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Abstract

Sepsis, a dysregulated response to infection, is a leading cause of death after burn injury. Changes in the immune response as well as the loss
of the skin, the primary barrier to infection, contribute to the increased risk for infection and sepsis in burn patients. This higher risk is further
compounded by the development of the systemic inflammatory response and hypermetabolic state, which limit the utility of commonly used
infection markers. As such, the development of sepsis biomarkers after burn injury is an imperative. A sepsis biomarker would facilitate earlier
diagnosis and treatment of sepsis, thus decreasing length of stay, morbidity, and mortality after burn injury. Numerous different biomarkers,
ranging from acute phase reactants, cytokines, and inflammatory markers to omics analyses and extracellular vesicles have been assessed as
potential biomarkers in burn sepsis. To date no single biomarker has proven useful as the sole indicator for sepsis. The future of burn sepsis
biomarkers will likely require a panel of biomarkers from all categories. The purpose of this review article is to list the various biomarkers that
have been studied in burn sepsis and describe their clinical utility and future use in patients with burn injury.
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Highlights

• Identification of sepsis biomarkers after burn injury is essential to improve patient outcomes.
• A biomarker panel consisting of various indicators of sepsis, including acute phase reactants, cytokines (both inflammatory and anti-inflammatory),

epigenetic markers and other novel biomarkers ranging from calprotectin to kallistatin could contribute to earlier sepsis diagnosis.
• Patient sepsis phenotype may influence the composition of sepsis biomarker panels.
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Background

Burn injury is a unique form of trauma that primarily affects
the skin but also disrupts the function of key physiological
systems, including the immune system. Following a burn,
immunosuppression occurs, characterized by upregulation
of adaptive immunity, downregulation of innate immunity,
apoptosis-induced lymphopenia, and decreased expression of
monocyte human leukocyte antigen-DR. [1–3] This immune
dysregulation makes burn patients highly susceptible to
infection and sepsis, with sepsis being one of the leading
causes of death after burn injury [4]. Furthermore, diagnosing
infection in burn patients is particularly challenging. The
hypermetabolic response after a burn injury results in elevated
core temperature, tachycardia, tachypnea, and altered white
blood cell and platelet counts, all of which are ubiquitous and
make traditional markers of infection unreliable [5]. This
can lead to delays in diagnosis which further contributes
to the high incidence (3–30%) of sepsis in patients with
severe burns [6]. The use of prophylactic antibiotics in
burn injury is not recommended due to the increased risk
of antibiotic resistance associated with prolonged hospital
stays, multiple infections, and the compromised skin barrier.
However, early antimicrobial therapy is critical in sepsis
treatment, emphasizing the need for methods that enable
earlier identification and treatment of infection. The current
standard of care relies on cultures and microbial sensitivity
testing techniques that have remained largely unchanged for
50 years, with diagnosis delayed several days, thus further
impeding definitive diagnosis and treatment.

Biomarkers, commonly defined as measurable substances
whose presence is indicative of some phenomenon in an
organism, may enable early identification of patients with
sepsis, thus facilitating earlier diagnosis and treatment. The
ideal sepsis biomarker would not only assist in earlier
and more accurate identification of sepsis, but also help
direct antibiotic therapy, risk-stratify sepsis patients, and
be clinically measurable [7]. Unfortunately, to date no
single biomarker meets these criteria. The biomarkers thus
far studied in burns vary widely, but generally fall into
the following categories: acute phase reactants, damage-
associated molecular patterns, hematologic parameters (cell
counts), metabolic markers, pathogen-associated molecular
patterns, and organ dysfunction markers. The purpose of this
review article is to list the various biomarkers that have been
studied in burn sepsis; describe the biologic rationale behind
their current and future clinical use in patients with burn
injury; and discuss promising methodologies for new burn
sepsis marker development.

Review

Acute phase reactants

Acute phase reactants, including procalcitonin (PCT), c-
reactive protein (CRP), and cytokines are among the most
studied sepsis biomarkers in burns. Each acute phase reactant
has unique characteristics that both facilitate and limit its
utility as a burn sepsis biomarker.

