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Abstract

ChIP-seq (Chromatin Immunoprecipitation followed by sequencing) is a high-throughput

technique to identify genomic regions that are bound in vivo by a particular protein, e.g., a

transcription factor (TF). Biological factors, such as chromatin state, indirect and coopera-

tive binding, as well as experimental factors, such as antibody quality, cross-linking, and

PCR biases, are known to affect the outcome of ChIP-seq experiments. However, the rela-

tive impact of these factors on inferences made from ChIP-seq data is not entirely clear.

Here, via a detailed ChIP-seq simulation pipeline, ChIPulate, we assess the impact of vari-

ous biological and experimental sources of variation on several outcomes of a ChIP-seq

experiment, viz., the recoverability of the TF binding motif, accuracy of TF-DNA binding

detection, the sensitivity of inferred TF-DNA binding strength, and number of replicates

needed to confidently infer binding strength. We find that the TF motif can be recovered

despite poor and non-uniform extraction and PCR amplification efficiencies. The recovery of

the motif is, however, affected to a larger extent by the fraction of sites that are either coop-

eratively or indirectly bound. Importantly, our simulations reveal that the number of ChIP-

seq replicates needed to accurately measure in vivo occupancy at high-affinity sites is larger

than the recommended community standards. Our results establish statistical limits on the

accuracy of inferences of protein-DNA binding from ChIP-seq and suggest that increasing

the mean extraction efficiency, rather than amplification efficiency, would better improve

sensitivity. The source code and instructions for running ChIPulate can be found at https://

github.com/vishakad/chipulate.

Author summary

DNA-binding proteins perform many key roles in biology, such as transcriptional regula-

tion of gene expression and chromatin modification. ChIP-seq (Chromatin immunopre-

cipitation followed by high-throughput sequencing) is a widely used experimental

technique to identify DNA-binding sites of specific proteins of interest, within cells,

genome-wide. DNA fragments from genomic regions that are bound by a protein of inter-

est, often a transcription factor (TF), are selectively extracted using specific antibodies,
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amplified using PCR, and sequenced. The sequences are mapped to the reference genome.

Regions where many sequences map, called “peaks”, are used to infer the location of TF-

bound loci (peaks), in vivo occupancy at those loci, and the sequence pattern (motif) to

which the TF shows a binding affinity. But measurements of TF occupancy and motif

inference are vulnerable to several biological and experimental sources of variation that

are poorly understood and difficult to assess directly. Here, we simulate key steps of the

ChIP-seq protocol with the aim of estimating the relative effects of various sources of vari-

ations on motif inference and binding affinity estimations. Besides providing specific

insights and recommendations, we provide a general framework to simulate sequence

reads in a ChIP-seq experiment, which should considerably aid in the development of

software aimed at analyzing ChIP-seq data.

Introduction

ChIP-seq (Chromatin Immunoprecipitation and sequencing) is a popular high-throughput

experimental technique to find locations that are bound in vivo by a single transcription factor

(TF) [1]. Upon mapping of the DNA fragments bound by the TF to the reference genome, the

genomic loci bound by the TF are identified as high density mapped regions or peaks, where

each peak is associated with an intensity based on the number of sequenced fragments arising

from it. The intensity reflects the in vivo occupancy of the TF at that locus.

Several studies of ChIP-seq data have focussed on the biological factors distinguishing the

loci bound by the TF. It has been shown that in addition to the affinities of binding sites pres-

ent at a locus, nucleosome positioning is a strong determinant of TF binding in vivo [2–5].

Other studies have shown that the concentration of the target TF [6, 7], short-range coopera-

tive interactions between the target TF and other TFs [8], and variation in chromatin accessi-

bility [5, 7] explain the variation in intensities across peaks. Some of the variation can arise due

to indirect binding, where the target TF binds DNA indirectly via a second DNA-bound TF

[9–11]. The intensity of such peaks is then no longer directly dependent on the affinity of the

target TF to sequence at the bound locus.

Since the distribution of ChIP-seq peaks and their intensities depend on factors other than

the affinity of the target TF towards sequence at a locus, it impacts two kinds of inferences

often made from ChIP-seq data. First, the highest intensity peaks are used to infer position

weight matrix (PWM) or motif models of the target TF [12]. While it is known that changes in

the concentration of the target TF can distort the inferred PWM [13, 14], the extent to which

cooperative and indirect interactions distort the PWM is unclear. Second, along with varia-

tions in chromatin accessibility, these interactions weaken the statistical dependence of peak

intensity on target TF binding site affinity, which means that a peak with a higher intensity

need not necessarily contain a higher affinity target TF binding site.

In addition to these biological factors, ChIP-seq peaks are affected by purely experimental

sources of noise. The ChIP-seq protocol broadly consists of three key steps [1, 15, 16]—(i) the

extraction of fragments that are bound by the target TF (ii) PCR amplification of these

extracted fragments, and (iii) sequencing of these fragments. It is known that fragments can be

extracted more easily at some genomic regions than others due to differences in chromatin

structure and cross-linking efficiency across the genome [17–19]. Similarly, certain fragments

are more efficiently amplified by PCR than others due to differences in GC content or the pres-

ence of nucleotide repeats [20–22]. The extent to which these factors distort peak intensities

and make otherwise identical genomic regions appear differentially occupied has not been
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quantified. Multiple biological replicates of ChIP-seq are recommended [23] to overcome

these issues, but the quantitative improvement in accuracy as more replicates are performed

has not been ascertained.

To evaluate the influence of the aforementioned biological and experimental sources of var-

iation on ChIP-seq peak intensities, we have developed a comprehensive pipeline to simulate a

ChIP-seq experiment called ChIPulate. In particular, we simulate genome-wide TF-DNA

binding based on established biophysical models of binding and also simulate the extraction,

amplification and sequencing steps of the ChIP-seq protocol. Our simulation thus associates a

set of read counts at each genomic locus with its occupancy by the target TF. Whereas existing

statistical models [14, 24–26] assume that read counts follow a prescribed probability distribu-

tion and treat the ChIP-seq protocol as a black box, we explicitly model key steps of the ChIP-

seq protocol. Our approach allows us to individually evaluate the impact of variation in extrac-

tion and PCR amplification efficiencies, as well as chromatin accessibility, indirect binding,

and cooperative binding, on peak intensities and PWM inference. We are also able to quantify

the extent to which additional replicates of ChIP-seq improve its ability to robustly measure

the occupancy of a genomic region.

We find that biological factors such as indirectly and cooperatively bound sequences distort

inferred PWMs more than experimental sources of variation. Variations in extraction effi-

ciency across the genome distort peak intensities and lower their ability to distinguish between

occupied loci. Poor extraction efficiency also increases the number of false positive peaks,

which are peak calls that do not contain a binding site for the target TF. In contrast to the effect

of variations in extraction efficiency, even drastic variations in PCR amplification efficiency

have little impact on peak intensities, and hence do not affect the inferred PWM or increase

the number of false positive peaks. Finally, we found that at least two biological replicates of

ChIP-seq read counts are necessary to reliably infer the binding energy of a genomic region.

Our work provides a general framework and a software tool for simulating ChIP-seq read

counts through a realistic model of TF-DNA binding and the steps of the ChIP-seq protocol.

Improvements in the protocol to lower variation in extraction efficiency, rather than PCR

amplification efficiency, are more likely to improve our ability to distinguish between genomic

regions of differing occupancy. Further, changes in the protocol that allow multiple biological

ChIP-seq replicates to be performed, or computational approaches that can reliably combine

read counts from ChIP-seq experiments, would allow more accurate inferences of TF-DNA

occupancy, especially in regions containing multiple binding sites.

Results

A framework to simulate read counts from TF binding sites in a ChIP-seq

experiment

A schematic of our ChIP-seq simulation framework is shown in Fig 1A, with details in Meth-

ods. Broadly, the goal of our simulation is to take as an input the occupancy of a TF at multiple

locations across a genome and output a set of read counts in both ChIP and input experiments

at each location. A single TF’s occupancy at a genomic location is determined by its site-spe-

cific binding energy, and its chemical potential, which depends on the logarithm of the con-

centration of the TF [27].

Each genomic location is associated with two experimental parameters—its extraction effi-

ciency and PCR efficiency. The extraction efficiency, which determines how many bound

fragments are successfully extracted in Step 1 in Fig 1A, can vary between different genomic

locations. The extracted fragments are then subjected to a number of PCR amplification cycles

in Step 2. The average number of amplified fragments obtained at each location depends on
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the PCR efficiency associated with the locus, which can also vary between different locations.

Step 3 represents the sequencing step where the amplified fragments from all locations are

sequenced. The number of sequenced fragments is the total read count of the experiment.

Since unique and duplicate fragments (red and black in Fig 1A) are tracked through the simu-

lation, the exact number of unique reads at each location is known.

In addition to the ChIP experiment, we simulate the sequencing of a genomic control input

sample. This simulation differs from the ChIP experiment in two ways. First, the background

binding energy (�bg) at each occupied genomic locus is set to a fixed value of 1kB T for all loca-

tions (see Methods for justification). Second, we set the number of cells to be only 10% of the

number of cells employed in the ChIP simulation. A larger number of cells are used in the

Fig 1. ChIP-seq simulation procedure. (A) Procedure overview. Each of n genomic regions contains a binding site with a binding

energy �(i) (in units of kB T), where a lower value represents a higher affinity binding site. In the ChIP sample, the binding energy at

the i-th location, and the chemical potential, set the probability of occupancy (pðiÞb ) of the target TF. The probability of occupancy

determines the number of cells (out of a total of C cells) where the i-th location is bound. In Step 1 of the simulation, a total of FðiÞe
fragments are extracted at the i-th location from a binomial distribution with mean CpðiÞe . pðiÞe is the extraction efficiency that

represents the probability of successfully extracting a bound fragment. All of these fragments are unique (in red) since each fragment

originates from a different cell. In Step 2, the extracted fragments are amplified through ncy cycles of PCR to give FðiÞa amplified

fragments (duplicate fragments in black) with the probability of amplification of each fragment, or PCR efficiency, being pðiÞa in every

cycle. The average number of amplified fragments A obtained from each extracted fragment is A ¼ ð1þ pðiÞa Þ
ncy , which we refer to as

the amplification ratio. In Step 3, ri reads are obtained from the i-th location after sampling r = cn fragments from all
Pn

i¼1
FðiÞa

amplified fragments, where r is the total read count and c is the sequencing depth. The number of unique reads at each location is the

final output of the simulation. For the control input sample, read counts are simulated as for the foreground ChIP sample, except

that the probability of occupancy is assumed to be constant at all n locations and the number of cells is assumed to be 0.1C. (B)

Sample output from the simulation. The top panel shows the distribution of binding energies employed in the simulation, which by

default is a truncated power law between 0 and 10kB T with an exponent of 0.5. The middle panel shows the number of unique reads

from each genomic region in the ChIP (black) and input (gray) experiments. The bottom panel is the read count ratio between the

ChIP and input samples at each location. The simulation parameters are n = 1000, μ = 3kB T, �bg = 1kB T, C = 105, ncy = 15, and

A = 1000. The extraction efficiencies in the ChIP and input samples follow a truncated normal distribution between 0 and 1, with a

mean of 0.5 and standard deviation of 0.05 across the genome.

https://doi.org/10.1371/journal.pcbi.1006921.g001
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ChIP simulation since, in practice, DNA is less efficiently extracted in the ChIP sample due to

the use of an antibody whereas no antibody is used in the input sample. Thus, to extract a

given amount of DNA, fewer cells are employed in the input sample than in the ChIP sample.

In the event that the number of extracted fragments in the input is more than the number of

extracted fragments in the ChIP sample, we down-sample the input fragments such that the

total number of extracted fragments is identical in both ChIP and input samples before the

PCR amplification step. Similarly, we down-sample the ChIP fragments if the number of

extracted fragments in the ChIP sample is more than than that in the input sample. At each

locus, the extraction and PCR efficiencies in the input are kept identical to the values used in

the ChIP simulation.

After simulating both ChIP and input experiments, we compute the ratio of the read counts

obtained from the ChIP sample to that of the input sample at each genomic locus. The read

count ratio at a location is equivalent to peak intensity computed by commonly used peak call-

ers from ChIP-seq reads [24]. The read counts obtained from our simulations are shown in

Fig 1B with the values of the simulation parameters set to the default values described in

Methods.

