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Abstract: Quinoa (Chenopodium quinoa Willd.) was known as the “golden grain” by the native Andean
people in South America, and has been a source of valuable food over thousands of years. It can
produce a variety of secondary metabolites with broad spectra of bioactivities. At least 193 secondary
metabolites from quinoa have been identified in the past 40 years. They mainly include phenolic
acids, flavonoids, terpenoids, steroids, and nitrogen-containing compounds. These metabolites
exhibit many physiological functions, such as insecticidal, molluscicidal and antimicrobial activities,
as well as various kinds of biological activities such as antioxidant, cytotoxic, anti-diabetic and
anti-inflammatory properties. This review focuses on our knowledge of the structures, biological
activities and functions of quinoa secondary metabolites. Biosynthesis, development and utilization
of the secondary metabolites especially from quinoa bran were prospected.
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1. Introduction

Quinoa (Chenopodium quinoa Willd.), a dicotyledonous plant belonging to Chenopodiaceae family,
is one of the oldest native crops in the Andean region of South America, with approximately 7000 years
of cultivation [1]. It has been considered as a pseudo-cereal because of the grain characteristics [2].
Consumption of seeds is the most common use of quinoa. Once the bran (also called hull or seed coats)
containing saponins has been eliminated, the seeds can be consumed as entire grains or milled to flour
for preparation of bread and pastry. The other parts such as leaves and stems were used as feed [2,3].

Quinoa has been recognized as a complete food due to a variety of vitamins, significant amounts of
minerals, unsaturated fatty acids, dietary fiber, abounding proteins, and excellent balance of essential
amino acids. The year 2013 was named “The Internaitonal Year of Quinoa” by the UN. Quinoa has
been introduced and cultivated all over the world in the past ten years [3–8].

Quinoa possesses a large number of secondary metabolites, such as phenolic acids, flavonoids,
terpenoids, steroids, and nitrogen-containing compounds. These metabolites play various physiological
and ecological roles against harmful microorganisms, birds and insects. They also exhibit features
beneficial to humans, including anti-diabetic [9], anticancer [10], cytotoxic [11], antimicrobial [12],
anti-inflammatory [13], immunoregulatory [14] and adjuvant activities [15].

To our knowledge, there are many reviews on quinoa, most of them are focused on the
nutritional, functional and antinutritional aspects [16–18], abiotic stress responses [19], biodiversity
and sustainability [20], or only a specific topic of quinoa secondary metabolites and their biological
activities such as steroids [21,22] and triterpenoid saponins [23], but no review covers almost all
secondary metabolites and their biological activities. In this review, we summarize and discuss quinoa
secondary metabolites on their structural diversity, biological activities or functions during the past
40 years.
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2. Phenolic Acids and Their Biological Activities or Functions

About 29 phenolic acid analogues have been identified in quinoa. According to their structural
features, they can be classified as benzoic acid analogues (1–16) and cinnamic acid analogues (17–29).
Benzoic acid (1) was derived from cinnamic acid (19) in planta in the biosynthetic pathway of phenolic
acids [24]. Phenolic acid derivatives are present in either free or conjugated forms. The total of
conjugated phenolic acids in quinoa were at comparable level as that of free ones, suggesting that
conventional solvent extraction and chromatographic analysis of extractable phenolic acids might have
significantly underestimated the total phenolic acid content in quinoa, as such methods only detect
free phenolic acids [25].

Phenolic acids can be released by acid, alkaline, and enzymatic treatments from the conjugated
forms. It was reported that at least 19 phenolic acids were released in the residue of quinoa which can
enhance bioaccessibility [25]. Bound phenolic acid derivatives in conjugated forms were not affected
by environmental stresses [26]. Higher content of phenolic acids showed stronger antioxidant and
inhibitory activities of α-glucosidase and pancreatic lipase [25].

2.1. Benzoic Acid Analogues and Their Biological Activities or Functions

At least 16 benzoic acid analogues have been identified from quinoa. Their biological activities
are listed in Table 1, and the structures are shown in Figure 1. Benzoic acid derivatives include benzoic
acid (1), gallic acid (8), protocatechuic acid (10), syringic acid (12), vanillic acid (13), and their analogues.
They are rich in the leaves and seeds of quinoa [25,27]. Though the benzoic acid analogues from quinoa
have not been evaluated for their biological activities, these metabolites from other plant species have
been reported to have antimicrobial [28,29], allelopathic [30], antioxidant [31], and antifeedant [32]
activities (Table 1).

Table 1. Benzoic acid analogues and their biological activities or functions.

Name Quinoa Part Used
for Isolation Biological Activity or Function Ref.

Benzoic acid (1) Leaves and flour - [27,33]
4-Hydroxybenzoic acid =
p-Hydroxybenzoic acid (2) Seeds - [25]

Leaves and seeds - [27,34]
Antimicrobial activity [28]

Allelopathic effect [30]
2,4-Dihydroxybenzoic acid (3) Seeds - [25,35]
2,5-Dihydroxybenzoic acid (4) Seeds - [35]
3,4-Dihydroxybenzoic acid (5) Seeds - [35]

Canthoside A (6) Flour - [33]
Ethyl-m-digallate (7) Flour - [33]

Antifeedant activity [32]

Gallic acid (8) Leaves, sprouts and
seeds - [27,34]

Antioxidant activity [31]
Antibacterial activity [36]

1-O-Galloyl-β-d-glucoside (9) Seeds and flour - [33]
Protocatechuic acid (10) Sprouts and seeds - [25,37]

Antioxidant activity [31]
Anticancer activity [38]

Antibacterial activity [39]
Antiulcer activity [40]

Antiageing activity [41]
Anti-inflammatory, antiibrotic,

antiatherosclerotic,
hyperlipidemic, analgesic,

hepatoprotective and
nephroprotective activities

[42]

Antiviral activity [43]
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Table 1. Cont.

Name Quinoa Part Used
for Isolation Biological Activity or Function Ref.

Protocatechuic acid 4-O-glucoside (11) Flour - [33]
Antioxidant activity [44]

Syringic acid (12) Leaves and seeds - [25,26]
Allelopathic effect [30]

Antioxidant activity [31]
Antimicrobial activity [45]

Hepatoprotective effect [46]
Anti-inflammatory activity [47]

Vanillic acid (13) Leaves and seeds - [25,34]
Allelopathic effect [30]

Hepatoprotective effect [46]
Antioxidant and antimicrobial

activities, and inhibitory activity
on COX-I and COX-II

[48]

Vanillic acid glucosyl ester (14) Seeds - [49]
Vanillic acid 4-O-glucoside (15) Seeds - [35]

Vanillin (16) Seeds and flour - [25,33,
35]

Antioxidant activity [50]
Antimicrobial activity [51]

Antidepressant activity [52]
Anti-angiogenic,

anti-inflammatory and
anti-nociceptive activities

[53]

Figure 1. Structures of the benzoic acid analogues isolated from quinoa.
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2.2. Cinnamic Acid Analogues and Their Biological Activities or Functions

Thirteen cinnamic acid analogues have been identified from quinoa. Their biological activities are
listed in Table 2, and the structures are shown in Figure 2. These cinnamic acid derivatives include
caffeic acid (17), chlorogenic acid (18), cinnamic acid (19), coumaric acid (20/21), ferulic acid (24),
rosmarinic acid (28), sinapinic acid (29), and their analogues. Ferulic acid (24) and its derivatives were
the predominant phenolics in bound form to be present in quinoa seeds [17].

Both ferulic acid (24) and sinapic acid (29) had more phytotoxic effects on cucumber seedling as
compared to the other tested phenolic acids [54]. The phenolic acids from quinoa were also isolated
from other plant species which showed a variety of biological activities such as antimicrobial [28],
allelopathic [30], antioxidant [31], anti-apoptotic [55], anti-diabetic [56] activities that are mentioned in
Table 2.

Table 2. Cinnamic acid analogues and their biological activities or functions.

Name Quinoa Part Used for
Isolation

Biological Activity or
Function Ref.