Procalcitonin

PCT, a 116-aminoacid produced primarily by thyroid neu-
roendocrine cells, has been used for over 20 years as a
biomarker of sepsis in critical care and burns [8,9]. The

production of PCT is regulated by the CALC-1 gene, which
is normally suppressed in nonendocrine tissues. However,
CALC-1 gene transcription is stimulated by bacterial infec-
tion, leading to increased PCT production anywhere from 3–
20 h after bacterial infection. Because PCT has a relatively
short half-life of 25–30 h, once the bacterial infection is
cleared, PCT levels decrease by half every day [10]. Higher lev-
els of PCT have also been correlated with greater sepsis sever-
ity in medical intensive care patients [11]. These features make
it a viable candidate for a bacterial infection biomarker. Unfor-
tunately, PCT has not been validated as a biomarker for viral
infections.

Although there is evidence that PCT is superior to CRP in
non-burn critically ill sepsis patients, the evidence is less clear
in burns [11–14]. A recent meta-analysis of PCT reported a
moderate sensitivity of 73% (CI 53–87) and specificity of
75% (CI 66–82) [15]. Because peak PCT levels have been
associated with burn size, a PCT cutoff of 1.5 ng/ml has been
proposed as a trigger for initiation of antibiotics for sepsis in
burn patients [16]. This has led to the suggestion that PCT
trends over time may be more valuable in sepsis detection
than isolated PCT levels [17]. A final potential use for PCT
in burns may be the de-escalation of antibiotics for treatment
of bacterial infections, particularly in those with respiratory
infections. ICU studies have reported a reduction in antibiotic
exposure by >3 days by using PCT decreases to terminate
antibiotic use [16]. However, further studies are warranted
prior to incorporating this practice into patient care. Finally,
PCT provides limited information on viral or fungal infec-
tions. Hence, sepsis from those infectious etiologies is possible
even in the face of normal PCT levels.

C-reactive protein

A second acute phase reactant that has been considered as
a potential marker of sepsis in burn injury is CRP, which is
thought to bind to the phospholipid components of pathogens
and damaged cells to promote macrophage-mediated removal
[18]. CRP is notable for increasing in the early stages of
infection and inflammation; however, it does not distinguish
between mild and severe infections and remains elevated
throughout the time course of infection. As such, CRP cannot
be used to evaluate the adequacy of therapy or enable the
early discontinuation of antibiotic therapy [19]. CRP and
its relationship to sepsis was examined in a cohort of 918
pediatric burn patients. CRP was noted to correlate with burn
size, but not with infection or sepsis [20]. Interestingly, CRP
was lower in burn survivors. Elevated CRP has also been
associated with sepsis in elderly burn patients [21].

Improvement in laboratory testing has led to the ability
to measure CRP at much lower levels and detect smaller
changes in CRP over time. This so called, high-sensitivity
CRP (hsCRP), test has been traditionally used to diagnose
cardiovascular disease, but has also been proposed as a more
specific predictor of sepsis. A study of hsCRP in individuals
residing in the community suggested that elevated baseline
hsCRP could be used to predict those at increased risk for
future sepsis [22]. Another study comparing hsCRP to PCT
in the elderly reported that hsCRP was not inferior to PCT in
the diagnosis of sepsis and septic shock [23]. Unfortunately,
the use of hsCRP as a predictor of sepsis in burn patients has
not been demonstrated in a prospective study. However, one
potential use for CRP as a burn sepsis biomarker is to combine
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Table 1. Cytokines in sepsis.