Key assumptions

When simulating genome-wide TF-DNA binding before Step 1 in Fig 1A, we assume that

there is a single TF and a single binding site in each genomic region. We relax this assumption

in later sections when simulating indirect and cooperative binding. We assume that binding in

different genomic locations are independent of each other.

The extraction efficiency parameter in Step 1 aggregates the effect of the many steps of frag-

mentation, cross-linking, pull-down and size selection that occur in a ChIP-seq experimental

protocol. We show in Methods that this parameter takes all these steps into account when

modeling the extraction of DNA fragments from cells. In the PCR amplification step, we

assume the amplification process to be in the exponential phase of amplification [28] where

increasing the number of PCR cycles exponentially increases the number of amplified frag-

ments. We assume that any potential PCR mutational errors do not change the amplification

ratio at any genomic location. In the sequencing step (Step 3), we assume that the sequencing

and mapping are error-free, i.e., reads are uniquely and correctly mapped, and they can be per-

fectly de-duplicated at each location.

Motif inference is not affected by extraction and PCR efficiency whereas

fidelity at locations with low read count ratios is affected by a low

extraction efficiency

We evaluated the impact of heterogeneity in extraction and PCR efficiencies on two outcomes

of ChIP-seq. One is the recoverability of TF motif based on the top genomic locations in terms

of their read count ratios. The second is fidelity, defined as the probability (frequency) with

which a site X with a read count ratio that is at least 10% higher than site Y in fact contains a

sequence with a higher affinity (or lower binding energy).

We simulated the process of inferring the motif of an arbitrarily chosen S. cerevisiae tran-

scription factor (Tye7) from ChIP-seq (Fig 2A). We assigned binding energies for 1000 geno-

mic regions from our default binding energy distribution, which is a power law distribution

(with an exponent of 0.5) between 0 and 10kB T (see Methods). By using the Tye7 binding

energy matrix estimated by BEEML from protein binding microarray measurements [13, 29],

we found the 10 bp sequence whose binding energy was closest to this assigned value, and vir-

tually planted it at each location. We simulated a ChIP-seq experiment with a fixed extraction
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and PCR efficiency across the genome, following which we selected sites having the top 100

read count ratios and constructed the PWM of Tye7. This PWM, which we refer to as the base-
line PWM, is used to compute the extent to which heterogeneity in extraction and PCR effi-

ciency changes the derived PWM.

Ideally, one would use a PWM of Tye7 published in a database as the baseline motif against

which to make these comparisons. However, these motifs can differ between databases due to

differences not only in the experimental assay used to measure TF-DNA binding but also the

underlying binding energy distribution of the bound sequences. This means that the baseline

Tye7 PWM derived from the simulation may differ from that present in the ScerTF database

[30]. However, our goal is to specifically assess the effect of extraction and PCR amplification

heterogeneity on motif recoverability. For this purpose, it suffices to compare the motif

derived in the presence of heterogeneity with the baseline motif derived in the absence of

heterogeneity.

Fig 2B shows the difference between the baseline PWM and the Tye7 PWM that is derived

in the presence of extraction or PCR amplification heterogeneity, respectively, when the effi-

ciencies follow a truncated normal distribution. This difference is measured in terms of the

mean Kullback-Leibler (K-L) distance, measured in bits (Methods), between the two PWMs.

Fig 2. Impact of genome-wide heterogeneity in extraction and PCR efficiency on motif inference and ChIP-seq fidelity. (A) To

simulate motif inference, 1000 binding energies were sampled from the default binding energy distribution. A binding site sequence

of transcription factor Tye7 was assigned to each binding energy (Methods). After simulating ChIP-seq in the absence of extraction

and amplification ratio heterogeneity, binding sites from locations with the 100 highest read count ratios were used to construct a

baseline PWM of Tye7 (shown inset). (B) The mean K-L distance between the baseline PWM and the motif inferred in the presence

of heterogeneity in extraction efficiency (right) and amplification ratio (left). The heterogeneity in extraction efficiency and

amplification ratio is assumed to follow a truncated normal distribution, with the mean increasing from left to right on the x-axis in

both panels. The coefficient of variation of the truncated normal varies from 0 (no variation, in blue) to 0.5 (green) and 1.0 (brown).

The error bars are the standard deviation in the mean K-L distance computed after PWM was estimated in 10 replicates of ChIP-seq

for each mean and coefficient of variation. (C) ChIP-seq fidelity captures the monotonicity of the relationship between read count

ratio and binding energy. Fidelity is defined as the probability that if a location i has a read count ratio at least 10% higher than

location j, then it implies that i has a lower binding energy than j. Fidelity is calculated by sampling 1000 pairs of locations, where

each pair could be from anywhere in the genome or top 25th, 25-50th, 50-75th, or bottom 25th percentiles of the read count ratio.

Read count ratios falling in each percentile bin are marked in different colors in the scatter plot. The fidelity values in each of these

bins is shown in the plot legend, along with the fidelity computed across all regions. (D) Variation in ChIP-seq fidelity with

heterogeneity in extraction efficiency (right) and PCR amplification ratio (left). The x-axis and the three plot colors are defined

identically to B. The error bars are the standard deviation in the estimate of fidelity, which are computed from 10 replicates of

simulation for a given mean and coefficient of variation.

https://doi.org/10.1371/journal.pcbi.1006921.g002
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The impact of heterogeneity in these parameters on the inferred motif is small as the highest

K-L distance from the baseline motif is about 0.08 bits. The effect of PCR amplification and

extraction heterogeneity on motif inference is more pronounced when the heterogeneity fol-

lows a power law distribution (S1A Fig) than when it follows a truncated normal distribution.

The distortion of the PWM is still relatively low, however, with the highest K-L distance from

the baseline motif being less than 0.1 bits per position. We also evaluated the impact of varying

the chemical potential between 1kB T and 6kB T on the inferred motif when the baseline motif

is derived at μ = 3kB T. Examples of the effect of a different chemical potential on the read

count ratios obtained across the genome are shown in S2A Fig. We found that the inferred

motif deviates up to 0.08 bits per position from the baseline motif (S2B Fig). This is within the

same order of magnitude as the effect of a low mean extraction efficiency on the inferred

motif.

We checked the extent to which the trends in Fig 2B depended on our choice of TF. We

selected 21 TFs that possessed different DNA binding domains [31] (S1 Table), and for each

TF, we simulated motif inference when there is heterogeneity in extraction efficiency (S3 Fig)

or the PCR amplification ratio (S4 Fig) across the genome. The binding energy distribution of

each TF, along with all other parameters of ChIPulate, was kept at their default values. We

found that motif inference in each of these TFs was affected in a manner similar to Tye7,

where a low mean extraction efficiency distorted the inferred motif more than a low mean

amplification ratio. However, we found that the extent of motif distortion due to extraction

heterogeneity was significantly correlated (R2 = −0.67, p< 10−3) with the baseline motif infor-

mation content of each TF (S3A Fig), while there was no such correlation in the presence of

amplification heterogeneity (S4A Fig, R2 = −0.36, p = 0.1). Finally, we found a weak depen-

dence of the extent of motif distortion on the length of the motif, where a low mean extraction

efficiency distorted a 6 bp motif upto nearly 0.1 bits per position with a lower magnitude of

distortion for longer motifs (S5A Fig). There was no such dependence of motif distortion on

motif length when the amplification ratio varied across the genome (S5B Fig).

Results shown in Fig 2C show that ChIP-seq fidelity is generally higher for sites with inter-

mediate read count ratios (50th percentile to 75th percentile) and deteriorates at lower and

higher read count ratios. This is partly due to the value of the chemical potential of 3kB T
employed in our simulation. When the chemical potential is varied between 1kB T and 6kB T,

the fidelity amongst the top 25th percentile of read count ratios noticeably decreases and

reaches close to 0.5 at μ = 6kB T (S2C Fig). The fidelity amongst read count ratios of the bottom

25%, however, increases over the same range of the chemical potential. This is due to the fact

that the occupancy of locations whose binding energies are much lower than the chemical

potential are close to 1 while locations with binding energies above the chemical potential are

close to zero. As the chemical potential increases, the increase in occupancy at locations with

high binding energies is sufficiently large for their read count ratios to differ from one another.

On the other hand, the occupancies of locations with low binding energies rapidly tend to one,

which results in similar read count ratios between sites that possess different binding energies.

Fig 2D shows the impact of heterogeneity in extraction efficiency and PCR amplification

ratio on fidelity. The fidelity is highest when computed across all binding site pairs, than

amongst pairs in the top 25% of read count ratios. This is because the expected difference

between the binding energies of sites in each pair is larger when the pairs are selected from the

entire range. Changes in the mean and variance in the amplification ratio have little impact on

fidelity, both overall as well as in each read count ratio bin. The fidelity across all regions is

also not substantially affected by the mean and variance in extraction efficiency, but the fidelity

is markedly lowered for sites with the lowest read count ratios. When PCR amplification het-

erogeneity is power-law distributed, its impact on fidelity is still quite low (S1B Fig). In
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contrast, when the extraction efficiency is power-law distributed across the genome, its impact

on fidelity is more drastic than when it is normally distributed.

A low mean extraction efficiency increases the probability of false positive

peak calls but the PCR efficiency has no impact

We tested the effect of heterogeneity in extraction and PCR efficiency on the ability of ChIP-

seq to distinguish peak calls that contain a binding site for the target TF (true positive) from

those peak calls that do not contain a binding site for the target TF (false positive). Fig 3A

shows a simulation where genomic locations that do not harbor a binding site for the target TF

give rise to sequence reads. We refer to such locations as false positive peaks. This differs from

indirectly bound peaks, where the target TF is part of the complex of TFs that binds DNA. In

practice, a false positive peak can arise due to poor antibody quality, where the antibody binds

epitopes on TFs other than the target TF. We assign binding energies to these false positive

locations from a truncated power law such that the mean occupancy ratio between true and

false positive sites are fixed while the variance in binding energies amongst false positive sites

and true positive sites are equal. Fig 3B shows the receiver operating characteristic (ROC)

curve for the simulation shown in Fig 3A. The ROC curve shows the change in the number of

true positives and false positives when the read count ratio threshold at which a location is

Fig 3. The impact of experimental and biological sources of variation on the sensitivity of ChIP-seq. (A) Simulating false positive

binding sites. The binding energies of false positive genomic locations, which do not contain a target TF binding site, are distributed

according to a truncated power law with exponent 0.76 in the range [0, 6.78kB T]. Binding energies of true positive genomic

locations, which contain a target TF binding site, are sampled from a truncated power law with exponent 0.5 in the range [0, 6kB T].

(B) Receiver operating characteristic (ROC) curve corresponding to the simulation shown in A. (C,D) Variation in auROC with the

extraction efficiency and PCR amplification ratio. The mean extraction efficiency in (C) and the mean amplification ratio (after 15

cycles of PCR) in (D) increases along the x-axis. The efficiencies vary according to a truncated normal distribution with the blue,

green and brown lines corresponding to a coefficient of variation of 0, 0.5 and 1.0, respectively. The solid and dashed lines are the

auROC when the ratio of the mean occupancy of true positive binding sites to the mean occupancy of false positive binding sites is 2

(solid) and 10 (dashed) lines. (E) Variation in auROC with the ratio of mean occupancy between true positive and false positive

binding sites. (F) Variation in auROC with sequencing depth. The ratio of the mean occupancy of true positive binding sites to the

mean occupancy of false positive binding sites is set at 2 (solid line) and 10 (dashed line). In (C)-(F), the error bars are the standard

deviation computed from ten replicates.

https://doi.org/10.1371/journal.pcbi.1006921.g003
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declared as a peak is changed. The area under the ROC curve (auROC) provides an overall

measure of the accuracy of using ChIP-seq read count ratios in distinguishing between loca-

tions with target TF binding sites from those without these sites.