Caffeic acid (17) Seeds - [25,34]
Antimicrobial activity [29]

Allelopathic effect [30]
Antioxidant activity [31]

Anti-apoptotic activity [55]
Inhibitory activity on xanthine

oxidase [57]

Chlorogenic acid (18) Leaves and seeds - [25,26]
Antimicrobial activity [29]
Antioxidant activity [31]
Anti-diabetic activity [56]

Hemolytic activity [58]
Neuroprotective effects [59]

Anti-obesity activity [60]
Antihepatotoxic effect [61]

Antibiofilm activity [62]
Cinnamic acid (19) Sprouts and seeds - [34]

o-Coumaric acid (20) Leaves and seeds - [25,26]
Allelopathic effect [30]

Antioxidant activity [31]
p-Coumaric acid (21) Leaves and seeds - [27,63]

Antilisterial activity [64]
p-Coumaric acid glucoside (22) Seeds - [35]

8,5′-Diferulic acid (23) Seeds - [25]

Ferulic acid (24) Leaves, sprouts and
seeds - [27,34,35]

Antimicrobial activity [29]
Anti-apoptotic activity [55]

Antioxidant activity [65]
Cholesterol-lowering activity [66]

Anti-thrombosis and
anti-atherosclerosis effects [67,68]

Anti-inflammatory activity [69]
Anti-cancer activity [70]

Ferulic acid 4-O-glucoside (25) Flour - [33]
Isoferulic acid (26) Seeds - [35]

Antioxidant activity [71]
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Table 2. Cont.

Name Quinoa Part Used for
Isolation

Biological Activity or
Function Ref.

4’-Geranyloxyferulic acid (27) Seeds - [72]
Rosmarinic acid (28) Seeds - [25]

Antimicrobial activity [73]
Anti-inflammatory activity [74]

Antioxidant activity [75]
Antimutagenicity activity [76]

Antiviral and
anti-inflammatory effects [77]

Sinapinic acid = trans-Sinapic
acid (29) Leaves - [27]

Seeds - [25]
Antioxidant activity [44]

Anxiolytic-like effects [78]
Cerebral protective and

cognition-improving effects [79]

Figure 2. Structures of the cinnamic acid analogues isolated from quinoa.

3. Flavonoids and Their Biological Activities or Functions

Flavonoids are based upon a fifteen-carbon skeleton consisting of two benzene rings linked via
a heterocyclic pyrene ring [80]. They contain aglycones and their glycosides. The main flavonoid
aglycones are kaempferol (35) and quercetin (46). Other aglycones in quinoa include acacetin (30),
myricetin (45), daidzein (62), and genistein (63). According to the structural features, quinoa flavonoids
can be classified as flavones (30–33), flavonols (34–54), flavanones (or dihydroflavones, 55–57), flavanols
(58–60), and isoflavones (61–65). Flavonoids play important roles in plants against the feeding insects
and herbivores [81]. Flavonoids also have deterrent effects with respect to feeding and physiological
behavior against some soil herbivorous nematodes [82].
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3.1. Flavones and Their Biological Activities or Functions

Four flavones, namely acacetin (30), isovitexin (31), orientin (32) and vitexin (33), have been
identified from quinoa. Their biological activities are listed in Table 3, and the structures are shown in
Figure 3. Flavones were significantly richer in sprouts than in other parts of quinoa. Quinoa sprouts
grown in the darkness contained vitexin (33) and substantial amounts of isovitexin (31), whereas
those grown in daylight only contained isovitexin (31). It is remarkable that no isovitexin (31) was
present in quinoa seeds [34]. Acacetin (30), isovitexin (31), orientin (32) and vitexin (33) were also
isolated from other plant species which showed various biological activities such as antioxidant [83],
anti-inflammatory [84] activities, which are listed in Table 3.

Table 3. Flavones and their biological activities or functions.

Name Quinoa Part Used for
Isolation Biological Activity or Function Ref.

Acacetin (30) Flour - [33]
Antioxidant activity [83]

Spasmolytic and antinociceptive activities [85]
Antiproliferative activity [86]

Antiherpetic activity [87]
Anticancer activity [88]

Anti-inflammatory and antinociceptive activities [89]
Hypouricemic effect [90]

Isovitexin (31) Sprouts - [34]
Anti-inflammatory and antioxidant activities [84]

Anti-neoplastic effect [91]
Anti-tumour activity [92]

Neuroprotective effect [93]
Anxiolytic property [94]

Anti-Alzheimer‘s disease [95]
Reduced postprandial blood glucose [96]

Inhibitory effect on α-glucosidase [97]
Inhibitory activity on rat lens aldose reductase [98]

Orientin (32) Seeds - [34]
Anticancer activity [7]

Anti-inflammatory activity [99]
Antioxidant activity [100]

Antiapoptosis activity [101]
Antithrombotic and antiplatelet activities [102]

Antiproliferative activity [103]
Vitexin (33) Sprouts and seeds - [34]

Anti-carcinogenic effect [91]
Anxiolytic property [94]

Anti-Alzheimer’s disease property [95]
Reduced postprandial blood glucose [96]

Inhibitory effect on α-glucosidase [97]
Induced apoptosis property [104]

Agonist-induced regulation of vascular contractility [105]
Antioxidant activity [106]

Anti-inflammatory activity [107]
Neuroprotective effect [108]
Anti-depressant effect [109]
Anti-convulsant effect [110]

Antiepileptic effect [111]
Anti-nociceptive effect [112]

Anti-hypoxia/ischemia injury [113]
Anti-ischemia/reperfusion injury [114]

Anti-thyroid effect [115]
Antimicrobial activity [116]

Anti-viral effect [117]
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Figure 3. Structures of the flavones isolated from quinoa.

3.2. Flavonols and Their Biological Activities or Functions

About 21 flavonols have been identified in quinoa. Most of them are present in the seeds. Their
biological activities are listed in Table 4, and their structures are shown in Figure 4.

Both kaempferol (35) and quercetin (46) are two main flavonols. They are in the form of glycosides
present in quinoa. Structure-activity relationship of their antioxidant activity showed that the ability to
quench free hydroxyl radicals increased with the amount of hydroxyl groups in the ring B. For example,
myricetin (45) was a stronger antioxidant than kaempferol (35) [118]. In addition, the compounds
with 3’,4’-dihydroxy substituents in the ring B had much stronger antioxidative activities than those
without ortho-dihydroxy substitution in the ring B [119]. Quercetin (46) was the strongest antioxidant
among the flavonoids. Both isorhamnetin (34) and kaempferol (35) were the most abundant flavonoids
in quinoa leaves, and it also contained large amounts of rutin (54) [27]. Four kaempferol 3-glycosides
(38–41) exhibited moderate antioxidant activity while two quercetin 3-glycosides (50,51) showed
strong antioxidant activity, suggesting that quinoa could represent an important source of free radical
inhibitors [120].

Many flavonoids are characterized by antibacterial, antifungal and antiviral activities, not only against
plant pathogens, but also against the pathogens for humans and animals (Table 4). Kaempferol (35) and its
derivatives showed antibacterial activity against Gram-positive and Gram-negative bacteria, as well as
against the fungus Candida glabrata [121,122].

About eight quercetin derivatives (46–53) have been identified in quinoa. Kaempferol (35), myricetin
(45) and quercetin (46) acted as the deterrents against Radopholus similis and Meloidogyne incognita [82].
Quercetin-3-glucoside (47) and rutin (54) from Pinus banksiana inhibited the development of Lymantria
dispar and increased its mortality [123]. Quercetin (46), quercetin 3-O-glucoside (47) and its six derivatives
exhibited inhibitory activity on the shoot growth of Arabidopsis thaliana as well as on the spore germination
of the fungus Neurospora crassa [124].

Table 4. Flavonols and their biological activities or functions.

Name Quinoa Part Used for
Isolation

Biological Activity or
Function Ref.

Isorhamnetin (34) Leaves - [27,125]
Chemopreventive activity [126]
Antituberculosis activity [127]

Antioxidant activity [128]
Anti-tumor activity [129,130]

Inhibitory activity on farnesyl
protein transferase [131]

Anti-inflammatory activity [132]
Anticoagulant activity [133]
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Table 4. Cont.

Name Quinoa Part Used for
Isolation

Biological Activity or
Function Ref.