Pro-inflammatory Function Role in Sepsis

TNF-α Cytokine production, apoptosis cell proliferation, tumor necrosis anti-infection Biomarker survival, progression
Il-6 Cytokine production, cell differentiation/growth Biomarker, survival, severity
IL-8 Angiogenesis, chemotaxis Biomarker mortality
IL-12 IFNγ , TNF-α production Unknown
IL-17 Production cytokine/chemokine Autoimmunity Unknown
IL-1β Cell apoptosis, differentiation, proliferation Unknown
IL-18 IFNγ , anti-microbial immunity Biomarker disease severity
IFN-γ Anti-infection, auto-immunity Unknown
GM-CSF Cell survival, growth, autoimmunity Development granulocyte, monocyte Unknown

Other proinflammatory cytokines with possible sepsis role: High-mobility group box-1 (HMGB1), MCP-1, MIP-1β (macrophage inflammatory
protein)
Anti-inflammatory
TGF-β Inhibits proinflammatory cytokines, Apoptosis, cell proliferation, migration Unknown
IL-1RA IL-1-α, β inhibitor Unknown
IL-4 Cell proliferation Unknown
IL-10 Pro-inflammatory cytokine inhibitor Biomarker severity, mortality
IL-11 Induction Th2 Inhibition Th1 cytokine production Unknown
IL-13 Pro-inflammatory cytokine inhibitor Unknown

IL interleukin, IFN interferon, TNF tumor necrosis factor, GM-GCSF granulocyte-macrophage colony-stimulating factor, Th T helper cells, RA receptor
antagonist, HMGB1 high-mobility group box-1, MCP-1 monocyte chemoattactant protein-1, MIP-1β macrophage inflammatory protein

it with PCT. CRP could be used for early detection, while PCT
would enable early termination of antimicrobials. However,
this requires further prospective evaluation.

Plasma N-terminal prohormone of brain Naturetic

peptide (NT-proBNP)

Plasma N-terminal prohormone of brain naturetic peptide
(NT-proBNP) is traditionally used as a biomarker for car-
diac dysfunction, as it is released by cardiac myocytes in
response to volume expansion and wall stress [24]. However,
NT-proBNP levels are also influenced by sepsis and shock
by less well understood mechanisms [24,25]. The cardiac
insufficiency and acute ventricular dilatation that accompany
sepsis and shock cause elevation of NT-proBNP. As such, NT-
proBNP could serve as a biomarker for sepsis in burn patients.
Unfortunately, cardiac insufficiency in sepsis is not an early
phenomenon, which may restrict the utility of NT-proBNP.
Early studies of NT-proBNP in burn sepsis report a 89.7–
96% sensitivity and 62.5–100% specificity [26,27]. Although
promising, NT-proBNP utility is yet to be proven and may also
be limited by test availability, turnaround times, and patient
comorbidities such as preexisting cardiac dysfunction.

Proinflammatory cytokines (Table 1)

Innumerable cytokines have been proposed as potential
biomarkers for sepsis [28]. For the purposes of this review,
we will focus on those pro- and anti-inflammatory cytokines
that have a clear link to sepsis. Proinflammatory cytokines,
including tumor necrosis factor alpha (TNF-α), interleukin-
6 (IL-6), and interleukin-8 (IL-8) as well as the anti-
inflammatory cytokine interleukin-10 (IL-10) have been
proposed as markers for sepsis in burn injury due to their
relationship to the immune response to infection and tissue-
associated damage [29]. Unfortunately, cytokine levels are
influenced by numerous factors, including organ dysfunction,
comorbidities, genetic variability, and the timing of sampling
[18]. This limits their utility as the sole method of sepsis
identification.

Tumor necrosis factor alpha

TNF-α, a central mediator of inflammation, is the subject of
numerous investigations focusing on sepsis biomarkers. TNF-
α is generated in response to a variety of stimuli including
hypoxemia, ischemia/reperfusion, endotoxin and other bacte-
rial products as well as in response to complement activation
and other cytokines. TNF-α plays a key role in activation of
natural killer cells as well as monocytes and macrophages,
induction of apoptosis, vasodilatation via nitric oxide pro-
duction, promotion of neutrophil chemotaxis, and activation
of both the fibrinolytic and prothrombotic pathways [30,31].
TNF-α is elevated after burn injury; however, burn patients
with sepsis have even more pronounced increases in TNF-α
[2,32].

