The
average expression of irlncRNA and non-irlncRNA in immune cells and non-immune cells. (B) The distribution of irlncRNA and non-irlncRNA in immune cells (p-value
≤0.01). (C) The distribution of irlncRNA and non-irlncRNA in non-immune cells (p-value ≤0.01).

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 7925418

Gao et al. Identifying Immune-Related lncRNA Characteristics

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


GS1-600G8.5, were found to be associated with cancer prognosis
(Table 1). Among them, RP5-884M6.1, RP11-742B18.1, and
HOTAIR were found to be related to the occurrence of colon
cancer by previous studies (Zhou et al., 2019; Paredes et al., 2020;

Gong et al., 2021). The prognostic analysis related to the three
correlation calculations is shown in Figure 8. We found that the
prognostic effects of lncRNA calculated by direct correlation and
partial correlation were not much different. The prognostic effect

TABLE 1 | Univariate and Multivariate Cox analysis of immune-related lncRNAs.

LncRNA Univariate Multivariate Source

HR (95% CI for
HR)

p.value Coef z p

HOTAIR 0.97 (0.95–0.99) 0.026 5.79E-03 1.914 0.001 58 PMID: 34 630 664
AC004988.1 1 (1–1) 0.000 19 -4.88E-04 -1.638 0.001 66 -
RP5-884M6.1 1 (1–1) 0.001 9 1.83E-03 2.92 0.003 56 PMID: 32 983 990
CTD-2357A8.3 0.97 (0.95–0.99) 0.007 2 -0.001 2004 -1.387 0.015 35 -
GS1-600G8.5 0.99 (0.98–1) 0.012 1.19E-02 1.154 0.029 29 -
RP11-742B18.1 1 (1–1) 0.000 98 -3.10E-02 -2.045 0.040 83 PMID: 31 516 583

FIGURE 8 | Kaplan-Meier curves of immune-related lncRNAs from different correlation calculations. (A) Direct correlation calculation in the training set. (B) Direct
correlation calculation in the testing set. (C) Direct correlation calculation in the total set. (D) Partial correlation calculation in the training set. (E) Partial correlation
calculation in the testing set. (F) Partial correlation calculation in the total set. (G) Heuristic correlation calculation in the training set. (H) Heuristic correlation calculation in
the testing set. (I) Heuristic correlation calculation in the total set.
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of lncRNA calculated by heuristic correlation was better than the
former two. This indicates that heuristic correlation calculation
has advantages in identifying immune-related prognostic
characteristics in cancer.

3.4 The Pathogenicity Level of
Immune-Related lncRNAs
Having proved that ImReLnc can effectively identify irlncRNA,
we next explored the application of ImReLnc in assessing the
pathogenicity level of irlncRNA. We first compared the
relationship between drlncRNAs from disease databases
(LncRNADisease2.0 and Lnc2Cancer2.0) and irlncRNAs
recognized by ImmLnc and ImmLnc. Specifically, the top 500
irlncRNAs (determined by the number of cancers involved in
irlncRNA) were used for analysis, and we found that the
irlncRNA recognized by ImReLnc accounted for a higher
proportion in the disease database (Table 2). Besides, we
analyzed the distribution of pathogenicity levels of irlncRNAs
in ImReLnc. Two methods were used to divide the data set where
the sorted irlncRNAs (descending order) were located. The first
method was to evenly divide irlncRNAs into 6 data sets according
to the number of irlncRNAs (Table 3), and the second method
was to divide irlncRNAs into 5 data sets evenly according to the

level of pathogenicity of irlncRNAs (Table 4). In Table 3, the
average pathogenicity level of irlncRNAs in LncRNADisease2.0
and Lnc2Cancer2.0 is higher than or approximately equal to that
of all identified irlncRNAs, especially in Dataset 1. This indicates
that the calculated pathogenicity level of irlncRNA is credible,
and irlncRNA is particularly pathogenic within the range of high
pathogenicity levels. Similarly, in the range of high pathogenicity
levels in Table 4, the mean pathogenicity level of irlncRNAs in
LncRNADisease2.0 and Lnc2Cancer2.0 is higher than the mean
pathogenicity level of all identified irlncRNAs. This further shows
that the calculated pathogenicity level of irlncRNA is credible,
and its pathogenicity within the interval of high pathogenicity
level is quite apparent.