Kaempferol (35) Leaves and seeds - [25,26,35]
Antibacterial activity [36]
Antioxidant activitiy [134]

Inhibit UVB-induced COX-2
expression [135]

Anti-inflammatory activitiy [136]
Stimulate osteoblastic activity [137]

Kaempferol 3-glucoside (36) Seeds - [35]
Kaempferol 3-galactoside (37) Seeds - [35]

Kaempferol
3-O-(2,6-di-α-l-rhamnopyranosyl)-

β-d-galactopyranoside (38)
Seeds Antioxidant activity [49,120,138,139]

Kaempferol
3-O-β-d-apiofuranosyl-(1→2)-O-
α-l-rhamnopyranosyl(1→6)-β-d-

galactopyranoside (39)

Seeds Antioxidant activity [49,120,138]

Kaempferol
3-O-β-d-apiofuranosyl-(l→2)-β-d-

galactopyranoside (40)
Seeds Antioxidant activity [120,138]

Kaempferol
3-O-α-l-rhamnopyranosyl-(1→2)-

β-d-galactopyranoside (41)
Seeds Antioxidant activity [120]

Kaempferol 3-O-β-d-glucuronic
acid (42) Seeds Antioxidant activity [49]

Kaempferol 3,7-dirhamnoside (43) Seeds - [35]
Morin (44) Sprouts and seeds - [34]

Anti-biofilm activity [140]
Anti-inflammatory activity [141]

Antitumor activity [142]
Inhibitory effect on the

expression of α1 (I) collagen [143]

Antioxidant activity [144]
Anticancer activity [145]

Inhibited the increase of ROS
and reduced the apoptotic cell [146]

Neuroprotective effect [147]
Hepatoprotective activity [148]

Myricetin (45) Seeds - [63]
Antibacterial activity [36]

Antioxidant and prooxidant
activities [149]

Anticancer activity [150]
Anti-inflammatory activity [151]

Analgesic activity [152]
Quercetin (46) Leaves and seeds - [27,35,125,139]

COX-I and COX-II inhibition
activity [48]

Stimulate osteoblastic activity [137]
Antioxidant and prooxidant

activities [149]

Anti-inflammatory activity [153]
Cytotoxic activity [154]

Quercetin 3-O-glucoside (47) Flour - [33]
Quercetin-3-rutinoside (48) Seeds - [35]

Quercetin 3-arabinoside (49) Seeds - [35]
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Table 4. Cont.

Name Quinoa Part Used for
Isolation

Biological Activity or
Function Ref.

Quercetin
3-O-β-d-apiofuranosyl-(1→2)-

α-l-rhamnopyranosyl-(1→6)-β-d-
galactopyranoside (50)

Seeds Antioxidant activity [120,139]

Quercetin
3-O-(2,6-di-α-l-rhamnopyranosy)-

β-d-galactopyranoside (51)
Seeds Antioxidant activity [49,120]

Quercetin
3-O-(2,6-di-O-α-rhamnopyranosyl)-

β-glucopyranoside (52)
Seeds - [139]

Quercetin
3-O-β-d-apiofuranosyl-(1→2)-O-
α-l-rhamnopyranosyl-(1→6)-β-d-
galactopyranoside-3,4-dimethyl

ether (53)

Seeds Antioxidant activity [49]

Rutin (54) Leaves, sprouts and
seeds - [27,34]

Anti-diabetic activity [56]
Antioxidant activity [155]

Antiulcerogenic activity [156]

Figure 4. Structures of the flavonols isolated from quinoa.
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3.3. Flavanones and Their Biological Activities or Functions

Three flavanones hesperidin (55), neohesperidin (56), and naringin (57) were identified in quinoa
seeds (Table 5 and Figure 5). Both hesperidin (55) and neohesperidin (56) were found in the sprouts [34].
These flavanones isolated from other plant species were screened to show a variety of biological activities
such as neuroprotective [147], antioxidant [157], anti-inflammatory [158] and antifungal [159] activities.

Table 5. Flavanones and their biological activities.

Name Quinoa Part Used for
Isolation Biological Activity or Function Ref.

Hesperidin (55) Seeds - [34]
Neuroprotective effect [147]

Antioxidant and cytotoxic
activities [157]

Anti-inflammatory activity [158]
Antifungal activity [159]

Anti-proliferative and apoptotic
activities [160]

Protects the liver against
drug-induced injury [161]

Cardioprotective activity [162]
Neohesperidin (56) Seeds - [34]

Neuroprotective effect [147]
Antifungal activity [159]

Antioxidant activity [163]
Induces cell apoptosis [164]

Naringin (57) Seeds - [35]
Antifungal activity [159]

Antioxidative activity [165]
Anti-osteoporosis activity [166]

Anti-inflammatory activity [167]

Figure 5. Structures of the flavanones isolated from quinoa.

3.4. Flavanols and Their Biological Activities or Functions

Three flavanols namely catechin (58), epicatechin (59), and epigallocatechin (60) were found in
quinoa seeds. Their biological activities are listed in Table 6, and their structures are shown in Figure 6.
They generally showed antioxidant [149,168] and antimutagenic [169] activities.
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Table 6. Flavanols and their biological activities or functions.

Name Quinoa Part Used for
Isolation Biological Activity or Function Ref.

Catechin (58) Seeds - [25]
Antioxidant activity [149]

Antimutagenic activity [169]
Anti-metastatic activity [170]

Antifungal activity [171]
Apoptosis-inducing activity [172]

Epicatechin (59) Seeds - [35]
Antimutagenic activity [169]

Antioxidant activity [173]
Antiproliferative activity [174]

Epigallocatechin (60) Seeds - [33,35]
Antioxidant activity [168]

Figure 6. Structures of the flavanols isolated from quinoa.

3.5. Isoflavones and Their Biological Activities or Functions

Five isoflavanones, i.e., biochanin (61), daidzein (62), genistein (63), prunetin (64), and puerarin
(65) were found in quinoa (Table 7 and Figure 7). They showed antinematodal activities on Radopholus
similis [82]. Isoflavones are recognized to be estrogenic compounds that are often associated with a
reduced risk of cancers. The estrogenic activity can be enhanced after metabolization to more active
compounds such as daidzein (62) and genistein (63) by gut microorganisms [175].

Table 7. Isoflavones and their biological activities or functions.

Name Quinoa Part Used
for Isolation Biological Activity or Function Ref.

Biochanin A (61) Seeds - [35]
Daidzein (62) Seeds - [176]

Antioxidant activity [177]
Enhance adipocyte differentiation and

PPARγ transcriptional activities [178]

Affected human nonhormone-dependent
cervical cancer cells [179]

Modulate in vitro rat uterine contractile
activity [180]

Anti-hypoxia activity [181]
Antithrombotic and antiallergic activities [182]

Chemoprotective activity [183]
Inhibits bone loss in ovariectomized mice [184]

Antiproliferative activity [185,186]
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Table 7. Cont.

Name Quinoa Part Used
for Isolation Biological Activity or Function Ref.

Genistein (63) Seeds - [176]
Antiproliferative activity on human breat

cancer cells [185,186]

Modulate in vitro rat uterine contractile
activity [180]

Antioxidant activity [187]
Inhibitory activity on tyrosine-specific

protein kinases [188]

Antitumor activity [189]
Cytotoxic activity and anticancer activities [190]

Antitumor and antiangiogenic activities [191,192]
Antibacterial activity [193]

Inhibition of cyclooxygenase-2 activity [194]
Antiprostate cancer activity [195]

Antileukemic activity [196]
Induction of quinone reductase activity [197]
Induces growth arrest and suppresses

telomerase activities [198]

Prunetin (64) Seeds - [25]
Anti-inflammatory activity [199]

Puerarin (65) Seeds - [35]
Antithrombotic and antiallergic activities [182]

Anti-apoptosis activity [200]
Antioxidant activity [201]

Antihyperglycemic effect [202]

Figure 7. Structures of the the isoflavonoids isolated from quinoa.

4. Terpenoids and Their Biological Activities or Functions

The terpenoids in quinoa mainly include monoterpenoids and triterpenoids which are
biosynthesized through the isoprenoid metabolic pathway. The monoterpenoids usually play functions
as allelochemicals in quinoa. The triterpenoids are present in the seed coats (also called bran or
hull), and have a characteristic bitter or astringent taste to protect it from birds and insects, and
possess detergent properties [2]. The saponins are also of interest as valuable adjuvants and the first
saponin-based vaccines have been introduced commercially [203].

4.1. Monoterpenoids and Their Biological Activities or Functions

Quinoa monoterpenoids and their biological activities are listed in Table 8. Their structures are
shown in Figure 8. At least 15 monoterpenoids in the essential oils of quinoa from the East Mediterranean
have been identified [204]. Penstebioside (74) was an iridoid glycoside isolated from the flour of
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quinoa [33]. γ-Terpinene (78) was also isolated from rice to show antibacterial activity on Xanthomonas
oryzae pv. oryzae (Xoo) [205].