Fig 3C and 3D show the impact of heterogeneity in extraction efficiency and PCR effi-

ciency, respectively, on the auROC of ChIP-seq read count ratios. We found that increases in

the mean PCR efficiency did not appreciably increase the auROC. Similarly, an increase in the

heterogeneity of PCR efficiency, in terms of its coefficient of variation across the genome, did

not decrease the auROC. In contrast, an increase in the mean extraction efficiency, and a

decrease in its heterogeneity, led to a higher auROC. Thus, much like in the case of ChIP-seq

fidelity and motif inference, extraction efficiency has a greater impact on the auROC of ChIP-

seq read count ratios than PCR efficiency.

Fig 3E shows that as expected, the auROC increases with the ratio of the mean occupancy

of true and false positive binding sites. We illustrate in Methods that this mean occupancy

ratio can be considered as a proxy for the specificity of the ChIP antibody used, where a higher

mean occupancy ratio translates to a higher antibody specificity. A mean occupancy ratio of

*10 gives an auROC of around 0.9, which translates to a true positive rate of 0.8 at a false pos-

itive rate of 0.07. For a fixed mean occupancy ratio, an increase in the sequencing depth of

both ChIP and input samples leads to an increase in the auROC (Fig 3F).

We further evaluated the impact of variation in chromatin accessibility across true and false

positive binding sites. Our model of TF-DNA binding in the presence of chromatin assumes

that TFs occupy a genomic location only when chromatin is accessible, i.e., the probability of

occupancy depends on the energy of the binding site present and the probability that chroma-

tin is accessible at that location (Eq (8)). We found that chromatin accessibility had a low

impact on the auROC when the mean accessibility was at least 0.2 (S6 Fig). We note that Eq (8)

implicitly assumes that the probability of occupancy at a genomic location is zero in cells where

chromatin is inaccessible. This does not hold for TFs such as pioneer TFs [32], which are capa-

ble of binding inaccessible chromatin and opening it up for further binding by other TFs. For

these TFs, our model under-estimates the occupancy probability at a given genomic location,

with the result that the auROC that we obtain in our simulation represents a lower bound.

Indirect binding affects motif inference and lowers sensitivity more than

cooperative binding

The target TF (say, A) of a ChIP-seq experiment is said to be indirectly bound to DNA if it

does not bind DNA directly but instead binds a second TF (say, B) that in turn directly binds

DNA. Thus, an indirectly bound locus lacks a binding site for the target TF, and the number of

reads mapped to this location do not depend on the binding energy of A. This can be seen in

the top panel of Fig 4A, where the read count ratios of locations directly bound by A depend

on the binding energy of A (R2 = −0.73, p< 10−115) whereas the read counts from indirectly

bound regions do not (R2 = 0.004, p = 0.933).

In contrast to indirect binding, genomic locations that are cooperatively bound by the tar-

get TF and the second TF contain a binding site for each TF. The magnitude of the cooperative

effect is represented by the interaction energy (Δ, in units of kB T). Lower (negative) values of

Δ represent a larger cooperative effect, with Δ = 0 representing independent binding (see Eq

(4)). In the bottom panel of Fig 4A, read count ratios of some cooperatively bound locations

(Δ = −6kB T) are higher than independently bound regions. Unlike in the case of indirect bind-

ing, however, read count ratios from cooperatively bound regions depend on the binding

energy of the target TF (R2 = −0.66, p< 10−38), in addition to depending on the binding energy

of the second TF and the interaction energy between both TFs.
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In Fig 4B, we separately evaluated the impact of indirect and cooperative binding on the

inferred PWM of the target TF. A detailed description of PWM inference in the presence of

indirect and cooperative binding is given in Methods. The baseline PWM of the TF Tye7 is

first computed with direct binding alone. We then computed the mean K-L distance between

this baseline PWM and the PWM inferred in the presence of either cooperative binding or

indirect binding with a second TF. We found that the inclusion of a given fraction of indirectly

bound sequences distorted the inferred PWM more than the inclusion of the same fraction of

cooperatively bound sequences. The divergence of the inferred PWM from the baseline

depended both on the binding energy range of the indirectly or cooperatively binding second

TF, as well as the strength of the cooperative effect.

Similarly, we found that a given fraction of indirectly bound locations had a greater impact

on ChIP-seq fidelity than the same fraction of cooperatively bound locations (Fig 4C). This

was true even though the cooperativity is high (Δ = −6kB T). Indirect and cooperative binding

particularly affected the fidelity of read count ratios from the strongest binding sites (the top

25th percentile of read count ratios).

More than two ChIP-seq replicates are needed to reliably estimate binding

energies of low affinity sites from read counts

Next, we assessed the accuracy with which the binding energy at a locus can be estimated

using ChIP-seq read count ratios, and the impact of replicates on this accuracy. If we denote

Fig 4. The relative impact of the inclusion of indirectly bound and cooperatively bound locations on motif inference and ChIP-

seq fidelity. (A) Indirect binding and cooperative binding between TFs A and B are simulated as described in Methods. The scatter

plots show the read counts from simulations where 30% of genomic locations are indirectly bound (top panel) or cooperatively

bound (bottom panel, interaction energy (Δ) set to −6kB T). In the top panel, the binding energy of A shown on the x-axis refers to

the energy with which A would bind a location if it were in direct contact with DNA. The binding energies of A and B are sampled

from a power law (with exponent 0.5) over a range of [0, 10kB T]. (B) Inclusion of indirectly bound locations [left] distorts the

inferred motif more than the inclusion of cooperatively bound locations [right panel]. The change in the average K-L distance per

base between the baseline motif and inferred motif (y-axis) is plotted against the fraction of indirectly bound regions [left] or

cooperatively bound regions [right] on the x-axis. In the right panel, the cooperative interaction energy with the second TF is varied

between −6kB T (black) and −2kB T (blue) (orange). The error bars are the standard deviation obtained from ten replicates of

simulation. (C) Indirect binding has a greater impact on ChIP-seq fidelity than cooperative binding. The variation with fidelity and

the fraction of indirectly bound [left] or cooperatively bound [right] locations is shown. The fidelity is calculated across all genomic

locations (black), the top 25th percentile (blue) and the bottom 25th percentile (orange) of binding sites. The error bars are the

standard deviation obtained from ten replicates of simulation.

https://doi.org/10.1371/journal.pcbi.1006921.g004
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the true binding energy of the i-th locus as �(i) and the estimate of the binding energy as ��ðiÞ, we

expect ��ðiÞ to move closer to �(i), on average, as more replicates of ChIP-seq are performed. The

first step to quantifying the accuracy of ��ðiÞ is to compute its posterior probability after having

observed read count ratios R(1), R(2), . . ., R(n) from n biological replicates, which is the condi-

tional probability Pð��ðiÞ ¼ �jRð1Þ;Rð2Þ; . . . ;RðnÞÞ. We define the absolute uncertainty or uncer-

tainty of the binding energy estimate to be the 95% Bayesian credible interval of this posterior

distribution [33], which we take to be the difference between its 97.5th and 2.5th quantiles.

The posterior probability, and hence, the uncertainty of ��ðiÞ after n + 1 replicates are per-

formed, can be computed from Pð��ðiÞ ¼ �jRð1Þ;Rð2Þ; . . . ;RðnÞÞ using Bayes’ rule, as shown in

Methods.

The expected decrease in the uncertainty of ��ðiÞ as more replicates are performed can be

seen in Fig 5A, where the area under posterior probability of ��ðiÞ becomes more concentrated

around �(i) with each additional replicate. We repeated this procedure to calculate the reduc-

tion in uncertainty at locations with binding energies between 2kB T and 6kB T in Fig 5B, and

found that the uncertainty is high at sites with the lowest binding energies even after five repli-

cates are performed. At the lowest binding energies, we also checked if the uncertainty after

five replicates sufficed to distinguish between two binding sites that differ by one base pair

from each other. From an analysis of binding energy matrices of 368 TFs in the BEEML data-

base [13], we estimated that 75% of single mutations change the binding energy of a site by at

least 0.24kB T, while 50% of single mutations change the energy by at least 0.71kB T. Thus, even

three replicates of ChIP-seq would allow us to distinguish between two binding sites that are a

single mutation apart with a probability between 50% and 75% at only relatively low energy

binding sites.

Fig 5. Impact of multiple biological replicates on uncertainty in binding energy estimates. (A) Posterior estimate of the binding

energy at a single genomic locus after 1-4 replicates. The true binding energy of the locus is 2kB T, indicated by the vertical dashed

line. Four replicates of ChIP-seq were simulated, with the posterior density after each replicate, with the prior distribution set to be

the default binding energy distribution employed in all our simulations (Methods). The blue lines indicate the absolute uncertainty

of the binding energy estimate, which we define as the 95% Bayesian credible interval of the binding energy. This is calculated as the

difference between the 2.5th and 97.5th quantiles of the posterior density. (B) The reduction in absolute uncertainty of posterior

binding energy estimates of five locations, each with a different binding energy, after five replicates of ChIP-seq. The error bars are

the standard deviation in estimates of the absolute uncertainty calculated after 100 trials; the filled circles represent the mean

absolute uncertainty from these trials. The dashed red lines represent the values of absolute uncertainty required to distinguish

between binding sites sequences that are a single mutation apart at least 50% of the time (upper,0.71kB T) and at least 75% of the time

(lower,0.24kB T).

https://doi.org/10.1371/journal.pcbi.1006921.g005

ChIPulate: A comprehensive ChIP-seq simulation pipeline

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006921 March 21, 2019 11 / 32

https://doi.org/10.1371/journal.pcbi.1006921.g005
https://doi.org/10.1371/journal.pcbi.1006921


Simulating FASTQ reads using ChIPulate

In addition to simulating read counts from ChIP and control samples as described so far, ChI-

Pulate can output single-end and paired-end reads for each genomic location if its chromo-

some coordinates are specified.

Fig 6A illustrates the working of ChIPulate when it is run in FASTQ generation mode. To

generate sequence reads, a set of n genomic intervals (b1, e1), (b2, e2), . . ., (bn, en), along with a

set of “summits” s1, s2, . . ., sn is input to ChIPulate. These summits can be thought of as the

physical location of TF-DNA binding in each interval. The total and unique read counts (ri
and ui, respectively) at each interval are computed as described in Methods based on the bind-

ing energy (or energies) associated with each interval. Fragments that are PCR duplicates are

tracked and the reads arising from duplicate fragments are named appropriately to reflect

their status as a PCR duplicate. In the ChIP sample, the start positions of fragments in the i-th

interval are sampled from a Gaussian distribution with mean si − d/2 and standard deviation j,
where d is the fragment length and j is referred to as the fragment jitter. This captures the

notion that a genomic position close to a TF-DNA binding event is more likely to give rise to a

fragment in the ChIP sample than a genomic position that is far away. In the control sample,

each position in an interval is assumed to be equally likely to give rise to a fragment. This cor-

responds to the Poisson background model assumed by peak callers such as MACS2 [24].

Thus, in the control sample, ChIPulate samples start positions in the i-th genomic interval

from a Uniform(bi, ei) distribution. The l base pairs at the ends of each fragment in both ChIP

and control samples represents the read length. Though Fig 6A illustrates the simulation of

paired-end reads, ChIPulate can simulate both single-end reads and paired-end libraries,

where the sequence of each read is assumed to be error-free.

Fig 6. Example of simulating sequence reads using ChIPulate. (A) Illustration of ChIPulate’s read generation method. The i-th

genomic location is a genomic interval (bi, ei), with the “summit” of the interval located at si. The total read count (ri) and unique

read count (ui) at the i-th interval in the ChIP and control samples are calculated as described in Fig 1. The starting positions of

fragments in the ChIP sample are drawn from a Gaussian distribution with mean si − d/2 and standard deviation j, where d is the

fragment length and j is the fragment jitter. In the control sample, fragment start positions are drawn from a Uniform(bi, ei)
distribution. The Phred-33 quality value of every base is set to be 75, which corresponds to a base-calling error probability of 10−42.

