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Abstract: For humans and other mammals to eat effectively, teeth must develop properly inside the
jaw. Deciphering craniodental integration is central to explaining the timely formation of permanent
molars, including third molars which are often impacted in humans, and to clarifying how teeth and
jaws fit, function and evolve together. A factor long-posited to influence molar onset time is the jaw
space available for each molar organ to form within. Here, we tested whether each successive molar
initiates only after a minimum threshold of space is created via jaw growth. We used synchrotron-
based micro-CT scanning to assess developing molars in situ within jaws of C57BL/6J mice aged
E10 to P32, encompassing molar onset to emergence. We compared total jaw, retromolar and molar
lengths, and molar onset times, between upper and lower jaws. Initiation time and developmental
duration were comparable between molar upper and lower counterparts despite shorter, slower-
growing retromolar space in the upper jaw, and despite size differences between upper and lower
molars. Timing of molar formation appears unmoved by jaw length including space. Conditions
within the dental lamina likely influence molar onset much more than surrounding jaw tissues. We
theorize that molar initiation is contingent on sufficient surface area for the physical reorganization
of dental epithelium and its invagination of underlying mesenchyme.

Keywords: tooth development; molar initiation; craniodental integration; 3D imaging; synchrotron
scanning

1. Introduction

The proper development, growth, and evolution of animal bodies require multiple
body parts to change together in a coordinated way over time. Explaining the mech-
anisms underpinning these coordinated changes is foundational to understanding ani-
mal evolution and development (evo-devo). A powerful case study of coordination—or
“integration”—among body parts is a dentate jaw. Dentitions and jaws appear to have
evolved separately from each other, at different times, in prehistoric fossil fishes [1]. Strin-
gent selection pressure for a kinetic jaw outfitted with cutting and grinding tools is surely
why the majority of vertebrates living today retain this ancient and revolutionary pheno-
type [2]. The jaw skeleton and the dentition are both impressively adaptable to a broad
range of diets and feeding strategies [3]. Teeth and the jaws that house them also show
substantial developmental lability: they may develop, and evolve, in very different ways
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and in isolation of each other [3–5]. Grappling with this paradox of evo-devo synchrony
and sovereignty is vital to clarify the mechanisms that generate animal diversity of the face
and teeth.

Explaining the developmental mechanisms that coordinate tooth and jaw development
is also necessary to improving human dental and oral health. Impaction of third molars,
or “wisdom teeth”, is widespread in populations worldwide, much like other common
concerns such as dental crowding and malocclusion, and often entails costly, painful
interventions including major oral surgery (reviewed in [6,7]). These clinical problems are
symptomatic of misfits between dentitions and jawbones, and have little chance of being
prevented until we can explain how dental tissues properly fit within jaw tissues as an
individual animal develops and grows.

A major obstacle to progress is a technical problem: accurately and precisely see-
ing, measuring and analyzing in three dimensions (3D) microscopically tiny and radio-
translucent tooth organs as they develop in situ within tiny jaw primordia. This 3D work
was not feasible until the advent of high-resolution micro-computed tomography (µCT)
scanning systems [8] and the ingenious use of tissue contrast agents [9,10]. Indispens-
able early work in tooth embryology characterized classic stages of tooth organogenesis
and morphogenesis (reviewed in [11]). Studies are now visualizing the earliest inception,
differentiation, and migration of the cells that will birth the dental lamina [12]. Most of
this definitive work has been carried out in mice, the classic biomedical animal model
for studying human development and disease. Despite its derived dentition [13,14], the
mouse is an apt model of primate including human craniodental developmental processes
because these processes are, in general, deeply conserved amongst mammals and across
vertebrate classes [3].