Table 8. Monoterpenoids and their biological activities or functions.

Name Quinoa Part Used
for Isolation

Biological Activity or
Function Ref.

cis-Ascaridole (66) Leaves - [204]
cis-Isoascaridole (67) Leaves - [204]

Camphene (68) Leaves - [204]
Camphor (69) Leaves - [204]

trans-Carveol (70) Leaves - [204]
p-Cymene (71) Leaves - [204]

p-Mentha-1(7),8-diene (72) Leaves - [204]
trans-p-Menth-2-en-1-ol (73) Leaves - [204]

Penstebioside (74) Flour - [33]
β-Pinene (75) Leaves - [204]

Pinocarvone (76) Leaves - [204]
α-Terpinene (77) Leaves - [204]
γ-Terpinene (78) Leaves - [204]

Antibacterial activity [205]
Terpin-1-ol (79) Leaves - [204]

α-Terpinyl acetate (80) Leaves - [204]

Figure 8. Structures of the monoterpenoids isolated from quinoa.

4.2. Sesquiterpenoids and Their Biological Activities or Functions

Only one sesquiterpene namely caryophyllene (81) was identified in quinoa [204]. Its structure is
shown in Figure 9.
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Figure 9. Structure of the sesquiterpenoid isolated from quinoa.

4.3. Triterpenoids and Their Biological Activities or Functions

Triterpenoids, including their aglycones (sapogenins) and glycosides (saponins), are mainly
present in the bran to protect quinoa from pests and herbivores (i.e., birds and insects) and pathogenic
microorganisms [206]. Quinoa saponins are characterized as the bitter metabolites. The quinoa could
be classified into bitter and sweet varieties according to the triterpenoid saponin content, which is
much lower in the sweet varieties and higher in the bitter ones [138,207].

The crude saponin fraction inhibited the growth of Candida albicans at 50 µg/mL [208]. The
alkali-transformed saponin from quinoa bran showed inhibition against halitosis-related bacterium
Fusobacterium nucleatum, with a minimum inhibitory concentration (MIC) of 31.3 µg/mL. It could
be used as an antibacterial agent to treat halitosis [209]. When the fungal pathogen Botrytis cinerea
was treated with the saponin extracts, mycelial growth and conidial germination were significantly
inhibited [210].

When golden apple snails (Pomacea canaliculata, GAS) were treated with the crude saponin
under laboratory conditions in 24 h at approximately 33 µg/mL, they were completely killed [211].
Similarly, when giant apple snails (Pomacea maculata) were treated with saponins above 7 µg/mL
after 72 h, they were also 100% killed. Quinoa saponin could be a viable product to safely control
P. maculata in rice fields [212]. Therefore, quinoa saponins could be developed into molluscicide.
In addition, this molluscicide was found to be non-toxic to other non-target species such as goldfish
(Carassius auratus) and tilapia (Oreochromis mossambicus), while providing adequate protection from
Pomacea snails to newly sprouted rice seeds under laboratory conditions [211,213].

The quinoa triterpenoids contain either tetracycles or pentacycles in their core structures. Most of them
are pentacyclic triterpenoids in the form of saponins. The saponins contain an aglycone (sapogenin) and
one to three saccharide chains in their structures, and were classified according to the number of saccharide
chains as mono-, di-, and tridesmosides. Liquid chromatography-tandem mass spectrometry (LC-MS/MS)
allowed a complete preassignment and identification of the major saponins and aglycones [214]. The main
aglycones (Figure 10), which are oleanolic acid (82), hederagenin (83), spergulagenic acid (84), serjanic
acid (85), phytolaccagenic acid (86), gypsogenin (or named 3β-hydroxy-23-oxo-olean-12-en-28-oic acid)
(87), 3β-hydroxy-27-oxo-olean-12-en-28-oic acid (88), and 3β,23,30-trihydroxy-olean-12-en-28-oic acid
(89), and their glycosides are shown in Tables 2–9 [23,215–217]. They have a five-ring skeleton, and are
biosynthesized from β-amyrin in planta (134) [23]. Among them, oleanolic acid is the major aglycone [218].
Sugars, which were glucose (Glc), glucuronic acid (GlcA), galactose (Gal), arabinose (Ara), and xylose (Xyl),
can be linked to the aglycone at C-3, C-23 or C-28 [214].
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Figure 10. Structures of the main triterpenoid aglycones in quinoa.

4.3.1. Oleanolic Acid Derivatives and Their Biological Activities or Functions

About 11 oleanolic acid analogues have been identified in quinoa. Their biological activities are
listed in Table 9, and the structures are shown in Figure 11. The major sugars of the saccharide moieties
are arabinose, glucose and galactose [219].

Oleanolic acid and its glycosides are mainly present in the bran (seeds) of quinoa. They showed a
variety of biological activities such as antimicrobial [220,221], anti-HIV [222], anti-inflammatory [223,224],
antioxidant [225], antifertility [226], antitumor or anticancer [227–229], antidiabetogenic [230], anticomplement [231]
properties. They also exhibited inhibitory activities on serin protease and porcine pancreatic elastase [232].

Table 9. Oleanolic acid derivatives and their biological activities or functions.

Name Quinoa Part Used
for Isolation

Biological Activity or
Function Ref.

Oleanolic acid (82) Seeds and bran - [217,233]
Antimicrobial activity [220,221]

Anti-HIV activity [222]
Anti-inflammatory activity [223]

Antioxidant activity [225]
Antifertility activity [226]
Antitumor activity [227,228]

Inhibitory activities on serin
protease and porcine

pancreatic elastase
[232]

Methyl oleanate (90) Bran Anti-inflammatory activity [234]
3-O-α-l-Arabinopyranosyl-(1→3)-

β-d-glucuronopyranosyl oleanolic acid
28-O-β-d-glucopyranosyl ester (91)

Seeds - [235,236]

3-O-β-d-Glucopyranosyl oleanolic acid (92) Seeds - [237]
Antidiabetogenic activity [230]

Anti-inflammatory activity [224]
Hemolytic activity [231]

3-O-β-d-Glucopyranosyl-(1→3)-
α-l-arabinopyranosyl oleanolic acid
28-O-β-d-glucopyranosyl ester (93)

Flowers, fruits,
seeds and bran - [11,235,236]

3-O-β-d-Glucopyranosyl-(1→2)-β-d-
glucopyranosyl-(1→3)-α-l- arabinopyranosyl

oleanolic acid 28-O-β-d-glucopyranosyl ester (94)

Flowers, fruits,
seeds and bran - [11,217,238]
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Table 9. Cont.

Name Quinoa Part Used
for Isolation

Biological Activity or
Function Ref.

3-O-β-d-Glucuropyranosyl oleanolic acid (95) Seeds - [208,238]
3-O-β-d-Glucuronopyranosyl oleanolic acid

28-O-β-d- glucopyranosyl ester (96)
Flowers, fruits,
seeds and bran Hemolytic activity [11,208,217,236]

3-O-β-d-Xylopyranosy-(1→3)-β-d-
glucuronopyranosyl oleanolic acid (97) Seeds - [237]

3-O-β-d-Xylopyranosy(1→3)-6-
methyl-β-d-glucuronopyranosyl oleanolic acid (98) Seeds - [237]

3-O-β-d-Xylopyranosyl-(1→3)-β-d-
glucuronopyranosyl oleanolic acid
28-O-β-d-glucopyranosyl ester (99)

Flowers, fruits,
seeds and bran - [11,217,237]

Figure 11. Structures of the oleanolic acid and its glycosides isolated from quinoa.

4.3.2. Hederagenin Derivatives and Their Biological Activities or functions

About 10 hederagenin analogues have been identified in quinoa. Their biological activities are
listed in Table 10, and the structures are shown in Figure 12. Hederagenin (83) was the main aglycone
of saponins from quinoa leaves [239]. Hederagenin glycosides existed in nature and possessed many
biological activities such as molluscicidal [240], cytotoxic [241], antifungal [242], leishmanicidic [243],
anti-inflammatory [244] activities, and they have been recently reported to show low cytotoxic
properties for several human cancer cell lines with median effective concentration (EC50) >30 µM [245].
Hederagenin monodesmosides also showed strong haemolytic activity [208], hence the saponins
have been considered as the serious antinutritional factors [246]. Hederagenin from the leaves of
ivy (Hedera helix) induced apoptosis of LoVo cells through the mitochondrial apoptotic pathway,
which indicated that hederagenin might be a promising therapeutic candidate for the prevention and
treatment of human colon cancer [247].
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Table 10. Hederagenin derivatives and their biological activities or functions.