Il-6

IL-6, like TNF-α, is elevated in both burns and sepsis. IL-6
is an inducible pleiotropic cytokine expressed in leukocytes,
liver, spleen and kidney with a variety of immune functions
ranging from induction of fever to stress hormone produc-
tion stimulation and immune cell activation [33]. Studies
have confirmed that an IL-6 > 500 pg/ml helps discriminate
sepsis from non-infectious Systemic Inflammatory Response
Syndrome, which could be particularly helpful in the patient
with major burn injury [34]. Finally, IL-6 has comparable
diagnostic value to PCT, with a 78% specificity and 68% sen-
sitivity [35]. As such, IL-6 is a promising biomarker for burn
sepsis.

Il-8

IL-8, a proinflammatory cytokine that promotes migration
and activation of neutrophils, is produced by macrophages,
monocytes, and endothelial cells [17]. Elevations in IL-8 after
burn injury are common immediately after injury and peak
levels have been correlated with increased mortality and sepsis
[36,37]. One study in 468 pediatric patients with burns with
greater than 30% TBSA confirmed that a second peak of
IL-8 of at least 234 pg/ml was associated with sepsis and
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organ dysfunction in burn injury [37]. Elevated IL-8 was
also present in patients with multiple organ failure. IL-8
as a biomarker for sepsis is limited by the discriminating
factors for survival, including inhalation injury, burn size, and
other infectious complications [37]. Nonetheless, IL-8 use as a
sepsis biomarker in conjunction with other cytokines remains
intriguing.

Il-18

IL-18 is a proinflammatory Th1 cytokine produced by
macrophages that may stimulate the release of IFN-γ (type II
interferon) which further activates macrophages. Although
IL-18 levels are increased at 48 h in moderately burned
patients, IL-18 correlation with burn sepsis is not known [38].
In non-burn populations, IL-18 levels are both elevated in
patients with sepsis and associated with adverse outcomes
in sepsis [39]. Interestingly, IL-18 concentrations have been
used to distinguish gram positive from gram negative sepsis in
non-burn populations [40]. Further studies of IL-18 in burn
sepsis are needed.

Anti-inflammatory cytokines
Il-10

Although numerous anti-inflammatory cytokines have been
identified, few have known functions in sepsis. IL-10 is one of
the key mediators in the anti-inflammatory response. IL-10
inhibits the production of proinflammatory cytokines TNF-α,
IL-1, IL-6, IL-8, IL-12, GM-CSF, MIP-1α, and MIP-2α in mul-
tiple different cell types [41]. In contrast to TNF-α, IL-6, and
IL-8, IL-10 is an anti-inflammatory cytokine that regulates
immune cells, including macrophages, NK cells, and B cells
[42]. IL-10 is initially elevated but progressively decreases
after burn injury except when the patient is developing sepsis.
Hence, it has been proposed as a marker of sepsis and/or
increased mortality after burn injury [43]. IL-10 levels are
elevated in sepsis and correlate with sepsis severity as well as
mortality. Overexpression of IL-10, i.e. presence of profound
immunosuppression, is a risk factor for mortality in sepsis
[44]. Hence, using IL-10 in isolation as a biomarker of sepsis
is problematic. The dynamic interplay of sepsis, immuno-
suppression, and IL-10 release in burns requires further
study.

The optimal use of cytokines as sepsis biomarkers may
well require simultaneous examination of cytokine profiles
consisting of both proinflammatory and anti-inflammatory
cytokines. For example, one study compared the ratio of the
pro-inflammatory cytokine TNF-α to the anti-inflammatory
cytokine IL-10 in 34 patients with >20% TBSA, within 48
h of admission. The TNF-α to IL-10 ratio was inversely
correlated with burn severity, and a lower ratio was associated
with hyper susceptibility to infections (>3 infection episodes)
[45]. Hence, a sepsis cytokine panel may well be a useful
‘biomarker’ of sepsis.