4 DISCUSSION

Long non-coding RNA plays an essential role in cancer via gene
expression and immune regulation (Hu et al., 2013; Chen et al.,
2017), and the identification of irlncRNA is of great significance
to the diagnosis and treatment of cancer. This study implemented
an R program, ImReLnc, to identify irlncRNAs and analyze their
pathogenicity levels across cancer types. Firstly, ImReLnc
calculated heuristic correlation based on direct correlation and

TABLE 2 | The comparison of the relationship between irlncRNA and drlncRNA in ImmLnc and ImReLnc. The data set in the table is divided equally according to the number
of irlncRNAs. IrlncRNAs refer to immune-related lncRNAs, drlncRNA refers to disease-related lncRNAs.

Dataset Distribution of ImReLnc Distribution of ImmLnc

Count LncRNADisease2.0 Lnc2Cancer2.0 Count LncRNADisease2.0 Lnc2Cancer2.0

Total 500 110 111 500 106 109
Dataset1 100 29 25 100 27 22
Dataset2 100 27 29 100 28 25
Dataset3 100 30 31 100 25 29
Dataset4 100 14 11 100 15 20
Dataset5 100 10 15 100 11 13

TABLE 3 | The pathogenicity distribution of immune-related lncRNA (irlncRNA). The data set is divided equally according to the number of irlncRNAs.

Pathogenicity level of
IrlncRNA

Total Dataset1 Dataset2 Dataset3 Dataset4 Dataset5 Dataset6

All identified irlncRNAs
Count 7,038 1,173 1,173 1,173 1,173 1,173 1,173
Min 0.028 1 0.345 5 0.298 8 0.263 2 0.231 8 0.197 7 0.028 1
Max 0.558 7 0.558 7 0.345 4 0.298 8 0.263 1 0.231 8 0.197 7
Mean 0.271 3 0.399 9 0.320 2 0.280 6 0.247 6 0.215 4 0.164 2
In LncRNADisease2.0
Count1 613 202 111 102 63 61 74
Count1/Count 0.087 1 0.172 2 0.094 6 0.087 0.053 7 0.052 0.063 1
Min1 0.108 7 0.346 0.299 0.263 3 0.232 3 0.197 8 0.108 7
Max1 0.558 7 0.558 7 0.345 3 0.298 6 0.262 8 0.231 0.197 6
Mean1 0.308 2 0.415 5 0.322 6 0.279 7 0.248 3 0.213 9 0.161 6
In Lnc2Cancer2.0
Count2 666 181 115 114 93 77 86
Count2/Count 0.094 6 0.154 3 0.098 0.097 2 0.079 3 0.065 6 0.073 3
Min2 0.091 5 0.345 5 0.299 0.263 3 0.231 8 0.197 9 0.091 5
Max2 0.558 7 0.558 7 0.345 3 0.298 6 0.263 1 0.231 6 0.196 8
Mean2 0.295 9 0.411 1 0.321 3 0.280 8 0.249 0.214 5 0.163 3
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partial correlation to provided a ranking score for lncRNA-
related mRNA class. Then, ImReLnc performed immune-
related enrichment analysis based on the ranking score
mentioned above to obtain irlncRNAs. Besides, ImReLnc
conducted differential expression analysis of these irlncRNAs.
Finally, the pathogenicity levels of the irlncRNAs were estimated
by their immune and differential expression characteristics across
cancer types.

We compared the expression levels of irlncRNAs in immune cells
and non-immune cells, which showed that the expression of
irlcRNAs in immune cells was higher than that in non-immune
cells (Figure 7). Besides, we analyzed the correlation between
lncRNA expression and the level of immune infiltration. We
found that the IR was significantly lower than the IRINF, and
the INFR was also significantly lower than the INFRI, which
indicated that the immunomodulatory effect of the identified
irlncRNAs was significant (See Supplementary Table S3, Data
Sheet 1). Furthermore, for the irlncRNAs in each cancer
identified by ImReLnc, we compared them with those identified
by ImmLnc (See Supplementary Table S5, Data Sheet 1). We found
a significant overlap between the irlncRNAs recognized by the two
methods, which further demonstrated the reliability of ImReLnc in
recognizing irlncRNAs. Finally, we explored the application of
ImReLnc in evaluating the pathogenicity level of irlncRNAs. For
the pathogenicity levels of irlncRNAs estimated by ImReLnc, we
compared themwith the drlncRNAs in the disease database (Table 3
and Table 3), and the results showed that drlncRNAs had a
significantly higher proportion in the highly pathogenic irlncRNA
interval. We also compared the relationship between drlncRNA
(from the LncRNADisease and Lnc2Cancer disease databases) and
irlncRNA (identified by ImmLnc and ImReLnc), and we found that
the irlncRNA recognized by ImReLnc accounted for a higher
proportion in the disease database (Table 2). This indicates that
our calculation of the pathogenicity levels of irlnRNAs is credible.