Name Quinoa Part Used
for Isolation

Biological Activity or
Function Ref.

Hederagenin (83) Seeds and bran - [215–217]
Inhibitory activity on serin

protease, and porcine
pancreatic elastase

[232]

Cytotoxic activity on P-388
mouse lymphoma, L-1210

mouse lymphomatic leukemia,
HL-60 human promyelocytic
leukemia and SNU-5 human

stomach cancer cells

[248,249]

Haemolytic activity [250]
Anti-inflammatory activity [244]
Antidermatophytic activity [251]

Antitrichomonas activity [252]
Inducing apoptosis in human

LoVo colon cells [247]

3-O-α-l-Arabinopyranosyl
hederagenin (100) Seeds - [208]

Molluscicidal activity [140,253]
Cytotoxic activity on human

carcinoma and melanoma cell
lines DLD-1, PA1, A549, MCF7,

PC3, and M4

[241]

Antifungal activity [242]
Leishmanicidic activity [243]

Antidermatophytic activity [251]
3-O-α-l-Arabinopyranosyl

hederagenin
28-O-β-d-glucopyranosyl ester (101)

Flowers, fruits,
seeds and bran - [11,208,216,217]

Antidermatophytic activity [251]
Anticomplementary activity [254]

3-O-β-d-Glucopyranosyl-(1→3)-
α-l-arabinopyranosyl hederagenin

(102)
Seeds and bran - [208,216,238]

Cytotoxic activity on A549,
SK-OV-3, SK-MEL-2, XF498

and HCT15
[255]

3-O-β-d-Glucopyranosyl-(1→3)-
β-d-galactopyranosyl hederagenin

(103)
Bran - [216]

3-O-β-d-Glucopyranosyl-(1→3)-
α-l-arabinopyranoside hederagenin
28-O-β-d-glucopyranosyl ester (104)

Flowers, fruits,
seeds and bran - [11,208,216,217,236,238,256]

3-O-β-d-Glucopyranosyl-(1→3)-
β-d-galactopyranosyl hederagenin

28-O-β-d-glucopyranosyl ester (105)

Flowers, fruits,
seeds and bran - [11,216,238]

3-O-β-d-Glucopyranosyl-(1→4)-
β-d-glucopyranosyl-(1→4)-β-d-

glucopyranosyl hederagenin
28-O-β-d-glucopyranosyl ester (106)

Seeds - [256]

3,23-Bis(O-β-d-glucopyranosyloxy)
olean-12-en-28-oic acid

28-O-β-d-glucopyranosyl-(1→3)-α-l-
arabinopyanosyl ester (107)

Seeds - [257]

3-O-β-d-Glucuronopyranosyl
hederagenin 28-O-β-glucopyranosyl

ester (108)

Flowers, fruits,
seeds and bran - [11,217,238]

3-O-β-d-Xylopyranosyl-(1→3)-
β-d-glucuronopyranosyl

hederagenin
28-O-β-d-glucopyranosyl ester (109)

Bran - [217]
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Figure 12. Structures of hederagenin and its glycosides isolated from quinoa.

4.3.3. Spergulagenic Acid Derivatives and Their Biological Activities or Functions

Spergulagenic acid (84), a pentacyclic triterpene used in medicine, was found in diverse plant
families [258]. Until now, three spergulagenic acid glycosides (Table 11) were identified in quinoa [217,256],
though spergulagenic acid as the aglycone has not been isolated from quinoa. Their structures are
shown in Figure 13.

Table 11. Spergulagenic acid derivatives and their biological activities or functions.

Name Quinoa Part Used
for Isolation

Biological Activity
or Function Ref.

3-O-α-l-Arabinopyranosyl-(1→3)-β-d-
glucuronopyranosyl spergulagenic acid

28-O-β-d-glucopyranosyl ester (110)
Seeds - [256]

3-O-β-d-Glucopyranosyl-(1→2)-β-d-
glucopyranosyl-(1→3)-α-l-arabinopyranosyl

spergulagenic acid (111)
Bran - [217]

3-O-β-d-Glucopyranosyl-(1→2)-β-d-
glucopyranosyl-(1→3)-α-l-arabinopyranosyl

spergulagenic acid
28-O-β-d-glucopyranosyl ester (112)

Seeds - [256]
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Figure 13. Structures of the spergulagenic acid glycosides isolated from quinoa.

4.3.4. Serjanic Acid Derivatives and Their Biological Activities or Functions

Serjanic acid (85) is the aglycone with only the bidesmosides to be found in quinoa [217]. About
5 serjanic acid analogues have been identified in quinoa (Table 12, Figure 14). Hemolysis tests
showed that most monodesmoside saponins were active, and most bidesmoside saponins were
inactive as the monodesmosides can reduce hydrophobic interactions with membrane lipids [208].
Similarly, both 3-O-α-l-arabinopyranosyl serjanic acid 28-O-β-d-glucopyranosyl ester (113) and
3-O-β-d-glucuronopyranosyl serjanic acid 28-O-β-d-glucopyranosyl ester (116) had weaker hemolytic
activity (IC50 > 100 µg/mL) than their sapogenin (serjanic acid, IC50 = 50 µg/mL) [11].

Table 12. Serjanic acid derivatives and their biological activities or functions.

Name Quinoa Part Used
for Isolation

Biological Activity
or Function Ref.

Serjanic acid (85) Flowers, fruits, seeds
and bran

Cytotoxic activity on
HeLa cell line [11,217]

3-O-α-l-Arabinopyranosyl serjanic acid
28-O-β-d-glucopyranosyl ester (113)

Flowers, fruits, seeds
and bran

Cytotoxic activity on
Hela cell line [11]

3-O-β-d-Glucopyranosyl-(1→3)-α-l-
arabinopyranosyl serjanic acid

28-O-β-d-glucopyranosyl ester =
3-O-β-d-Glucopyranosyl-(1→3)-α-l-

arabinopyranosyl-30-O-methyl spergulagenate
28-O-β-d-glucopyranosyl ester (114)

Flowers, fruits, seeds
and bran - [11,236,238]

3-O-β-d-Glucopyranosyl-(1→2)-β-d-
glucopyranosyl-(1→3)-α-l-arabinopyranosyl

serjanic acid 28-O-β-d-glucopyranosyl ester (?)
= 3-O-β-d-Glucopyranosyl-(1→2)-β-d-

glucopyranosyl-(1→3)-α-l-arabinopyranosyl-
30-O-methyl spergulagenate

28-O-β-d-glucopyranosyl ester (115)

Flowers, fruits, seeds
and bran - [11,217,238,256]

3-O-β-d-Glucuronopyranosyl serjanic acid
28-O-β-d- glucopyranosyl ester (116)

Flowers, fruits, seeds
and bran

Cytotoxic activity on
HeLa cell line [11]
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Figure 14. Structures of serjanic acid and its glycosides isolated from quinoa.

4.3.5. Phytolaccagenic Acid Derivatives and Their Biological Activities or Functions

Phytolaccagenic acid (86) might be originated from serjanic acid (85) by subsequent oxidative
enzymatic steps involving the formation of the corresponding alcohol substituted at C-23 in planta [11].
It is one of the main structures of quinoa sapogenins. About 10 phytolaccagenic acid analoques have
been identified in quinoa. They are listed in Table 13, and the structures are shown in Figure 15.

Phytolaccagenic acid saponins are highly concentrated in the bran (seed coats), which are more
exposed to water during germination compared to oleanolic acid saponins [259]. It was suggested that
a short saccharide chain (1 or 2 glycosyl residues) requires the presence of an additional longer one to
make the saponin water-soluble [260]. Phytolaccagenic acid was employed as the anti-inflammatory
drug of oral administration [234].

Table 13. Phytolaccagenic acid derivatives and their biological activities or functions.

Name Quinoa Part Used
for Isolation

Biological Activity or
Function Ref.