The read length is set to l bp, and both paired and single end reads can be simulated. (B) Paired-end reads simulated from genomic

intervals containing an experimentally determined GCN4 binding site. The genomic intervals containing GCN4 binding sites were

taken from an earlier publication [34]. Paired-end reads of 50 bp in length were simulated using ChIPulate, with the fragment jitter

set at 50 bp and the fragment length set at 200 bp. The binding energy of the highest affinity GCN4 binding site in each interval was

computed using the GCN4 binding energy matrix from the BEEML database. The remaining ChIPulate parameters were set at their

default values.

https://doi.org/10.1371/journal.pcbi.1006921.g006
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Fig 6B is an IGV (Integrated Genomics Viewer) [35] snapshot of paired-end reads simu-

lated from a genomic interval containing a GCN4 binding site in the S. cerevisiae genome. In

this example, we chose a set of 549 genomic regions that were found to be bound by GCN4 in

an earlier publication [34], and computed the binding energy of GCN4 in each region using its

binding energy matrix from the BEEML database. The starting position of the lowest energy

binding site was set to be the summit of each region. We then generated the start positions of

fragments (200 bp in length) in the ChIP sample by setting the fragment jitter to 50 bp. The

read length for the paired-end reads were set at 50 bp at a sequencing depth of 100. The

sequence of each read was assigned based on the sequence of the S288C R64-2-1 reference of

the S. cerevisiae genome [36] from the Saccharomyces Genome Database [37]. The reads gener-

ated were aligned to this genome reference using the BWA aligner [38].

Discussion

ChIPulate substantially and qualitatively extends previous statistical models of read counts

obtained in a ChIP-seq experiment. Early work by Zhang et. al assumed a distribution of bind-

ing affinities across the genome and computed occupancy using a similar biophysical model to

ours [24], but did not simulate extraction and amplification. Bao et. al explicitly accounted for

the effect of extraction efficiency on read counts [26], but did not model the underlying bio-

physical occupancy of genomic loci based on their binding energies. More recent work by

Ruan et. al, accounted for the effect of chemical potential on TF-DNA occupancy and its

impact on motif inference [14]. However, the authors evaluated the impact of experimental

noise by adding Gaussian noise to the energies of binding sites rather than modeling the

downstream processes of the ChIP-seq protocol.

Our pipeline combines a biophysical model of TF-DNA binding with a detailed simulation

of fragment extraction, amplification and sequencing. This allows us to analyze the impact of

heterogeneity in fragment extraction and PCR amplification on the motif inferred from bound

genomic loci, and the fidelity of read count ratios in discriminating relatively close binding

energies. We also evaluated how these factors, along with chromatin accessibility and sequenc-

ing depth, affect the false positive peak detection rate. The role of biological factors such as

indirect binding and cooperative binding, which are frequent occurrences in ChIP-seq data-

sets, were also evaluated for their impact on motif inference and fidelity. Finally, we measured

the accuracy of using read count ratios to infer the energy of a binding site and calculated the

improvement in this accuracy after several biological replicates are performed.

In our simulations, fragment extraction encapsulates multiple steps in the ChIP-seq proto-

col, namely, cross-linking TF-DNA bound complexes, antibody-mediated pull down of frag-

ments bound by the TF, and the removal of cross-links. In addition to the mean extraction

efficiency, the nature of the extraction heterogeneity dictates the magnitude of its impact on

motif inference and fidelity, with power law distributions having a greater impact than nor-

mally distributed heterogeneity. The effect of extraction heterogeneity on motif inference also

depended on the structural class of the TF, where we found that a low mean extraction effi-

ciency distorted motifs with a lower information content much more than those with high

information content. However, for a given TF, it is unclear as to whether a normal or power

law distribution better capture experimental variation in extraction efficiency across the

genome. Previous reports suggest that variation in chromatin accessibility alone imposes a

power-law distribution on extraction efficiency variation [18]. The development of alternate

protocols that reduce the number of extraction steps [39–41] would improve the fidelity of

read count ratios and reduce the number of false positive peak calls. In contrast to extraction

efficiency, variation in PCR amplification ratio had a much lower impact on motif inference
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and the fidelity of read count ratios. However, in the presence of sequencing errors during

amplification (which our model does not currently include) and imperfect mappability, a large

mean amplification ratio in practice would increase false positive peak calls [42] and likely

affects fidelity more than indicated by our simulations.

Though we explicitly modelled TF-DNA binding here, our conclusion on the impact of

extraction and amplification ratio on fidelity also likely holds for the ChIP-seq of histone

marks. Though the occupancy of histones in nucleosomal complexes would have to be mod-

elled in a very different manner to that of TFs [43–46], this only affects the calculation of pðiÞb .

The remaining steps of extraction, PCR amplification and sequencing that are carried out in

the ChIP-seq of a histone mark are identical to those that are simulated here. An issue of inter-

est in a histone ChIP-seq dataset is the method employed to process the control sample [47,

48], where employing an antibody against the histone H3 in the control sample provides a bet-

ter estimate of pext than an input sample [47]. Our simulations suggest that this would be true

only if the mean extraction efficiency of fragments with these methods is not too much lower

than using an input sample. This is because a low mean value of pext in the control sample

would poorly sample any potential variation in extraction between genomic regions in the

ChIP sample.

Extraction of DNA fragments due to indirect binding is believed to be frequent in ChIP-seq

experiments [10, 49]. We find that the inclusion of indirectly bound regions has a more

adverse effect on motif inference and fidelity than even strongly cooperatively bound regions.

The extent of indirect binding in a dataset depends both on antibody quality [11, 23] and the

cross-linking protocol employed [50] except when the ChIP-seq target protein is a co-factor

which, by definition, is always indirectly bound. When antibody quality leads to indirect bind-

ing, we note that indirectly bound peaks and false positive peaks are hard to distinguish. Our

work suggests that minimizing the extent of indirect binding and developing computational

methods to detect them may provide a potent avenue to improving the fidelity of ChIP-seq

experiments. For instance, protocols such as ChIP-exo [11, 51, 52] allow indirectly bound

regions to be more easily detected through the peak shapes obtained after alignment and repre-

sent an important direction for further improvement of the ChIP-seq protocol.

Our results shows that several replicates of ChIP-seq are required if the energy of a binding

site is to be inferred through read count ratios within a certain confidence interval. Since our

simulation assumes a single site per peak, it should be noted that a single replicate of ChIP-seq

can suffice to accurately infer a PWM for the TF [53], which in turn reliably estimates the

energy of the binding site [54–56]. However, in the more general case where a peak may har-

bor multiple TF binding sites, the mapping between the binding energies of sites and the read

count ratios in such a region is far more complex than in our simulation. This means that reli-

ably inferring the occupancy at such a locus through read count ratios is likely to involve more

replicates than we have estimated here. Since our simulations in this calculation assumed rela-

tively low heterogeneity in extraction and PCR efficiency, further improvement in these steps

of the protocol may not be the most effective avenue to reduce the number of replicates

required to infer occupancy. Instead, reduction in sequencing cost to obtain multiple biologi-

cal replicates of ChIP-seq will yield an accurate inference of in vivo occupancy at a genomic

locus.

There is considerable scope for extending ChIPulate. We assumed that amplified fragments

can be de-duplicated after sequencing in our simulation, which is possible with paired-end

sequencing and unique molecular identifier (UMI) based methods of PCR amplification [57–

59]. Most ChIP-seq libraries are, however, subjected to single-end sequencing. It might be of

interest to investigate the effect of imperfect de-duplication with single read sequencing.
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Furthermore, we did not take into account differences in mappability across the genome or

sequencing errors, which can cause reads originating from a genomic locus to not map back to

the same region [60]. These are relatively easy to account for in our simulation since it keeps

track of individual fragments when they are extracted, amplified and sequenced. Finally, the

FASTQ generation mode of ChIPulate can be used to comprehensively benchmark ChIP-seq

peak callers and other computational pipelines that process ChIP-seq data.

Overall we have presented a detailed ChIP-seq simulation model and software pipeline that

can be extended in various ways, including other bulk and single-cell sequencing protocols.

Methods

ChIP-seq simulation framework

Genome-wide TF-DNA binding model. In the most basic version of our simulation, we

consider the genome to be a set of n locations. Each of these locations contains a single bind-

ing site for the ChIP-seq target TF. We follow an approach similar to [27], where, at a given

point in time, the i-th locus can be in one of two states—bound by the target TF or unbound.

We assign a binding energy �u to the unbound state and a binding energy �(i) to the bound

state. The Boltzmann weights of both these states are then exp(−�u/kB T) and exp(−(�(i) − μ)/

kB T), respectively. kB is the Boltzmann constant, T is the temperature at which the binding

occurs, and μ is the chemical potential of the TF, which is proportional to the logarithm of

the concentration of the TF [27]. The probability of finding the i-th locus in the bound state

is then

pðiÞb ¼
exp ð� ð�ðiÞ � mÞ=kBTÞ

Z
; ð1Þ

where Z = exp(−(�(i) − μ)/kB T) + exp(−�u/kB T). This can be re-written as

pðiÞb ¼
1

1þ exp ðð�ðiÞ � �u � mÞ=kBTÞ
; ð2Þ

Thus, the occupancy at a location is determined by the three quantities �(i), �u, μ. In the con-

vention followed in this paper, the scale of �(i) is chosen such that the highest affinity binding

site has a binding energy of 0, with more positive values representing weaker binding sites. We

set μ = 3kB T, which is within the range of values suggested by an earlier calculation in [27].

Finally, we set �u = 1.59kB T, which ensures that at the location with the highest affinity site i.e.,

when �(i) = 0, the occupancy probability pðiÞb is 0.99.

�(i) can be thought of as a mismatch binding energy, where mutations that change the bind-

ing site sequence away from the highest affinity sequence increase its energy and thus lower

the probability that it is occupied. This is in line with the convention followed in the binding

energy matrices in the BEEML database.

To compute the probabilities of binding at all n locations, pð1Þb ; p
ð2Þ

b ; . . . ; pðnÞb , using Eq (1), we

assign a binding energy to each locus. We sample binding energies from a power law that is

truncated to a specified range. We define the probability density function f of this truncated

power law, with parameters 1> α> 0, Emax> 0, as

f ð�Þ ¼
1� a

E1� a
max

1

ðEmax� �Þ
a ; 0 < � < Emax

0; otherwise:

8
<

:
ð3Þ
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Our choice of such a power law is motivated by the analysis of binding energies of sites that

are occupied by the TFs CRP and FNR in the E. coli genome [61]. Unless stated otherwise, we

set α = 0.5 and Emax = 10kB T. This corresponds to a situation where most of the binding sites

in the genome have a low affinity (or high energy) for the target TF. Emax = 10kB T typically

corresponds to a binding site that is 3-4 mutations away from the strongest binding site, since

each mutation to the strongest sequence typically adds an energy 1 − 3kB T to it for most TFs

[27]. We set the chemical potential of the target TF, μ, to be 3kB T by default in all our simula-

tions in the main text.

In a population of C cells, when the i-th locus has a probability pðiÞb of being bound, then

the number of bound fragments extracted from the i-th locus, denoted FðiÞb , follows a

BinomialðC; pðiÞb Þ distribution, where the mean number of bound fragments is CpðiÞb .

In most ChIP-seq experiments, a small number of cells are used to carry out a control, or

input, experiment where fragments from cells are extracted without the use of antibody spe-

cific to the target TF. The read counts obtained in the input experiment are used to normalize,

in a region or locus-specific manner, the read counts obtained from the ChIP sample. The

input sample helps take into account heterogeneity that may arise in the extraction, amplifica-

tion and sequencing of fragments from different genomic locations. The difference between

the input and ChIP samples is in the number of cells employed and the probability of occu-

pancy employed for each location. We assume that 10% of the number of cells used in the

ChIP experiment are used in the input sample. The occupancy of genomic regions in the

background sample consists of the non-specific binding of all the TFs in the cell, along with

different sets of TFs that may be specifically bound at each genomic location. We phenomeno-

logically model this scenario by assigning a fixed background binding energy ��bg to each of the

n genomic locations, from which we use Eq (1) to compute the probability of occupancy �pb .

We set μ = 0 in Eq (1) for the input sample and keep �u = 1.59kB T.

If the number of cells used in the input sample is C0, then the number of bound fragments

at each location follows a BinomialðC0; �pbÞ distribution. Unless stated otherwise, we set ��bg to

1kB T in simulations where we do not model false positive binding sites in the ChIP sample.

When we simulate false positive binding sites, we set ��bg to a value where the ratio between the

mean probability of occupancy in the ChIP sample to the mean probability of occupancy in

the input sample is 10.