Other potential biomarkers of sepsis in burns
CD14

One of the most promising biomarkers for burn sepsis is
CD14. The CD14 receptor for the lipopolysaccharide (LPS)-
Lipopolysaccharide Binding Protein (LBP) complex may acti-
vate inflammatory cascades and signal transduction pathways
leading to systemic inflammatory response syndrome (SIRS),
which is ubiquitous in burn injury. CD14 exists in both
a soluble (sCD14) and membrane-bound (MCD14) forms.

sCD14 can be cleaved by proteases to generate presepsin,
which has better specificity and sensitivity in distinguishing
sepsis than many other biomarkers [46]. A subtype of the
soluble CD14, produced by monocytes and macrophages,
presepsin, shows promise as a marker for sepsis in burn injury.
Presepsin, in conjunction with endotoxin, helps to activate
the inflammatory cascade [47]. Presepsin has been reported
to have better sensitivity and specificity in sepsis diagnosis
than PCT, IL-6, and CRP. Further studies, including a meta-
analysis, report that values ranging from 317–719 pg/ml
indicated the presence of sepsis [46,48]. In one study of
sepsis in burn patients presepsin elevation preceded PCT, CRP,
and WBC count changes by 1 day [49]. Administration of
antibiotics a day earlier would likely improve sepsis outcomes
significantly. However, because inflammation occurs in states
other than sepsis, presepsin cannot be used in isolation for
the diagnosis of sepsis in burn injury [50]. Clinical trials of
presepsin and CD14 are needed to confirm its utility.

Complete blood count (CBC) parameters

Virtually every patient with a major burn injury has blood
analyzed for complete blood count (CBC) and its associ-
ated ratio markers. Recently there has been increased inter-
est in using these parameters to identify sepsis. The advan-
tage of cell counts, cell properties and cell ratio markers
is their ready availability, cost-effectiveness, and common
use in clinical medicine. Several ratios have become increas-
ingly prominent: Neutrophil-to-Lympohocyte Ratio, Platelet-
to-Lymphocyte Ratio, and Monocyte-to-Lymphocyte Ratio
[51,52]. Kim et al investigated RDW (Red Cell Distribution
Width), MPV (Mean Platelet Volume), PDW, and MPVPR
these biomarkers as predictors of sepsis in 1806 burn patients
[53]. They report a hazard Ratio of >1 for sepsis for RDW,
MPV, PDW, and MPVPR. Platelet count, PDW (Platelet Dis-
tribution Width), and MPVPR (Mean Platelet Volume/Platelet
Count ratio) were predictive for septic shock and associated
with sepsis and mortality, with an area under the curve (AUC)
of >0.65 in an unadjusted generalized estimating equations
model. The findings of this single center retrospective study,
although suggestive, will require further confirmation in a
multicenter prospective study.

Kallistatin is a human serine proteinase inhibitor with
pleiotropic effects including anti-apoptosis, anti-inflammation,
anti-angiogenesis, and antioxidation. These anti-apoptotic
properties may influence outcomes in sepsis. In addition,
kallistatin could be used as a biomarker for sepsis. Lin et al
reported in septic ICU patients that kallistatin levels were
lower in septic shock compared to severe sepsis; mortality
was inversely related to kallikrein level [54]. Hence, kallikrein
could be either a biomarker for sepsis or potentially a
new treatment for sepsis. In pediatric burn sepsis combined
treatment with simvastatin and kallistatin inhibited human
endothelial cell apoptosis, suggesting that this combination
may be a potential therapeutic strategy for pediatric burn
patient sepsis [55]. Further studies are needed to validate
these promising findings.

Calprotectin, found in neutrophil cytosol, is a calcium-
binding protein that has demonstrated diagnostic value in
sepsis, including sepsis-associated encephalopathy, sepsis-
associated kidney injury as well as neonatal sepsis prediction
[56]. Calprotectin is released by neutrophils in response
to bacterial infection or endotoxin within hours [57]. A
recent study comparing calprotectin to PCT reported that
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calprotectin was superior to PCT in distinguishing sepsis in
ICU patients (AUC 0.79 calprotectin, 0.49 procalcitonin) [57].
The use of calprotectin for predicting burn sepsis, however,
requires validation.