Phytolaccagenic acid (86) Bran - [216,217]

Bran Anti-inflammatory
activity [234]

3-O-α-l-Arabinopyranosyl phytolaccagenic
acid 28-O-β-d- glucopyranosyl ester (117)

Flowers, fruits,
seeds and bran - [11,208,216,217,238]

3-O-α-l-Arabinopyranosyl-(1→3)-β-d-
glucuronopyranosyl phytolaccagenic acid

28-O-β-d- glucopyranosyl ester (118)
Seeds - [235,236,256]

3-O-β-d-Galactopyranosyl-(1→3)-β-d-
glucopyranosyl phytolaccagenic acid
28-O-β-d- glucopyranosyl ester (119)

Seeds - [238]

3-O-β-d-Glucopyranosyl-(1→3)-α-l-
arabinopyranosyl phytolaccagenic

acid (120)
Seeds Antifungal activity [208,238]

3-O-β-d-Glucopyranosyl-(1→3)-α-l-
arabinopyranosyl phytolaccagenic acid

28-O-β-d- glucopyranosyl ester (121)

Flowers, fruits,
seeds and bran - [11,208,216,217,235,236,238]

3-O-β-d-Glucopyranosyl-(1→3)-β-d-
galactopyranoside phytolaccagenic acid

28-O-β-d-glucopyranosyl ester (122)

Flowers, fruits,
seeds and bran - [11,216,217,238]

3-O-β-d-Glucopyranosyl(1→2)-β-d-
glucopyranosyl-(1→3)-α-l-

arabinopyranoside phytolaccagenic acid
28-O-β-d- glucopyranosyl ester (123)

Flowers, fruits,
seeds and bran - [11,217,235,238]
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Table 13. Cont.

Name Quinoa Part Used
for Isolation

Biological Activity or
Function Ref.

3-O-β-d-Glucopyranosyl-(1→4)-β-d-
glucopyranosyl-(1→4)-β-d- glucopyranosyl

phytolaccagenic acid 28-O-β-d-
glucopyranosyl ester (124)

Flowers, fruits,
seeds and bran - [11,256]

3-O-β-d-Glucopyranosyl-(1→3)-β-d-
xylopyranosyl-(1→2)-β-d-glucopyranosyl

phytolaccagenic acid 28-O-β-d-
glucopyranosyl ester (125)

Seeds - [235]

Figure 15. Structures of phytolacagenic acid and its glycosides isolated from quinoa.

4.3.6. Gypsogenin Derivatives and Their Biological Activities or Functions

Gypsogenin (or named 3β-hydroxy-23-oxo-olean-12-en-28-oic acid) (87) and its glycoside 3-O-
β-d-glucopyranosyl-(3)-α-l-arabinopyranosyl 23-oxo-olean-12-en-28-oic acid 28-O-β-d-gluco-pyranosyl
ester (126) were isolated from quinoa (Table 14, Figure 16). They showed cytotoxic activity [11].

Table 14. Gypsogenin derivatives and their biological activities or functions.

Name Quinoa Part Used
for Isolation

Biological Activity
or Function Ref.

Gypsogenin =
3β-Hydroxy-23-oxo-olean-12-en-28-oic acid (87)

Flowers, fruits,
seeds and bran

Cytotoxic activity on
Hela cell line [11]

3-O-β-d-Glucopyranosyl-(1→3)-α-l-
arabinopyranosyl 23-oxo-olean-12-en-28-oic acid

28-O-β-d-glucopyranosyl ester =
3β-[(O-β-d-Glucopyranosyl-(1→3)-α-l-

arabinopyranosyl)oxy]-23-oxo-olean-12-en-28-oic
acid 28-O-β-d-glucopyranosyl ester (126)

Flowers, fruits,
seeds and bran

Cytotoxic activity on
HeLa cell line [11]
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Figure 16. Structures of the gypsogenin derivatives isolated from quinoa.

4.3.7. 3β-Hydroxy-27-oxo-olean-12-en-28-oic Acid Derivatives and Their Biological Activities or Functions

3β-Hydroxy-27-oxo-olean-12-en-28-oic acid (88) and its glycoside 3-O-β-d-glucopyranosyl-(1→3)-
α-l-arabinopyranosyl 27-oxo-olean-12-en-28-oic acid 28-O-β-d-glucopyranosyl ester (127) were isolated
from quinoa (Table 15, Figure 17). 3β-Hydroxy-27-oxo-olean-12-en-28-oic acid (88) showed same
cytotoxic effect as 3β-hydroxy-23-oxo-olean-12-en-28-oic acid (87) with an IC50 value of 25.4 µg/mL.
This suggests that the CHO groups at C-23 or C-27 are correlated with the increased cytotoxicity [11].

Table 15. 3β-Hydroxy-27-oxo-olean-12-en-28-oic acid derivatives and their biological activities or functions.

Name Quinoa Part Used
for Isolation

Biological Activity
or Function Ref.

3β-Hydroxy-27-oxo-olean-12-en-28-oic acid (88) Flowers, fruits,
seeds and bran

Cytotoxic activity on
HeLa cell line [11]

3-O-β-d-Glucopyranosyl-(1→3)-α-l-
arabinopyranosyl 27-oxo-olean-12-en-28-oic acid

28-O-β-d-glucopyranosyl ester =
3β-[(O-β-d-Glucopyranosyl-(1→3)-α-l-

arabinopyranosyl)oxy]-27-oxo-olean-12-en-28-oic
acid 28-O-β-d-glucopyranoside (127)

Flowers, fruits,
seeds and bran

Cytotoxic activity on
Hela cell line [11]

Figure 17. Structures of the 3β-hydroxy-27-oxo-olean-12-en-28-oic acid triterpenoids isolated from quinoa.

4.3.8. 3β,23,30-Trihydroxy-olean-12-en-28-oic acid Triterpenoids and Their Biological Activities
or Functions

3β,23,30-Trihydroxy-olean-12-en-28-oic acid (89) and 3-O-β-d-glucopyranosyl-(1→3)-α-l-
arabinopyranosyl 3β,23,30-trihydroxy olean-12-en-28-oic acid 28-O-β-d-glucopyranosyl ester (128)
have been isolated from quinoa (Table 16, Figure 18). Hederagenin (83) was considered as the substrate
for the production of 3β,23,30-trihydroxyolean-12-en-28-oic acid (89), following a mechanism involving
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a stereochemically specific enzyme able to insert one hydroxyl group into the C-30 position of the
triterpene skeleton [11].

Table 16. 3β,23,30-Trihydroxy-olean-12-en-28-oic acid triterpenoids and their biological activities
or functions.

Name Quinoa Part Used
for Isolation

Biological Activity
or Function Ref.

3β,23,30-Trihydroxy-olean-12-en-28-oic acid (89) Flowers, fruits,
seeds and bran - [11]

3-O-β-d-Glucopyranosyl-(1→3)-α-l-
arabinopyranosyl

3β,23,30-trihydroxyolean-12-en-28-oic acid
28-O-β-d-glucopyranosyl ester (128)

Flowers, fruits,
seeds and bran - [11,214]

Figure 18. Structures of the 3β,23,30-trihydroxy-olean-12-en-28-oic acid triterpenoids isolated from quinoa.

4.3.9. Other Triterpenoids and Their Biological Activities or Functions

Other triterpenoids include tetracyclic and pentacyclic triterpenoids. Their biological activities
are shown in Table 17, and the structures are shown in Figures 19 and 20.

Four tetracyclic triterpenoids including two nortriterpenoids citrostadienol (129) and gramisterol
(130) have been isolated from quinoa seeds [261]. Citrostadienol (129) showed anticomplementary
activity [262], and gramisterol (130) showed anti-cancer activity [8].

Among the other pentacyclic triterpenoids, β-amyrin (133) was considered as the precursors of
other triterpenoids in their biosynthetic pathways [23].

Table 17. Other triterpenoids and their biological activities or functions.

Name Quinoa Part Used
for Isolation

Biological Activity or
Function Ref.

Tetracyclic triterpenoids
Citrostadienol (129) Seeds - [261]

Anticomplementary activity [262]
Gramisterol (130) Seeds - [261]

Anti-cancer activity on mouse
leukemic cell line WEHI-3 [8]

24-Methylene-cycloartenol (131) Seeds - [261]
Parkeol (132) Seeds - [261]



Molecules 2019, 24, 2512 24 of 47

Table 17. Cont.

Name Quinoa Part Used
for Isolation

Biological Activity or
Function Ref.