Aside from these differences in the TF-DNA binding model in the input and ChIP samples,

the simulation procedures used in the description of the extraction, amplification and

sequencing steps are common to both samples.

Cooperative binding. Consider TFs A and B, where A is the target of the ChIP-seq experi-

ment, however, its binding depends on nearby binding of TF B. To simulate such cooperative

binding between A and B, we have each of the n genomic locations in our simulation to con-

tain a single binding site each for A and B, with binding energies �
ðiÞ
A and �

ðiÞ
B and an interaction

energy Δ between them.

A given genomic locus can be in one of four states—unbound, bound by A, bound by B, or

bound by both A and B. The probabilities of the locus being in each of these four states is [62]

PðunboundÞ ¼ exp ð� �u=kBTÞ=Z;

Pðbound by A onlyÞ ¼ exp ðð� �ðiÞA þ mAÞ=kBTÞ=Z;

Pðbound by B onlyÞ ¼ exp ðð� �ðiÞB þ mBÞ=kBTÞ=Z;

Pðbound by A and BÞ ¼ exp ðð� �ðiÞA � �
ðiÞ
B þ mA þ mB � DÞ=kBTÞ=Z;
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where Z ¼ exp ð� �u=kBTÞ þ exp ðð� �ðiÞA þ mAÞ=kBTÞ þ exp ðð� �ðiÞB þ mBÞ=kBTÞþ
exp ðð� �ðiÞA � �

ðiÞ
B � Dþ mA þ mBÞ=kBTÞ. Δ = 0 corresponds to independent binding between A

and B, Δ< 0 corresponds to cooperative binding between A and B and Δ> 0 represents com-

petitive binding between A and B.

Since the ChIP experiment involves extracting fragments that are bound by A, the probabil-

ity of a location being bound by A is the sum of the probability of the location being bound

only by A and the probability of being bound by A and B. Thus, the occupancy probability of

the i-th location, pðiÞb , as seen in the ChIP-seq of A is:

pðiÞb ¼ � exp ðð� �
ðiÞ
A þ mAÞ=kBTÞ þ exp ðð� �ðiÞA � �

ðiÞ
B � Dþ mA þ mBÞ=kBTÞÞ=Z ð4Þ

We assume here that the binding site of A is not occupied by B, and vice versa. Further, we

assume that there is no cooperativity between two distinct genomic locations i and j.
Indirect binding. Consider TFs A and B, where A is the target of the ChIP-seq experi-

ment. We say that A indirectly binds DNA if A binds to B which in turn binds DNA. To simu-

late indirect binding, we assume that the probability of occupancy pðiÞb is proportional to the

binding energy of B at the i-th location, �
ðiÞ
B as

pðiÞb ¼
1

1þ exp ðð�ðiÞB � �u � mBÞ=kBTÞ
: ð5Þ

On the other hand, at locations directly bound by A, pðiÞb is dependent on �
ðiÞ
A according to

Eq (1). We further assume that B cannot occupy binding sites of A, and vice versa.

False positive binding sites. We consider a detected binding site to be false positive if it is

bound by a TF (or TFs) other than the target TF of a ChIP-seq, or not bound by any TF at all,

but fragments from which are nonetheless extracted in Step 2 of simulation. This differs from

indirect binding, where the target TF is part of the complex of TFs that is bound to DNA. False

positives reflect antibody quality or specificity.

In our simulations of false positive binding sites in Fig 3, we set the number of false positive

binding sites to be equal to the number of true positive binding sites. We note that the area

under the ROC curve is independent of the number of false positive binding sites simulated.

We set the binding energy distribution of true positive binding sites to be a power law

between 0 and 6kB T with α = 0.5. This differs from the default power law distribution

employed for true positive binding energies in our other simulations. This was because we

found that binding sites with energies in the range 7 − 10kB T had read count ratios that were

very close to each other. Thus, when we computed the ROC curve with binding sites in this

energy range, we saw that the true positive rate showed an abrupt jump as the threshold on the

read count ratio was lowered below a point. Such jumps in the true positive rate make it diffi-

cult to compare ROC curves. By restricting the energy range of true positive binding sites to

between 0 and 6kB T, we ensured that the true positive rate did not display this jump-like

behaviour, which in turn allowed us to use the auROC as an accurate measure of detection

performance.

We set the binding energies of the false positive sites to follow a power law distribution

where the minimum binding site energy was 0kB T. The maximum binding energy (Efp
max) and

αfp was set such that the ratio of the means of true and false positive binding energies could be

fixed at a constant value while the variances were kept equal. Suppose the true positive binding

energy distribution follows a power law over the energy range ½0;Etp
max� and exponent αtp such
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that its mean is m and variance is v. Then, setting αfp and Efp
max as

afp ¼ 3þ 2=ðr � 2Þ;

Efp
max ¼ fmð2 � atpÞ;

ð6Þ

where r = v/(g2 m2) + 1, sets the mean false positive binding energy to be fm while the variance

remains at v.

Once the true and false positive binding energies are sampled, we compute the ratio

between the mean occupancy of the true positive sites to that of the false positive binding sites.

This is calculated as

mocc ¼

PNtp
i¼1 p

ðiÞ
b;tp=Ntp

PNfp
j¼1 p

ðjÞ
b;fp=Nfp

ð7Þ

where Nfp and Ntp are the number of false and true positive binding sites, respectively, and pðiÞb;tp
and pðiÞb;fp are occupancies at true and false binding sites respectively.

In Fig 3, we set αfp = 0.76 and Efp
max ¼ 6:78kBT, which corresponds to a mean occupancy

ratio of *2. This is in line with the antibody recommendations of the ENCODE consortium

[23], whose recommendation for antibody quality is that the primary reactive band should be

at least 50% of the signal on the blot, which we interpret to represent a mean occupancy ratio

between true positive and false positive sites in the ChIP sample to be at least 2.

Finally, we set the background binding energy, which determines the occupancy of

fragments in the input sample, to a value of 4.96kB T. This sets the ratio of the mean occu-

pancy of true positive sites in the ChIP sample to the mean occupancy of the same sites in

the input sample to 10. This is in line with the 5− to 13− fold-enrichment observed in

read counts of ChIP-seq peaks between the ChIP and input samples in the ENCODE project

[23].

Chromatin accessibility. We modeled chromatin accessibility using a sigmoidal prior

based on DNAse-seq hypersensitivity data following [3, 63]. Briefly, the occupancy probability

calculated based on the binding energies in Eq (1) is multiplied by the sigmoidal function—

pacc ¼
1

1þ exp ð� bdÞ
; ð8Þ

where d is the DNAse-seq read count density, which is average per-base DNASe-seq read cov-

erage within a 150 bp window.

Thus, for a genomic locus whose occupancy probability is pb, the probability that it is

bound in Step 1 of our simulation is the product pb pacc. Thus, the occupancy probability essen-

tially provides a scaling factor for binding probability.

Instead of simulating a profile of DNAse-seq read counts across the genome, we

used read counts from DNAse-seq data of the M. musculus DBA/2 cell line (accession

number ENCFF871YIT, lab of John Stamatoyannopoulos), available from the ENCODE

Consortium [64, 65]. We used the filtered binary alignment map (BAM) files, which were

aligned to the mm10 genome assembly using the ENCODE data processing pipeline. We

chose the DNAseq-seq profile of this cell line as a reference DNAse-seq profile since it

cleared all quality audit error categories laid out by the ENCODE Consortium for DNAse-

seq data.

In order to consider only regions with accessible chromatin, we counted the number of

reads falling into non-overlapping 100 kb windows of the genome and retained the top 10% of
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windows that had the highest read counts. We finally counted the reads falling into non-over-

lapping 150 bp windows and stored these read counts. In each ChIP-seq simulation, we uni-

formly sampled read counts of n of these regions, where n is the number of binding locations

being simulated, and plugged them into Eq (8) (after dividing the counts by 150) to compute

chromatin accessibility.

The extraction process

Given the number of bound fragments Fð1Þb ; . . . ; FðnÞb , each fragment needs to be extracted from

the cell population. This extraction process involves several steps that include the lysing of cells

to extract DNA, cross-linking of bound proteins to DNA, the size selection of sheared frag-

ments, etc. After each of these steps, the number of bound fragments either stays the same or

reduces. Our model of fragment loss during these steps tracks the reduction in fragment num-

bers prior to PCR amplification step.

We assume that the number of extracted fragments from the i-th genomic locus, denoted

FðiÞe , follows a BinomialðFðiÞb ; pðiÞe Þ distribution. pðiÞe is the probability of a bound fragment from

the i-th region being successfully extracted and present in the pre-PCR fragment pool. pe can

vary across the genome [66, 67] and is also dependent on the extraction procedure employed

[68]. Unless stated otherwise, we assume that pe follows a normal distribution truncated to lie

between 0 and 1, with a mean of 0.5 and a standard deviation of 0.05.

Since we assume that FðiÞe is a binomial sample of FðiÞb fragments, the addition of more

extraction steps into the simulation only changes the value of pðiÞe without necessarily violating

the binomial assumption. Suppose we add an additional extraction step with efficiency ei into

the simulation such that FðiÞe � BinomialðXi; eiÞ, where Xi � BinomialðFðiÞb ; pðiÞe Þ. Then, by the

laws of total variance and total expectation, the mean of FðiÞe , for a fixed value of FðiÞb , is FðiÞb pðiÞe ei
and its variance is FðiÞb pðiÞe eið1 � pðiÞe eiÞ. By setting p�i ¼ pðiÞe ei, we see that FðiÞe (conditioned on

FðiÞb ) follows a BinomialðFðiÞb ; p�i Þ distribution up to the first two moments. Thus, the parameter

pðiÞe can be thought to implicitly take into account a variety of steps employed in the extraction

process.

As stated in the previous section, we employ the same values of pðiÞe in both ChIP and input

samples. In a single run of the simulation, it can happen that the number of fragments

extracted in the ChIP sample exceeds that of the input sample, or vice versa. In practice, since

fragments are typically more efficiently extracted in the input sample than in the ChIP sample,

DNA extracted from the input library is diluted such that the number of fragments in both

ChIP and input samples are equalized before amplification.

In our simulation, we compute a down-sampling factor D ¼
Pn

i¼1
Fði;ChIPÞe =

Pn
i¼1

Fði;inputÞe ,

which is the ratio of the total number of extracted fragments in the ChIP sample to that in the

input sample. If D< 1, we down-sample extracted fragments in the input sample by replacing

Fði;inputÞe with the sample Xi � BinomialðFði;inputÞe ;DÞ. If D> 1, we similarly down-sample the

fragments from the ChIP sample instead of the input sample.

Mean occupancy ratio as a measure of antibody specificity. In Eq (7), we defined the

mean occupancy ratio as the ratio between the mean occupancy of true positive binding sites

to that of false positive binding sites. This ratio can also be interpreted as a measure of antibody

specificity in the following way.

Consider a genome with n true positive binding sites and m false positive binding sites. Sup-

pose the extraction efficiency is tð1Þe ; . . . ; tðnÞe at true positive binding sites and f ð1Þe ; . . . ; f ðmÞe at

false positive binding sites. Then, the average number of fragments extracted from the i-th true
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positive binding site in the ChIP sample is CpðiÞb tðiÞe , and the average number extracted from the

j-th false positive binding site is CpðjÞb f ðjÞe , where fpðiÞb g are occupancies at each location. The

ratio (re) between the average number of fragments extracted from true positive binding sites

to that from false positive binding sites is then

re ¼
Cm

Pn
i¼1

pðiÞb tðiÞe
Cn
Pm

j¼1
pðjÞb f

ðjÞ
e
:

This is the ratio that determines the accuracy of ChIP-seq in distinguishing between true

and false positive binding sites. If re is large, true positive binding sites will give rise to more

fragments than false positive binding sites, leading to true positive sites having larger read

count ratios. A high value of re is achieved if, for tðiÞe ¼ f ðjÞe ¼ pe across the genome, true positive

sites have a larger mean occupancy than at false positive sites. Setting tðiÞe ¼ f ðjÞe ¼ pe in the

above equation reduces re to the mean occupancy ratio defined in Eq (7).