Genomic considerations

Analysis of the genome may have utility in identification
of patients at increased risk for sepsis. Several studies have
implicated specific polymorphisms associated with burn
sepsis, including IL-6-174G, PAI-1 4G/4G, TLR4 + 896G-
allele, TNFα-308 A-allele [58–60]. Unfortunately meta-
analyses evaluating the association of SNPs with sepsis have
not corroborated these initial findings [18]. The complex
nature of genome interactions and translation increase the
difficulties in isolating single gene markers for sepsis. Hence,
further clinical study is needed to determine which polymor-
phisms are associated with sepsis development in burn injury
and whether identification of these polymorphisms can be
effectively employed clinically to prevent sepsis.

Microarrays

Expression profiling, primarily via microarray transcriptome
technology from a variety of different sources (skin, skeletal
muscle, etc.) may help to reveal the underlying genomic and
transcriptomic activities that accompany sepsis. Microarrays
and real time quantitative reverse transcription polymerase
chain reaction (qRT-PCR) analysis have been used to exam-
ine potential mRNA and cytokine receptors associated with
sepsis. One multicenter prospective study identified a set
of 42 molecular biomarkers related to key innate/adaptive
immune function, cell cycling, WBC differentiation, extracel-
lular remodeling and immune modulation pathways could
be used in conjunction with clinical findings for early sepsis
detection [61]. Further clinical validation is needed prior to
adopting this methodology.

MicroRNA

MicroRNAs, consisting of noncoding RNAs 21–26 nucleotides,
regulate gene expression via post transcriptional repressors
[62]. MicroRNAs exist in numerous body fluids, including
serum, plasma, whole blood, urine, cerebrospinal fluid,
and sweat, participating in the cross talk between innate
immunity, apoptosis, and mitochondrial function [63,64].
MicroRNA expression profiling in nonburn sepsis patients
reveals a correlation between microRNA dysregulation
and clinical signs of sepsis [65]. Both upregulation and
downregulation of microRNA have been identified in sepsis
patients, with downregulation in miR-499-Sp, miR-25, miR-
150 and upregulation in miR16, MiR-223, 27a, 133a, 155,
34a, and 143. microRNA have been posited as a biomarker
of sepsis in burn patients. For example, in burn sepsis
microR495 downregulated as well as negatively correlated
with PCT and CRP [66]. Two other types of RNA have
been investigated in sepsis: IncRNAs (long non-coding RNAs)
and circular RNAs (circRNAs). IncRNAs, >200 nucleotides
in length, have diverse cellular functions, including mRNA
translation regulation, protein transport and RNA processing.
In sepsis, they help regulate proinflammatory cytokines and
other immune pathways such as Nuclear Factor-κB signaling
pathway [67,68]. Likely a panel of microRNAs consisting of
microRNAs, IncRNAs, and circRNAs will be needed to serve
as a burn sepsis biomarker. microRNA technology requires

extensive clinical testing prior to employing it as a biomarker
for sepsis in burn injury.

Epigenetic markers

Epigenetics plays a pivotal role in the interaction of genes
with the environment. By definition, epigenetics consists of
regulatory mechanisms governing gene expression excluding
changes caused by DNA sequence alterations [69]. Examples
of epigenetic modification include DNA methylation, his-
tone modifications, and non-coding RNAs. DNA methylation
shows promise a biomarker for bacterial sepsis: demethylation
of key genes responsible for the response to bacteria and
for inflammation are present in neonates with sepsis [70].
Definitively linking epigenetic markers with clinical outcomes
has proven to be problematic, as association and causation
must be clarified. The clinical study of epigenetic biomark-
ers in burn sepsis is limited. Much work still needs to be
done.

Proteomics and metabolomics

The use of proteomics and metabolomics as biomarkers for
burn sepsis is under intense investigation. Proteomics employs
high-throughput protein expression analysis to identify pro-
teins associated with sepsis. Elevations in proteins (lipocalin
2, YKL40), downregulated proteins (vitamin D-binding
protein, retinol-binding protein), and dysregulated proteins
(antithrombin-III, CLUSterin, serum amyloid A-1) have all
been identified in non-burn sepsis [71,72]. Metabolomics
differs from proteomics in that it analyzes metabolites
with relationship to biochemical events. Metabolomics is
particularly intriguing in the burn-injured patient, whose
metabolism is fundamentally altered due to injury. Thus
far the use of metabolomics in burn injury has focused on
lipidomics to explain the crosstalk between muscle wasting
and fatty liver infiltration [73]. Further work is needed
to determine if these methodologies will prove useful in
developing sepsis biomarkers.