Pentacyclic triterpenoids
α-Amyrin (133) Seeds - [215]

Antibacterial activity [263]
Antidiabetic effect [264]

Antioxidant activity [265]
Inhibitory activity against

human oxidosqualene cyclase [266]

β-Amyrin (134) Seeds - [215]
Antibacterial activity [263]
Antioxidant activity [265]

Inhibitory activity against
human oxidosqualene cyclase [266]

Antifeedant and growth
regulating activities [267]

Insecticidal activity [268]
Echinocystic acid (135) Seeds - [215]

Erythrodiol (136) Seeds - [215,261]
Antibacterial activity [269]

Melanogenesis-inhibitory
activity [270]

Protecting the cardiovascular
system [271]

Antiproliferative and
apoptotic activity [272]

3β,23-Dihydroxy-olean-12-ene-
28,30-dioic acid (137) Seeds - [208]

2β,3β,23-Trihydroxy-olean-12-ene-
28,30-dioic acid 30-methyl

ester (138)
Bran - [216]

Queretaroic acid (139) Seeds - [215]
Ursolic acid (140) Seeds - [215]

Spasmolytic and
antinociceptive activities [85]

Cytotoxic activity [270]
Anticancer activity [273,274]

Figure 19. Structures of the tetracyclic triterpenoids isolated from quinoa.
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Figure 20. Structures of the other pentacyclic triterpenoids isolated from quinoa.

4.4. Meroterpenoids and Their Biological Activities or Functions

Mertoterpenoids are natural products of mixed biosynthetic origin which are partially derived
from terpenoids. Meroterpenoids were also found in quinoa that include tocopherols (141–144) and
tocotrienols (145,146). Their biological activities are listed in Table 18, and the structures are shown in
Figure 21.

The total tocopherol content ranged from 37.49 to 59.82 µg/g [275]. All four tocopherol
isoforms (α, β, γ, and δ) have been detected in quinoa seeds, with γ-tocopherol (143) to be the
most abundant followed by α-tocopherol (141), β-tocopherol (142) and δ-tocopherol (144) was the
least [276]. Tocopherols acted as strong antioxidants and had many essential physiological functions
such as anticoagulant, essential regulator of metabolic processes including inflammation and cancer in
humans [277,278]. Among 4 tocopherols homologues, α-tocopherol (141) was considered a stronger
antioxidant, whereasγ-tocopherol (143) was a stronger anti-inflammatory agent [279,280]. γ-Tocopherol
(143) was the main lipophilic tocopherol in quinoa [281].

Both α-tocotrienol (145) and β-tocotrienol (146) were also identified in quinoa seeds [275]. They
were the members of the vitamin E family to show antioxidant and anti-inflammatory properties [282].

Table 18. Meroterpenoids and their biological activities or functions.

Name Quinoa Part Used
for Isolation Biological Activity or Function Ref.

α-Tocopherol (141) Seeds - [283]
Antioxidative, antihypercholesterolemic,

anticancer, neuroprotective activities [284]

β-Tocopherol (142) Seeds - [37]
Antioxidative, antihypercholesterolemic,

anticancer, neuroprotective activities [284]
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Table 18. Cont.

Name Quinoa Part Used
for Isolation Biological Activity or Function Ref.

γ-Tocopherol (143) Seeds - [283]
Antioxidative, antihypercholesterolemic,

anticancer, neuroprotective activities [284]

δ-Tocopherol (144) Seeds - [37]
Antioxidative, antihypercholesterolemic,

anticancer, neuroprotective activities [284]

α-Tocotrienol (145) Seeds - [275]
Antioxidant and anti-inflammatory activities [282]

β-Tocotrienol (146) Seeds - [275]
Antioxidant and anti-inflammatory activities [282]

Figure 21. Structures of the meroterpenoids isolated from quinoa.

5. Steroids and Their Biological Activities or Functions

Quinoa contains a lot of biologically active phytoecdysteroids, which have been implicated in
plant defense from insects, and have displayed potential pharmacologic and metabolic properties
in mammals. According to the carbon skeletons, quinoa steroids can be classified as C27-, C28- and
C29-steroids.

About 36 steroids have been identified in quinoa. Seven sterols were identified among the
quinoa lipids, namely cholesterol (147), campesterol (160), ∆7-campesterol (161), ∆5-avenasterol (172),
β-sitosterol (176), stigmasterol (181), and ∆7-stigmasterol (182) [285]. Eleven 4,4-desmethylsterols
were assigned, with ∆7-avenasterol (173), β-sitosterol (176), and ∆7-stigmastenol (180) being the most
abundant (8.7, 27.2, and 51.3% of total sterols, respectively) [261].

5.1. C27-Steroids and Their Biological Activities or Functions

Eleven C27-steroids were identified in quinoa seeds which are listed in Table 19. Their structures are
shown in Figure 22. Among them, ecdysteroids are main steroids which are insect moulting hormones
and protect plants against non-adapted insects and nematodes [21]. Ecdysteroids are mainly present
in the bran, the major component is 20-hydroxyecdysone (148) possessing a 14α-hydroxy-7-en-6-one
chromophore and A/B-cis ring fusion (5β-H) [21].

Eating quinoa seeds or quinoa-derived products provides significant amounts of ecdysteroids
that may be beneficial to animal or human health [22]. Quinoa extract enriched in 20-hydroxyecdysone
has an antiobesity activity in vivo and could be used as a nutritional supplement for the prevention
and treatment of obesity and obesity-associated disorders. The findings indicated that the extract
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acted by reducing both fatty acid uptake and esterification in adipocyte [286]. It was found that
8 isolated ecdysteroids showed a stronger free-radical-scavenging activity, which was almost 3 to 8
times higher than that of the well-known antioxidant compound, BHA, and also possessed a strong
ability to sequester ferrous ions. This observation supported that if the number of hydroxyl and methyl
groups bearing the carbon skeleton of ecdysteroids is higher, the antioxidant activity becomes stronger.
The ability of ecdysteroids to sequester ferrous ions is thought to be due to their carbonyl conjugated
to a double bond attached to the C-7. Ecdysteroids are also able to inhibit skin collagenase, and could
therefore also prevent skin ageing [287]. In addition, ecdysteroids have been reported to occur in
Chenopodiaceae to show their possible chemotaxonomic and ecological implications [21].

Table 19. C27-Steroids and their biological activities or functions.

Name Quinoa Part Used
for Isolation Biological Activity or Function Ref.

Cholesterol (147) Seeds - [285,288]
20-Hydroxyecdysone (148) Seeds Antioxidant activity [289]

Inhibitory activity on collagenase [287]
Insecticidal activity [290]

20,26-Dihydroxyecdysone (149) Seeds Antioxidant activity [289]
Inhibitory activity on collagenase [287]

2-Deoxy-20-hydroxyecdysone (150) Seeds - [22]
3-epi-2-Deoxy-20-hydroxyecdysone (151) Seeds - [22]
2-Deoxy-20,26-dihydroxyecdysone (152) Seeds - [22]

20-Hydroxyecdysone 22-glycolate (153) Seeds Antioxidant activity and
inhibitory activity on collagenase [287]

24,25-Dehydroinokosterone (154) Seeds - [22]
25,27-Dehydroinokosterone (155) Seeds - [22]

Lathosterol (156) Seeds - [261]
Polypodine B (157) Seeds - [22]

Figure 22. Structures of the C27-steroids isolated from quinoa.
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5.2. C28-Steroids and Their Biological Activities or Functions

About 14 C28-steroids such as campesterol (160), makisterone A (166), and their derivatives
have been identified from quinoa seeds [34]. Their biological activities are listed in Table 20, and the
structures are shown in Figure 23. The main biological activities include antioxidant activity [289],
antiangiogenic activity [291], and inhibitory activity on collagenase [287].

Table 20. C28-Steroids and their biological activities or functions.

Name Quinoa Part Used
for Isolation Biological Activity or Function Ref.