Conversely, if pð1Þb ; p
ð2Þ

b ; . . . ; pðnþmÞb ¼ pb across the genome, then re reduces to the ratio

re ¼
m
Pn

i¼1
tðiÞe

n
Pm

j¼1
f ðjÞe

;

which is merely the ratio between the mean extraction efficiency at true positive binding sites

to that at false positive binding sites. This constitutes a measure of the specificity of the anti-

body employed against the target TF of the ChIP-seq. Thus, ensuring that the average extrac-

tion efficiency at true positive sites is higher than at false positive sites ensures that the former

give rise to higher read count ratios.

PCR amplification

We simulate PCR amplification using the model in [69] which we briefly explain below. In this

model, each DNA fragment has a probability pa of being amplified in a cycle of PCR and gives

rise to two fragments. The fragment fails to undergo amplification and remains as a single frag-

ment with probability 1 − pa.
Suppose Sncy is a random variable that represents the number of amplified fragments after

ncy cycles of PCR. Sncy can assume values between 1 and 2ncy .

Sncy ¼ Sncy � 1 þ X; ð9Þ

where X � BinomialðSncy � 1; paÞ. If we represent Sncy � 1 as a vector of length 2ncy � 1, the probabil-

ity distribution of Sncy can then be calculated from Sncy � 1 in terms of an updating matrix MðncyÞ

(of dimension 2ncy � 2ncy � 1) by setting Sncy ¼ MðncyÞSncy � 1 where

MðncyÞ
i;j ¼

i
j

� �

pjað1 � paÞ
i� j
: ð10Þ

Thus, for a given value of pa, the distribution of Sncy can be computed recursively from

Sncy � 1; Sncy � 2; . . . ; S1 when we start from a single DNA fragment. For computational efficiency,

for values of ncy between 10 and 15, we pre-computed and stored the distributions of Sncy for

values of pa between 0.01 and 0.99 in steps of 0.01. In order to simulate ncy cycles of PCR

amplification for FðiÞe fragments, we draw F � FðiÞe samples SðiÞ1 ; S
ðiÞ
2 ; . . . ; SðiÞF from the distribu-

tion Sncy corresponding to the value of pðiÞa at that locus.
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The mean and variance in the number of amplified fragments, FðiÞa , starting with a single

fragment at the first cycle and an amplification efficiency of pa, can be calculated from branch-

ing process theory [70]. After a single cycle of PCR, the mean (m1) and variance (v1) are

m1 ¼ ð2paÞ þ ð1 � paÞ ¼ 1þ pa
v1 ¼ 1þ 3pa � m2

1
¼ pað1 � paÞ:

After ncy cycles of amplification, mncy
and vncy are given by —

mncy
¼ mncy

1

vncy ¼
vncym

ncy
1 ð1 � mncy

1 Þ

m1ð1 � m1Þ
ðm1 6¼ 1Þ

Substituting the expressions for m1 and v1 into the above equation, we have

mncy
¼ ð1þ paÞ

ncy

vncy ¼ ð1 � paÞð1þ paÞ
ncy � 1
ðð1þ paÞ

ncy � 1Þ

ð11Þ

We refer to A � mncy
¼ ð1þ paÞ

ncy as amplification ratio of PCR at that location.

We assume that the PCR efficiency at a locus remains constant across all cycles of amplifica-

tion. We also assume that the number of amplified fragments obtained from each starting

DNA fragment is statistically independent of amplifications at other fragments. This implies

that starting with FðiÞe fragments, the mean number of amplified fragments after ncy cycles of

PCR is AFðiÞe . The expressions in Eq (11) are valid only when PCR has not yet reached a satura-

tion of amplification where the concentration of PCR primers, polymerase, etc. relative to the

concentration of the amplified fragments is enough to ensure that pa does not decrease as ncy is

increased.

By default, we set A = 1000 and ncy = 15 across the genome in all our simulations unless

stated otherwise. This corresponds to a value of pa� 0.58.

Sequencing

At the end of the PCR amplification step, there are
Pn

i¼1
FðiÞa amplified fragments from all n

genomic locations. In this set of amplified fragments, there are
Pn

i¼1
FðiÞe unique fragments,

each of which come from different cells, and the remaining
Pn

i¼1
ðFðiÞa � FðiÞe Þ fragments are

duplicates obtained through PCR. During the sequencing step, a total of r = cn fragments are

sampled from this amplified pool and sequenced. r denotes the total read count of the experi-

ment and c is the sequencing depth.

Since each fragment has an equal probability of being sampled, the read count sample r1,

r2, . . ., rn from amplified fragment pools Fð1Þa ; F
ð2Þ
a ; . . . ; FðnÞa , where r ¼

Pn
i¼1

ri, follows a multi-

variate hyper-geometric distribution. To draw a sample from this distribution, we imple-

mented the following procedure [71]—

Given two pools of fragments of pool sizes A and B from which r reads are to be sampled,

the probability that k reads come from the first pool is

PðkÞ ¼
A
k

� �
B

r � k

� ��
Aþ B

r

� �

:
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We extend this distribution to sampling from n pools of fragments, each of size

Fð1Þa ; F
ð2Þ
a ; . . . ; FðnÞa by first drawing r reads from two pools of size A1 ¼ Fð1Þa and B1 ¼

Pn
i¼2

FðiÞa .

The probability of observing r1 reads from the first locus (i.e. pool A1) is

Pðr1Þ ¼
A1

r1

� �
B1

r � r1

� ��
A1 þ B1

r

� �

: ð12Þ

To draw reads for the second locus, we draw a sample of size r − r1 from two pools of size

A2 ¼ Fð2Þa and B2 ¼
Pn

i¼3
FðiÞa .

Pðr2Þ ¼
A2

r2

� �
B2

r � r1 � r2

� ��
A2 þ B2

r � r1

� �

: ð13Þ

We continue this sampling process till all r reads have been sampled.

The read count at the i-th location, ri, consists of a mixture of ui unique reads and di dupli-

cate reads such that ri = ui + di. We keep track of the fragments that were obtained via amplifi-

cation versus those obtained in extraction step, and therefore, by simulation design, the ui
reads can be perfectly separated out from the di reads, which is detailed below.

As stated in the earlier section, F � FðiÞe fragments extracted from the i-th location undergo

PCR amplification to give FðiÞa ¼
PF

j¼1
SðiÞj fragments, where SðiÞ1 ; S

ðiÞ
2 ; . . . ; SðiÞF are the number of

amplified fragments obtained from each of the FðiÞe fragments. To sample ui we first draw sam-

ples rðiÞ1 ; r
ðiÞ
2 ; . . . ; rðiÞF from the fragments pools SðiÞ1 ; S

ðiÞ
2 ; . . . ; SðiÞF such that ri ¼

PF
j¼1

rðiÞj . We can

write rðiÞj ¼ uðiÞj þ dðiÞj , where uðiÞj and dðiÞj are the numbers of unique and duplicate fragments

sampled from SðiÞj . Since we assume that each of the
PF

j¼1
SðiÞj fragments has an equal probability

of being sampled, rðiÞ1 ; r
ðiÞ
2 ; . . . ; rðiÞF is a multivariate hyper-geometric sample of SðiÞ1 ; S

ðiÞ
2 ; . . . ; SðiÞj ,

which we generate using the same procedure outlined for sampling r1, r2, . . ., rn reads from

Fð1Þa ; F
ð2Þ
a ; . . . ; FðnÞa fragments.

We then compute ui for each location as follows. If rðiÞj ¼ 1, then uðiÞj ¼ 1 and dðiÞj ¼ 0. Since

only one fragment in SðiÞj is unique, uðiÞj cannot exceed 1, which means that if rðiÞj > 1, then,

uðiÞj ¼ 1 and dðiÞj ¼ rðiÞj � 1. We can then obtain ui by setting ui ¼
PF

i¼1
uðiÞj .

In the process of simulating read counts, We do not account for mutations than can cause

alignment errors in actual ChIP-seq reads, which in turn can change read counts at a genomic

locus.

FASTQ read generation

To generate sequence reads, a set of genomic n intervals (b1, e1), (b2, e2), . . ., (bn, en), along

with a set of “summits” s1, s2, . . ., sn need to be input to ChIPulate. These summits can be

thought of as the physical location of TF-DNA binding in each interval. The total and unique

read counts (ri and ui, respectively) at the i-th interval are computed as described above, based

on the binding energy (or energies) associated with each interval.

In the ChIP sample, after ri and ui are computed, ui fragment start positions

faðiÞ1 ; a
ðiÞ
2 ; . . . ; aðiÞui g are sampled from a Gaussian distribution with mean si − d/2 and standard

deviation j, where d is the fragment length and j is referred to as the fragment jitter. Suppose the

copy number of each of the ui fragments is c1; c2; . . . ; cui , such that c1 þ c2 þ . . .þ cui ¼ ri,
where ci� 1. Then, a set of ri fragment start positions can be obtained by repeating the j-th

unique fragment start position cj times to give the set fa1; . . . ; ac1 ; a2; . . . ac2 ; . . . ; aui ; . . . ; acig.
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The fragment jitter parameter j controls the dispersion of the fragment start positions from the

position si.
The fragment start positions are simulated differently in the control sample. Here, given a

unique read count ui and total read count ri at the i-th genomic interval, unique fragment start

positions fa1; a2; . . . ; auig are sampled from a Uniform(bi, ei) distribution. Given this set of

unique fragment positions, the set of ri fragment positions is constructed in the same way as in

the ChIP sample, with the j-th unique fragment’s starting position aj being repeated cj times.

Suppose the read length being simulated is l base pairs. At the end of the previous step, we

have a total of r = cn fragment start positions each in the ChIP and control samples, where c is

the sequencing depth and r is the total read count. Suppose the the start position of the i-th

read is ai and the genome is a N letter sequence g1 g2. . .gN, with the reverse complement

sequence denoted g 0
1
; g 0

2
. . . g 0N . Then, if single-end sequencing is being simulated, we assign

the sequence read to begin from the positive strand or the negative strand with equal probabil-

ity. If the strand assigned to the read is positive, we assign the sequence gai gaiþ1 . . . gaiþl
to the i-th read. If the strand assigned to the read is negative, we assign the sequence

g 0aiþd� lþ1
g 0aiþd� l . . . g 0aiþd. If paired-end sequencing is being simulated, we generate r read pairs,

i.e., 2r reads in total, where each fragment gives rise to one read from the positive strand with

the sequence gai gaiþ1 . . . gaiþl and one read from the negative strand with the sequence

g 0aiþd� lþ1
g 0aiþd� l . . . g 0ai þ d. ChIPulate uses the getfasta subcommand of pybedtools

from the input genome FASTA file to extract these sequences [72, 73].

The quality of each base call in every sequence read is set to be K, the maximum possible

value on the Illumina Phred-33 quality scale. This corresponds to a base call error probability

of 10−42 [74].

Default values. Unless stated otherwise, we use the following values by default—

Genome-wide TF-DNA binding model: n = 1000, �1, . . ., �n are sampled from a power law

(with α = 0.5) between 0 and 10kB T, ��bg ¼ 1kBT, C = 105(ChIP sample), μ = 3kB T,

C = 104(input sample)

Extraction process: pð1Þe ; . . . ; pðnÞe are sampled from a N(0.5, 0.025) distribution that is truncated

to lie in [0, 1]. Further, at each location, the extraction efficiency is set to be the same in

both ChIP and input samples.

Amplification process: A = 1000, ncy = 15

Sequencing: c = 100

Motif estimation

To simulate motif estimation, we first sample binding energies �1, �2, . . ., �n from a binding

energy distribution. We associate each binding energy �(i) with a binding site sequence of the

target TF whose energy �0i is closest to this assigned value. The sampled energy �(i) is then

replaced with �0i, and the set of energies �0
1
; �0

2
; . . . ; �0n are used for all occupancy calculations in

the TF-DNA binding simulation. In the simulations shown here, the energies �0i for each bind-

ing site sequence were taken from BEEML binding energy matrices (BEMs) that were fit to in
vitro protein-binding microarray affinity measurements of different TFs [13].