Extracellular vesicles

Extracellular vesicles (EV) are emerging as a potential
biomarker for sepsis. In brief, EV are nonreplicating small,
lipid-coated particles containing proteins (chemokines,
cytokines, heat shock proteins), microRNA, and DNA
[74]. EV particles are released by cells and exist in blood,
urine, saliva, and other body fluids. EV may alter cell
function, metabolism, and life span of the targeted cells
after release via both their membrane-bound and internal
biomolecular contents [75]. In general, there are three
types of EV: exosomes (endocytic origin, 30–150 nm in
size, contain endosome-associated proteins), microvesicles
(budding plasma membrane origin, 100–800 nm, contain
CD63, CD81, annexin V), and apoptotic bodies (from cell
apoptosis) [76]. EV can both induce and be a biomarker for
sepsis [74]. The cellular origin of EV (leukocyte, macrophage,
platelet, granulocyte) varies, providing a diverse range of
potential biomarkers for sepsis, and EV transport some of
the classic markers of sepsis, including CRP [77]. Finally,
the cargo content of EV may have utility in sepsis diagnosis
[78]. EV are generated from leukocytes and endothelial cells
and decrease progressively after burn injury. In addition,
EV production correlates with injury severity (burn size
and depth) and sepsis [79]. The use of EV in burn sepsis is
promising: Raman spectroscopy, in conjunction with plasma
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derived EVs, achieved a 97.5% sensitivity and 90% specificity
in one study of burn patients with sepsis [80]. Although these
results are promising, further work is needed to confirm the
utility of EV as a sepsis biomarker.

Sepsis phenotypes

No review of sepsis biomarkers would be complete without a
discussion of sepsis phenotypes. Sepsis is unique in that there
is significant heterogeneity in presentation between individ-
uals. Sepsis phenotypes, in which patients are characterized
by their physiologic and immunologic responses as well as
demographics, may help to differentiate patients with sepsis.
Seymore identified four phenotypes for sepsis (α, β, γ , and
δ) based on physiology, treatment, and response to therapy
in a cohort of 20 189 patients who met Sepsis-3 criteria
within 6 h of presentation [81]. This cohort was validated in
43 086 patients. The α phenotype was most common (33%),
including patients with the lowest vasopressor need; the β

phenotype (present in 27%) consisted of older patients with
more chronic illness and renal dysfunction, the γ phenotype
(27%) had more inflammation and pulmonary dysfunction,
and the δ phenotype (13%) had more liver dysfunction and
septic shock as well as the highest mortality. Simulation
modeling of the four phenotypes for outcomes based on ran-
domized controlled trials demonstrated that patient outcome
varied widely based on phenotype (range from >33% chance
of benefit to >60% chance of harm). This suggests that
biomarker efficacy in predicting sepsis and septic shock may
be related to the patient’s sepsis phenotype. Hence, use of the
biomarkers described above may require further validation
based on sepsis phenotype.

Conclusions

Sepsis is an important cause of both morbidity and mortality
after burn injury. The diagnosis of sepsis is confounded by
the extreme inflammatory response, complex immunologic
changes, and clinical course of burn injured patients. Proposed
biomarkers for burn sepsis range from commonly measured
laboratory tests such as CBC to acute phase reactants, inflam-
matory markers, omics techniques, and extracellular vesicles.
Due to the complexity of sepsis and burn injury, the ‘ideal’
biomarker for sepsis in burns will likely be a panel of tests
with representation from each of the major categories of
biomarkers. Furthermore, the use of biomarkers will likely
be refined by identifying patient sepsis phenotypes. Advanced
informatic techniques in conjunction with machine learning
and artificial intelligence that can combine the vast genomic,
proteomic, metabolomic, acute phase reactants with patient
clinical data will likely be the key to improving the diagnosis
and early treatment of sepsis in burn injury. The journey has
just begun.
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