Brassicasterol (158) Seeds - [292]
Campestanol (159) Seeds - [261]

Campesterol = ∆5-Campesterol (160) Seeds - [261,285,288]
Antiangiogenic activity [291]

∆7-Campesterol (161) Seeds - [285,288]
Dacrysterone (162) Seeds - [22]

Episterol (163) Seeds - [261]
Ergost-7-en-3β-ol = ∆7-Ergostenol (164) Seeds - [261]

Kancollosterone (165) Seeds - [293]
Makisterone A (166) Seeds Antioxidant activity [289]

Inhibitory activity on collagenase [287]
24-epi-Makisterone A (167) Seeds Antioxidant activity [289]

Inhibitory activity on collagenase [287]
24(28)-Dehydromakisterone A (168) Seeds Antioxidant activity [289]

Inhibitory activity on collagenase [287]

26-Hydroxy-24(28)-dehydromakisterone A (169) Seeds Antioxidant activity, inhibitory
activity on collagenase [287]

5β-Hydroxy-24(28)-dehydromakisterone A (170) Seeds - [22]
24-Methyl-20,26-dihydroxyecdysone (171) Seeds - [22]

Seeds Antioxidant activity [287]

Figure 23. Cont.
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Figure 23. Structures of the C28-steroids isolated from quinoa.

5.3. C29-Steroids and Their Biological Activities or Functions

The main C29-steroids in quinoa included avenasterol (172/173), sitosterol (176), stigmasterol
(181), and their derivatives. They were all identified in the lipid extract of quinoa seeds [261]. Their
biological activities are listed in Table 21, and the structures are shown in Figure 24.

β-Sitosterol (176) has been reported to have a variety of biological activities such as anti-
inflammatory [294], antioxidant [295], and antidiabetic [296] activities. Stigmasterol (181) also exhibited
various biological activities such as anti-inflammatory [297], anti-tumor [298], antifungal [299], anti-
hypercholestrolemic [300], and cytotoxicity [301] activities.

Table 21. C29-Steroids and their biological activities or functions.

Name Quinoa Part Used
for Isolation Biological Activity or Function Ref.

∆5-Avenasterol =
∆5,24(28)-Avenasterol (172)

Seeds - [261,285,288]

∆7-Avenasterol =
∆7,24(28)-Avenasterol (173)

Seeds - [261]

Makisterone C (174) Seeds - [22]
Sitostanol (175) Seeds - [261]
β-Sitosterol (176) Seeds - [285,288]

Insecticidal activity [268]
Anti-inflammatory activity [294]

Anti-oxidant activity [295]
Antidiabetic activity [296]
Inducing apoptosis [302]

Hypocholesterolemic activity [303,304]
Angiogenic effect [305]

Genotoxicity effect [306]
Anthelminthic and

Anti-mutagenic activity [307]

Immunomodulatory activity [308]
Neuroprotection effect [309]

Stigmast-4-en-3-one (177) Seeds [292]
Stigmast-4,22-dien-3-one (178) Seeds [292]

Stigmast-8-en-3-ol (179) Seeds - [261]
∆7-stigmastenol (180) Seeds - [261]

Stigmasterol =
∆5-Stigmasterol (181) Seeds - [261]

Anti-inflammatory activity [297]
Anti-tumor activity [298]
Antifungal activity [299]

Anti-hypercholestrolemic activity [300]
Cytotoxicity activity [301]

Anti-osteoarthritic activity [310]
∆7-Stigmasterol (182) Seeds - [285,288]

Seeds - [261]
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Figure 24. Structures of the C29-steroids isolated from quinoa.

6. Nitrogen-Containing Metabolites and Their Biological Activities or Functions

About 12 nitrogen-containing metabolites have been identified in quinoa seeds. They belong
to the derivatives of glycine and tyrosine. Their biological activities are listed in Table 22, and the
structures are shown in Figure 25.

Betalains are tyrosine-derived red-violet and yellow pigments found in quinoa [311]. They
are divided into two groups, betacyanins (red and purple) and betaxanthins (yellow and orange).
Betacyanins are derivatives of betanidin, the conjugate of betalamic acid with cyclo-Dopa. Betacyanins,
including amaranthin (183), betanin (184) and isobetanin (185), were confirmed in red and black
quinoa seeds, instead of anthocyanins [35]. Betaxanthins are conjugates of betalamic acid with amino
acids. Betaxanthins mainly include dopaxanthin (188), indicaxanthin (189), and miraxanthin V (190) in
quinoa [312].

Betalains showed promising bioactive potential, such as high antioxidant and free radical
scavenging activities [30]. Betacyanins and betaxanthins showed the highest antioxidant activity by
comparing the white and black quinoa varieties [35]. These two varieties are characterized by a high
content of dopaxanthin (188), whose dihydroxylated substructure demonstrated high antioxidant
capacity [36].
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Other nitrogen-containing metabolites in quinoa include betaine (186), trigonelline (191), and
their derivatives. In mammals, betaine (186) acted as an osmolyte in the inner medulla of the
kidney, preserving osmotic equilibrium, maintaining at the same time the tertiary structure of
macromolecules [313]. Trigonelline (191) was considered to be an important multifunctional natural
plant hormone with potential taxonomic value [314], and has been shown to stabilize enzyme activity
in vitro [315].

Table 22. Nitrogen-containing metabolites and their biological activities or functions.

Name Quinoa Part Used
for Isolation Biological Activity or Function Ref.

Amaranthin (183) Seeds - [316]
Betanin (184) Seeds - [35]

Antioxidant activity [317]
Isobetanin (185) Seeds - [35]

Betaine (186) Seeds - [35]
3-Carboxy-1-(2-sulfoethyl)-pyridinium

(187) Seeds - [313]

Dopaxanthin (188) Seeds - [316]
Antioxidant activity [318]

Indicaxanthin (189) Seeds - [316]
Miraxanthin V (190) Seeds - [316]

Trigonelline (191) Seeds - [313]
Anti-invasive activity [319]
Hypoglycemic effect [320]

Trigonelline glucosylester (192) Seeds - [313]
Trigonelline methylester (193) Seeds - [313]
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Figure 25. Structures of the nitrogen-containing metabolites isolated from quinoa.

7. Conclusions and Future Perspectives

This review focuses on the structures, isolation parts, biological activities or functions of quinoa
secondary metabolites during the past 40 years. Flavonoids and phenolic acids were mostly derived
from quinoa seeds. Steroids were mostly separated from quinoa bran. Triterpenoids were also mainly
located in the bran. Their biological activities or functions have been reported but not comprehensive,
and are needed to be systematically evaluated in the future.

The bitter taste associated with saponins (triterpenoids) greatly limits the use of quinoa as food [18].
Approximately 34% of quinoa saponins are present in the bran, indicating that dehulling could remove
almost one half of the saponins. The seeds should be milled to remove the bran (seed coats) to make
them edible [239]. Another method to remove saponins from the seeds is washing due to the high water
solubility of saponins although this method can lead to the loss of some nutrients such as vitamins and
minerals [18].

With the increased demand for quinoa, the problem that comes with it is that the bran is
discarded as an industrial production waste. In order to increase the added value of quinoa, the bran
(seed coat) should be fully exploited and utilized [321]. Quinoa saponins have shown their great
potential applications. They can be used in the pharmaceutical industry as the saponins can induce
changes in intestinal permeability which can be useful for the absorption of specific medicines and in
hypocholesterolemia [15,322–324]. Quinoa saponins are also of interest as valuable adjuvants and the
first saponin-based vaccines have been introduced commercially [203]. In addition, the saponins can be
used as bitters, antibiotics to control pathogenic fungi and bacteria, or to protect crop against attack by
birds and other pests [325]. Quinoa saponins have been successfully developed as a bioinsecticide in
Bolivia [326]. They can also be used as emulsifiers and detergents due to surface active characteristics
which saponins have [327]. Quinoa saponins might be developed into products like soaps, shampoos,
and bitters in the future. As phenolic acids, flavonoids, and steroids are also abundant in the bran, they
can be developed into antimicrobials, antioxidants, and insect moulting hormones, respectively [5,21].
It is worth mentioning that 20-hydroxyecdysone (148), mainly present in the bran, has potential for
development as an insect moulting hormone [21]. After the above secondary metabolites are extracted
from the bran, the remaining residues, which mainly contain cellulose, could be either used as feed,
or femented into biofuels and biofertilizer.

Biosynthesis research on quinoa secondary metabolites has rarely been reported. Methyl jasmonate
was reported to induce accumulation of saponins in quinoa leaves and induce the expression of saponin
biosynthetic genes in quinoa [328]. Knowledge of the saponin biosynthesis and its regulation in
quinoa may aid the further development of sweet cultivars. Genome sequencing of quinoa revealed a
diversity of biosynthetic core genes of secondary metabolites [329], indicating the great potential of
this plant to produce various secondary metabolites with biological activities or functions which merit
further investigation.
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