Once ChIP-seq is simulated based on these binding energies, the top 10% of locations based

on their read count ratios are chosen and the binding sites in each of them are used to con-

struct the PWM of the target TF of the ChIP-seq. Since the BEMs we employed were for 10 bp

long sequences, the PWMs we estimated were also 10 base pairs in length. Each term of the W
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was computed using the formula [75]

Wij ¼ log 2

Nij þ bi
biðN þ 1Þ

� �

; ð14Þ

where Nij is the number of sequences with the i-th base at the j-th position, bi is the back-

ground frequency of the i-th sequence and N is the number of sequences used to estimated W.

The background frequencies are added as pseudo-counts to deal with positions where Nij is 0.

Motif estimation in the presence of indirect binding and cooperative

binding

As stated earlier, in indirect binding, a fraction of genomic locations are bound by the ChIP

target TF A while the remaining locations are bound by a second TF B, which is in turn bound

to A. The binding site sequences of A are assigned to each genomic locus based on the BEM of

A but we do not utilize any BEM of B to assign a binding site sequence for it. Instead, we asso-

ciate with each binding energy of B a 10 bp sequence generated from a dinucleotide model of

the S. cerevisiae genome. We chose a dinucleotide model to generate indirectly bound

sequences since this has been shown to closely approximate background genomic DNA that is

not bound by the target TF [61].

After ChIP-seq is simulated in the presence of indirect binding, the top 10% of genomic

locations are chosen according to their read count ratio to estimate the PWM of A. The

sequences used for PWM estimation are the binding sites of A from directly bound locations

that fall in the top 10% and the randomly generated binding site sequences of B from the

remaining indirectly bound locations.

In the case of cooperative binding, a fraction of locations is bound cooperatively by A and B

while the remaining locations are independently bound by both TFs. At each genomic locus,

binding sites of A and B are associated with the binding energies of each location based on

their respective BEMs. When the top 10% of locations are chosen for PWM estimation, the

binding sites of A from both cooperatively and independently bound locations are chosen.

Posterior density estimation

We drew samples from the posterior binding energy distribution Pð��1 ¼ �jrð1Þ; rð2Þ; . . . ; rðkÞÞ
using a combination of kernel density estimation and the Metropolis-Hastings algorithm [76].

Here, r(1), r(2), . . ., r(k) are read count ratios observed in k sequential replicates from a genomic

locus whose true binding energy is �T.

We first compute the posterior distribution when k = 1. From Bayes’ rule, we have

Pð��1 ¼ �jRð1Þ ¼ rð1ÞÞ ¼ PðRð1Þ ¼ rð1Þj��1 ¼ �Þpð��1 ¼ �Þ=C1; ð15Þ

where C1 is the normalization constant C1 ¼
R
PðRð1Þ ¼ rð1Þj��1 ¼ �Þpð��1 ¼ �Þd� and π is a

prior distribution, which we set to be the default binding energy distribution.

PðRð1Þ ¼ rð1Þj��1 ¼ �Þ � pð�1Þ represents the probability density of read count ratios from a

locus containing a single binding site with energy �. To compute this distribution, we simu-

lated 103 replicates of ChIP-seq across n = 1000 locations whose binding energies �1, �2, . . ., �n

were sampled from the default binding energy distribution. The remaining simulation param-

eters of the ChIP-seq were set to their default values. This gave us 103 replicates of read count

ratios for each of the binding energies �1, �2, . . ., �n. We used these read count ratios to com-

pute Gaussian kernel density estimators (KDE) of p(�1), p(�2), . . ., p(�n), which we denote as

p̂ð�1Þ; p̂ð�2Þ; . . . ; p̂ð�nÞ. The KDE estimators were computed using the gaussian_kde
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method in the Python scipy library (v0.19.1) [77]. Given this set of KDE estimators, we can

compute p̂ at any arbitrary � in the range [min �(i), max �(i)] using a linear interpolation

between values �j and �j+1 as

p̂ ð�Þ ¼ lp̂ð�jÞ þ ð1 � lÞp̂ð�jþ1Þ; ð16Þ

where �j< � < �j+1 and λ = (� − �j)/(�j+1 − �j). Substituting this into Eq (15), we get

Pð��1 ¼ �jRð1Þ ¼ rð1ÞÞ � p̂ ð�1Þpð��1 ¼ �Þ=C1; ð17Þ

where C1 ¼
R
p̂ð�1Þpð��1 ¼ �Þd�. To sample from Pð��1 ¼ �jRð1Þ ¼ rð1ÞÞ, we implemented the

Metropolis-Hastings algorithm [76], which is an algorithm that draws samples from a Markov

chain whose stationary distribution is the posterior density from which we wish to sample.

Using the same ChIP-seq simulation parameters as used in generating the 103 replicates,

but with the binding energy of the first locus �1 set to �T, we simulated k replicates of ChIP-seq

and store the sequence of read count ratios r(1), r(2), . . .r(k) from the first locus. These are the

read count ratios that are used to sequentially update the posterior binding energy estimate in

Eq (15).

Metropolis-Hastings algorithm

The output of the Metropolis-Hastings algorithm is a set of samples �
ð0Þ

k ; �
ð1Þ

k ; . . . ; �
ðmÞ
k

that follows a target distribution, which in this case is the posterior distribution

Pð��1 ¼ �jRð1Þ ¼ rð1Þ;Rð2Þ ¼ rð2Þ; . . . ;RðkÞ ¼ rðkÞÞ. We explain the algorithm for the case when

k = 1.

We first sample � from a Uniform[0, 10] distribution and set �
ð0Þ

1 ¼ �, and compute

f ð�0Þ � Pð�0jRð1Þ ¼ rð1ÞÞ ¼ p̂ð�Þpð�Þ. �ð0Þ1 is the initial state of the Markov chain. We then

sample �0 from a proposal distribution, which we denote as gð�0j�ð0Þ1 Þ, and then compute

f ð�0Þ ¼ p̂ð�0Þpð�� 0Þ using Eq (16). If f ð�0Þ > f ð�ð0Þ1 Þ, we update the current state of the sampler to

�
ð1Þ

1 ¼ �
0. If f ð�0Þ < f ð�ð0Þ1 Þ, we compute a ratio

r ¼
f ð�0Þgð�0j�ð0Þ1 Þ

f ð�ð0Þ1 Þgð�
ð0Þ

1 j�
0Þ
; ð18Þ

and sample a number u from a Uniform[0, 1] distribution. If u< r, we set the current state of

the sampler to �
ð1Þ

1 ¼ �
0 or leave it unchanged at �

ð0Þ

1 if u> r. If �
ð0Þ

1 takes on values close to the

values 0 or 10kB T, then the probability density gð�0j�ð0Þ1 Þmust be 0 when �0 < 0 and �0 > 10kB
T. Thus, the choice of g which we use for the proposal distribution is a truncated normal distri-

bution. The forward proposal distribution gð�0j�ðiÞ1 Þ, where �
ðiÞ
1 is the i-th sample drawn, is a

normal distribution with mean �
ðiÞ
1 and standard deviation 0:02�

ðiÞ
1 that is truncated to lie

within [0, 10kB T]. The backward proposal distribution, gð�ðiÞ1 j�
0Þ is a normal distribution with

mean �0 and standard deviation 0.2�0 that is truncated to lie within [0, 10kB T].

We repeat this process and store the states of the sampler �
ð0Þ

1 ; �
ð1Þ

1 ; . . . ; �
ðbþtmÞ
1 , where t is a

thinning factor that we fix at 100, b is the burn-in period that is set to 10000 and m is the num-

ber of samples to be retained, which we set at 10000. We then retain only every t-th sample

beginning from the b-th sample i.e. �
ð1Þ

b ; �
ð1Þ

bþt; . . . ; �bþtm, and use it to construct a Gaussian ker-

nel density estimator of Pð��1 ¼ �jRð1Þ ¼ rð1ÞÞ, which we denote as P̂ð��1 ¼ �jRð1Þ ¼ rð1ÞÞ. Note

that in this process, the normalization constant C1 in Eq (15) need not be computed.
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When the read count ratio r(2) is observed after the second replicate of ChIP-seq, we substi-

tute P̂ð��1 ¼ �jRð1Þ ¼ rð1ÞÞ in place of the prior π in Eq (15) and update the posterior

Pð��1jRð1Þ ¼ rð1Þ;Rð2Þ ¼ rð2ÞÞ—

Pð��1 ¼ �jRð1Þ ¼ rð1Þ;Rð2Þ ¼ rð2ÞÞ

¼ PðRð1Þ ¼ rð1Þ;Rð2Þ ¼ rð2Þj��1 ¼ �ÞP̂ð��1 ¼ �jRð1Þ ¼ rð1ÞÞ=C2

¼ PðRð2Þ ¼ rð2Þj��1 ¼ �ÞPðRð1Þ ¼ rð1Þj��1 ¼ �ÞP̂ð��1 ¼ �jRð1Þ ¼ rð1ÞÞ=C2

� P̂ðRð2Þ ¼ rð2Þj��1 ¼ �ÞP̂ðRð1Þ ¼ rð1Þj��1 ¼ �ÞP̂ð��1 ¼ �jRð1Þ ¼ rð1ÞÞ=C2

where C2 is a normalization constant. This process is repeated k times in order to sample from

the posterior binding energy distributions Pð��1 ¼ �jRð1Þ ¼ rð1ÞÞ; . . . ; Pð��1 ¼ �jRð1Þ ¼ rð1Þ; . . . ;

RðkÞ ¼ rðkÞÞ.

Change in binding energy due to a single nucleotide change in a binding

site

We obtained BEM models of 368 TFs from the BEEML database (http://stormo.wustl.edu/

beeml/) [13]. These matrices follow the convention where the highest affinity sequence is

assigned an energy of 0, with all other sequences being assigned a positive binding energy. The

matrices in this database were calculated by fits of binding energy models to protein binding

microarray data [13] which measured the affinity of TFs for different 10 bp long sequences.

For each TF, there were two BEMs (each of dimension 4 × 10) available since the matrices

were fit individually to replicates of microarray measurements, with the quality of the fit being

determined by the R2 value of predictions from the matrix with measurements. For each TF,

we chose the BEM that had the higher R2 value for further analysis.

For each TF, we picked the sequence whose energy was closest in value to a baseline energy

that were in the range 2 − 6kB T in steps of 1kB T. For a given baseline energy, we then com-

puted the binding energy of each of the 30 sequences that were a single mutation away from

this sequence and stored the absolute values of the energy differences. We repeated this process

for every TF in the database and computed the 50-th and 25-th quantiles of binding energy dif-

ferences. The 50-th quantiles for the baseline energies from 2 − 6kB T were (in units of kB T)

0.24, 0.24, 0.23, 0.24, 0.24 and the 25-th quantiles were 0.76, 0.72, 0.7, 0.7, 0.71.

Supporting information

S1 Fig. Impact of power-law based genome-wide heterogeneity in extraction and PCR

efficiency on motif inference and ChIP-seq fidelity. (A) Impact of heterogeneity in mean

amplification ratio (left panel) and extraction efficiency (right panel) on motif inference. The

heterogeneity follows a power law truncated between 0 and 1. The error bars are the standard

deviation in the mean K-L distance computed after PWM was estimated in 10 replicates of

ChIP-seq for each mean and coefficient of variation. (B) Impact of heterogeneity in mean

amplification ratio (left panel) and extraction efficiency (right panel) on fidelity. The fidelity is

calculated for all regions (orange), the top 25th percentile (blue) and bottom 25th percentile

(black) of read count ratios. The error bars are the standard deviation in the estimate of fidel-

ity, which are computed from 10 replicates of simulation for a given mean and coefficient of

variation.

(TIF)

S2 Fig. Impact of chemical potential (TF concentration) on motif inference and fidelity.

(A) Left panel: Read count ratios from three different ChIP-seq simulations run with
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parameters set to their default values but with the chemical potential (μ) set to 2kB T (black),

4kB T (blue) and 6kB T (orange). 3kB T is the default value of the chemical potential used every-

where in the main text. Right panel: The K-L distance of the derived motif of Tye7 from the

baseline motif, which is derived when the chemical potential is set to 0, is shown on the y-axis.

The chemical potential is varied between 1kB T and 6kB T on the x-axis. (B) The fidelity of

ChIP-seq is shown on the y-axis for all regions (orange), the top 25th percentile (blue) and bot-

tom 25th percentile (black) of read count ratios. The error bars are the standard deviation in

mean K-L distance and fidelity obtained after 10 replicates of simulation.