LncRNA FEZF1-AS1 was found to have the highest pathogenic
level in cancer and was related to the occurrence of GBM, LUAD,
HNSC, LGG, LUSC, PRAD, SKCM, BLCA, LIHC, READ, TGCT,

THYM, ACC, MESO, UCS, and CHOL. We infer that lncRNA
FEZF1-AS1 plays an important regulatory role in these 16 cancers. For
GBM, LUAD, PRAD, LIHC, READ, and UCS, studies have shown
that lncRNA FEZF1-AS1 plays a crucial regulatory role in them (Luo
et al., 2020; Liu et al., 2018; Zhu et al., 2019; Wang et al., 2018; Bian
et al., 2018; Zhang and Li, 2018). As for the other ten types of cancer,
their cancer tissues are similar to or adjacent to the cancer tissues of
the above six types of cancer (See Supplementary Table S6, Data
Sheet 1). Studies have shown that cancers with similar original tissues
may share lncRNA regulatory mechanisms (Zhang et al., 2016; Li
et al., 2020). The original tissue of LGG is similar to GBM, the original
tissue of LUSC andMESO is similar to LUAD, and the original tissue
of CHOL is similar to LIHC. Therefore, like in their similar tissues,
lncRNA FEZF1-AS1 may also play an immunoregulatory role in
LGG, LUSC, MESO, and CHOL. The original tissue of THYM and
HNSC is adjacent to GBM, the original tissue of ACC is adjacent to
GBM, the original tissue of BLCA and TGCT is adjacent to PRAD,
and the original tissue of SKCM is adjacent to UCS. These cancers
may be caused by the metastasis of their adjacent tissues. Thus they
have a similar irlncRNA regulatory mechanism as their adjacent
tissues. Among them, ACC and SKCM are relatively far from their
neighboring tissues, which may be caused by long-distance metastasis
of advanced cancer. Overall, lncRNAFEZF1-AS1 is highly pathogenic
and plays a crucial immunomodulatory role in cancer, which can
provide a necessary reference for cancer treatment.

In summary, ImReLnc accurately identified irlncRNAs in
cancers based on heuristic correlation optimization. More
importantly, ImReLnc effectively assessed the pathogenicity
level of irlncRNAs based on their immune and differential
expression characteristics. However, due to the limitation of
data acquisition, ImReLnc can only identify irlncRNAs in 33
cancers. In addition, we identified genes related to lncRNA
expression and further investigated the enriched immune
pathways, but it is still challenging determine how specific
lncRNA affects gene expression. In the future, we hope to
perform irlncRNA recognition for other types of cancer and
explore the targets of these irlncRNAs.

TABLE 4 | The pathogenicity distribution of immune-related lncRNA (irlncRNA). The data set is divided equally according to the pathogenicity level of irlncRNAs.

Pathogenicity level
of IrlncRNA

Total Dataset1 Dataset2 Dataset3 Dataset4 Dataset5

All identified irlncRNAs
Count 7,038 156 1,000 3,212 2582 88
Min 0.028 1 0.452 6 0.346 5 0.240 3 0.134 3 0.028 1
Max 0.558 7 0.558 7 0.452 5 0.346 4 0.240 3 0.133 8
Mean 0.271 3 0.483 8 0.387 8 0.287 8 0.198 2 0.114 3
In LncRNADisease2.0
Count1 613 47 153 263 143 7
Count1/Count 0.087 1 0.301 3 0.153 0.081 9 0.055 4 0.079 5
Min1 0.108 7 0.452 6 0.346 5 0.240 5 0.135 5 0.108 7
Max1 0.558 7 0.558 7 0.451 7 0.346 4 0.240 2 0.132 8
Mean1 0.308 2 0.490 6 0.393 3 0.293 2 0.193 5 0.126 1
In Lnc2Cancer2.0
Count2 666 36 143 300 177 10
Count2/Count 0.094 6 0.230 8 0.143 0.093 4 0.068 6 0.113 6
Min2 0.091 5 0.452 6 0.346 5 0.240 9 0.141 2 0.091 5
Max2 0.558 7 0.558 7 0.45 0.346 0.240 2 0.133 7
Mean2 0.295 9 0.488 4 0.392 6 0.290 5 0.197 8 0.121 7
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