(TIF)

S3 Fig. The impact of normally distributed extraction heterogeneity on motif inference for

different TFs. The heterogeneity in the extraction is assumed to follow a truncated normal

distribution, with the mean increasing from left to right on the x-axis in both panels. (A) More

informative TFs are less distorted by a low mean extraction efficiency. For each TF, the maxi-

mum K-L distance between the baseline motif and the motif inferred in the presence of extrac-

tion heterogeneity is computed from the curves shown in (B). The information content (in

bits) of the baseline motif for each TF is shown on the x-axis. (B) Dependence of K-L distance

between the inferred and baseline motifs of each TF at different levels of genome-wide extrac-

tion heterogeneity. The coefficient of variation of the truncated normal varies from 0 (no vari-

ation, in blue) to 0.5 (green) and 1.0 (brown). The error bars are the standard deviation in the

mean K-L distance computed after PWM was estimated in 10 replicates of ChIP-seq for each

mean and coefficient of variation. The binding energy matrices of each TF were taken from

the BEEML database. The structural class of the DNA binding domains of these TFs is listed in

S1 Table.

(TIF)

S4 Fig. The impact of normally distributed amplification ratio heterogeneity on motif

inference for different TFs. The heterogeneity in the amplification ratio is assumed to follow

a truncated normal distribution, with the mean increasing from left to right on the x-axis in

both panels. (A) More informative TFs are less distorted by a low mean amplification ratio effi-

ciency. For each TF, the maximum K-L distance between the baseline motif and the motif

inferred in the presence of amplification ratio heterogeneity is computed from the curves

shown in B. The information content (in bits) of the baseline motif for each TF is shown on

the x-axis. (B) Dependence of K-L distance between the inferred and baseline motifs of each

TF at different levels of genome-wide amplification ratio heterogeneity. The coefficient of vari-

ation of the truncated normal varies from 0 (no variation, in blue) to 0.5 (green) and 1.0

(brown). The error bars are the standard deviation in the mean K-L distance computed after

PWM was estimated in 10 replicates of ChIP-seq for each mean and coefficient of variation.

(TIF)

S5 Fig. Distortion of motifs of different lengths due to variation in (A) extraction effi-

ciency, and (B) the amplification ratio. Motifs of length 6 and 8 bp in length were generated

by sub-sampling columns of the 10bp long Tye7 energy matrix, while motifs of length 12, 14

and 16 were generated by first sub-sampling 2, 4, and 6 columns and concatenating them to

the Tye7 energy matrix. The motif information content (MIC) of the baseline motif (in bits) is

shown in each panel. The extraction and amplification ratio is assumed to be normally distrib-

uted with the coefficient of variation set at either 0, 0.5 or 1. The error bars are the standard

deviation in the mean K-L distance computed after the PWM was estimated in 10 replicates of

ChIP-seq for each mean and coefficient of variation.

(TIF)
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S6 Fig. The impact of chromatin accessibility on the sensitivity of ChIP-seq. Left panel: The

mean chromatin accessibility, as defined in the main text, is varied along the x-axis with the

area under the ROC (auROC) on the y-axis. Equal numbers (1000) of true and false positive

binding sites is set to be equal to 1000 each. The binding energy distribution of the true posi-

tive sites is set to be a power law truncated between 0 and 6kB T with an exponent of 0.5, and

the false positive site binding energies are distributed as a truncated power law between 0 and

6.78kB T with an exponent of 0.76. This corresponds to a mean occupancy ratio of 2 between

the true and false positive binding sites. Chromatin accessibility is varied by changing β in Eq 8

in the main text. Right panel: A Gaussian kernel density estimate of the chromatin accessibility

distribution corresponding to β = 0.5 (black), β = 5.0 (blue), β = 10.0 (orange). The mean cor-

responding to each value is shown in the plot legend.

(TIF)

S1 Table. The structural class of the motifs of TFs analyzed in S3 and S4 Figs. Information

on the structural class of the TFs was taken from the TransFac database. The binding energy

matrices were taken from the BEEML database.

(PDF)
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35. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative geno-

mics viewer. Nature biotechnology. 2011; 29(1):24. https://doi.org/10.1038/nbt.1754 PMID: 21221095

36. Engel SR, Dietrich FS, Fisk DG, Binkley G, Balakrishnan R, Costanzo MC, et al. The reference genome

sequence of Saccharomyces cerevisiae: then and now. G3: Genes, Genomes, Genetics. 2014; 4

(3):389–398. https://doi.org/10.1534/g3.113.008995

37. Cherry JM, Hong EL, Amundsen C, Balakrishnan R, Binkley G, Chan ET, et al. Saccharomyces

Genome Database: the genomics resource of budding yeast. Nucleic Acids Research. 2011; p.

gkr1029.

38. Li H, Durbin R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics.

2010; 26(5):589–595. https://doi.org/10.1093/bioinformatics/btp698 PMID: 20080505

39. Kasinathan S, Orsi GA, Zentner GE, Ahmad K, Henikoff S. High-resolution mapping of transcription fac-

tor binding sites on native chromatin. Nature methods. 2014; 11(2):203. https://doi.org/10.1038/nmeth.

2766 PMID: 24336359

40. Zentner GE, Kasinathan S, Xin B, Rohs R, Henikoff S. ChEC-seq kinetics discriminates transcription

factor binding sites by DNA sequence and shape in vivo. Nature communications. 2015; 6:8733. https://

doi.org/10.1038/ncomms9733 PMID: 26490019

41. Skene PJ, Henikoff S. An efficient targeted nuclease strategy for high-resolution mapping of DNA bind-

ing sites. Elife. 2017; 6:e21856. https://doi.org/10.7554/eLife.21856 PMID: 28079019

42. Sundaram AY, Hughes T, Biondi S, Bolduc N, Bowman SK, Camilli A, et al. A comparative study of

ChIP-seq sequencing library preparation methods. BMC genomics. 2016; 17(1):816. https://doi.org/10.

1186/s12864-016-3135-y PMID: 27769162

43. Padinhateeri R, Marko JF. Nucleosome positioning in a model of active chromatin remodeling enzymes.

Proceedings of the National Academy of Sciences. 2011;. https://doi.org/10.1073/pnas.1015206108

44. Parmar JJ, Marko JF, Padinhateeri R. Nucleosome positioning and kinetics near transcription-start-site

barriers are controlled by interplay between active remodeling and DNA sequence. Nucleic acids

research. 2013; 42(1):128–136. https://doi.org/10.1093/nar/gkt854 PMID: 24068556

45. Osberg B, Nuebler J, Gerland U. Adsorption-desorption kinetics of soft particles. Physical review letters.

2015; 115(8):088301. https://doi.org/10.1103/PhysRevLett.115.088301 PMID: 26340214

46. Chereji RV, Clark DJ. Major determinants of nucleosome positioning. Biophysical journal. 2018;. https://

doi.org/10.1016/j.bpj.2018.03.015 PMID: 29628211

47. Flensburg C, Kinkel SA, Keniry A, Blewitt ME, Oshlack A. A comparison of control samples for ChIP-

seq of histone modifications. Frontiers in genetics. 2014; 5:329. https://doi.org/10.3389/fgene.2014.

00329 PMID: 25309581

ChIPulate: A comprehensive ChIP-seq simulation pipeline

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006921 March 21, 2019 30 / 32

https://doi.org/10.1038/nbt.1518
http://www.ncbi.nlm.nih.gov/pubmed/19122651
https://doi.org/10.1093/biostatistics/kxt047
http://www.ncbi.nlm.nih.gov/pubmed/24178187
https://doi.org/10.1073/pnas.192693599
https://doi.org/10.1239/aap/1086957587
https://doi.org/10.1239/aap/1086957587
https://doi.org/10.1371/journal.pcbi.1000590
http://www.ncbi.nlm.nih.gov/pubmed/19997485
https://doi.org/10.1093/nar/gkr1180
https://doi.org/10.1093/nar/gkr1180
http://www.ncbi.nlm.nih.gov/pubmed/22140105
https://doi.org/10.1093/nar/gkj143
http://www.ncbi.nlm.nih.gov/pubmed/16381825
https://doi.org/10.1101/gad.176826.111
https://doi.org/10.1016/j.molcel.2018.03.007
http://www.ncbi.nlm.nih.gov/pubmed/29628310
https://doi.org/10.1038/nbt.1754
http://www.ncbi.nlm.nih.gov/pubmed/21221095
https://doi.org/10.1534/g3.113.008995
https://doi.org/10.1093/bioinformatics/btp698
http://www.ncbi.nlm.nih.gov/pubmed/20080505
https://doi.org/10.1038/nmeth.2766
https://doi.org/10.1038/nmeth.2766
http://www.ncbi.nlm.nih.gov/pubmed/24336359
https://doi.org/10.1038/ncomms9733
https://doi.org/10.1038/ncomms9733
http://www.ncbi.nlm.nih.gov/pubmed/26490019
https://doi.org/10.7554/eLife.21856
http://www.ncbi.nlm.nih.gov/pubmed/28079019
https://doi.org/10.1186/s12864-016-3135-y
https://doi.org/10.1186/s12864-016-3135-y
http://www.ncbi.nlm.nih.gov/pubmed/27769162
https://doi.org/10.1073/pnas.1015206108
https://doi.org/10.1093/nar/gkt854
http://www.ncbi.nlm.nih.gov/pubmed/24068556
https://doi.org/10.1103/PhysRevLett.115.088301
http://www.ncbi.nlm.nih.gov/pubmed/26340214
https://doi.org/10.1016/j.bpj.2018.03.015
https://doi.org/10.1016/j.bpj.2018.03.015
http://www.ncbi.nlm.nih.gov/pubmed/29628211
https://doi.org/10.3389/fgene.2014.00329
https://doi.org/10.3389/fgene.2014.00329
http://www.ncbi.nlm.nih.gov/pubmed/25309581
https://doi.org/10.1371/journal.pcbi.1006921


48. Nakato R, Shirahige K. Recent advances in ChIP-seq analysis: from quality management to whole-

genome annotation. Briefings in bioinformatics. 2016; 18(2):279–290.

49. Bailey TL, Machanick P. Inferring direct DNA binding from ChIP-seq. Nucleic acids research. 2012; p.

gks433. https://doi.org/10.1093/nar/gks433

50. Zeng PY, Vakoc CR, Chen ZC, Blobel GA, Berger SL. In vivo dual cross-linking for identification of indi-

rect DNA-associated proteins by chromatin immunoprecipitation. Biotechniques. 2006; 41(6):694–698.

https://doi.org/10.2144/000112297 PMID: 17191611

51. Rhee HS, Pugh BF. Comprehensive genome-wide protein-DNA interactions detected at single-nucleo-

tide resolution. Cell. 2011; 147(6):1408–1419. https://doi.org/10.1016/j.cell.2011.11.013 PMID:

22153082

52. Yamada N, Lai WK, Farrell N, Pugh BF, Mahony S. Characterizing protein-DNA binding event subtypes

in ChIP-exo data. bioRxiv. 2018; p. 266536.

53. Kinney JB, Tkačik G, Callan CG. Precise physical models of protein–DNA interaction from high-

throughput data. Proceedings of the National Academy of Sciences. 2007; 104(2):501–506. https://doi.

org/10.1073/pnas.0609908104

54. Berg OG, von Hippel PH. Selection of DNA binding sites by regulatory proteins: Statistical-mechanical

theory and application to operators and promoters. Journal of molecular biology. 1987; 193(4):723–

743. https://doi.org/10.1016/0022-2836(87)90354-8 PMID: 3612791

55. Maerkl SJ, Quake SR. A systems approach to measuring the binding energy landscapes of transcription

factors. Science. 2007; 315(5809):233–237. https://doi.org/10.1126/science.1131007 PMID: 17218526

56. Ma X, Ezer D, Navarro C, Adryan B. Reliable scaling of position weight matrices for binding strength

comparisons between transcription factors. BMC bioinformatics. 2015; 16(1):265. https://doi.org/10.

1186/s12859-015-0666-1 PMID: 26289072
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