Traditional laboratory methods to study mouse dentitions can analyze data in only
two dimensions (2D), using hand-sectioned, slide-mounted tissues to see tooth organ
histology [8,15–17]. Because these techniques are labour intensive, time consuming and
inherently destructive, they preclude studying structures beyond the tooth organ—namely,
surrounding jaw tissues are excluded. For similar pragmatic reasons, studies have his-
torically focused on the lower dentition, limiting data collection from upper teeth. The
reason for this focus is the relative ease of experimentally manipulating the mandibular
prominence/dentary bone(s). Because of the multi-step convention of cutting, dehydrating
and thus potentially distorting already tiny, unmineralized tooth organs, the accuracy and
precision of any measurements taken from these tissues are uncertain at best. Additionally,
if sliced obliquely to the midline, a 2D section plane may distort and misrepresent a 3D
structure. Despite these caveats, more recent studies have used software tools to metic-
ulously reconstruct 2D virtual tissue sections and characterize in 3D developing mouse
molars within mineralizing alveolar bone from embryonic day (E)13 to postnatal day
(P)26 [18–25]. Additionally, recent in vitro studies have examined molar morphogenesis
in 3D using tissue culture. This work has revealed new insights about dental lamina
and successive molar development relative to alveolar bone formation, and about bone
deposition and resorption at the tooth–bone interface (i.e., at the molar crypt wall) [11,26].

Here we build on this valuable legacy of work by studying tooth morphogenesis
in situ within the developing upper and lower jaws. We use direct 3D observations and
measurements taken from synchrotron-based µCT scans of a suite of silver-stained [27]
C57BL/6J wild-type mouse embryos. The ages of these neonates and pups range from
E10 to P32, a period capturing the onset of first (M1), second (M2) and third (M3) molars.
We measure the change in molar and jaw mesiodistal lengths relative to one another to
investigate the long-standing idea that space created at the back of the growing jaw directly
controls when each successive molar begins to form [11,19,20,28,29]. The concept that
factors external to a molar organ regulate its onset time contrasts with the model [30] that
cues intrinsic to molar mesenchyme underlying the epithelium-derived dental lamina
regulate the initiation times of the M2 and M3 (although this model does not account for
the mechanism that triggers M1 onset).
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We test the hypothesis that a minimum threshold of retromolar space is required
for a molar to initiate. We compare the developmental timing, length, and structure
of the upper versus lower dental lamina, molar organs, and retromolar space to glean
insights into the evo-devo mechanisms that coordinate changes in the skeletons and
dentitions of the mandible and midface. For simplicity, we use “lower jaw” to refer to
the mandibular prominence (MdP) and dentary bone/mandible, and “upper jaw” to
refer to the maxillary prominence (MxP) and maxilla+premaxilla complex. We often
refer to developmental events as occurring “by” a given stage/age to recognize that our
scans of molar morphology do not capture data for preceding molecular events. Our
quantitative study rebuts the classic hypothesis that space created via jaw growth paces
molar initiation and development. Instead of jaw growth, the growth and reorganization
of dental epithelium, occurring on a tiny scale, appears more vital to molar onset time.
Our work also supports that information inherent to the dental lamina and nascent molar
tissues regulates when a given molar initiates.

2. Materials and Methods

We collected specimens from our colony of C57BL/6J inbred wild-type mice (stock
#000664, Jackson Laboratories). Mice were managed under ethics permit #20110008 in
compliance with Canadian Council on Animal Care and University of Saskatchewan regu-
lations. The morning that a vaginal plug was first visible was considered E0.5, which we
used to calculate dates of sacrifice and embryo collection. Embryonic stage was determined
by tail somite number as well as by limb and craniofacial morphologies as per conventional
Theiler staging [31]. Postnatal specimens were collected at ages based on day of birth (P0).
We collected specimens aged E10 to P32 (n ≤ 3 specimens/stage, Table 1). As detailed
in Raj et al. [27], specimens were 4% paraformaldehyde-fixed, then dehydrated through
graded ethanol washes. One day before scanning, specimens were stained overnight with
a 1% solution of Protargol (Polysciences; Sigma) tissue contrast agent. Prior to staining, the
heads of mice aged P3 and older were cut in half along the sagittal plane to improve stain
penetration through skin and bone.

Table 1. Sample sizes of the embryonic (E) and postnatal (P) mouse specimens studied here, where
the number (e.g., 10) is either the day post-conception (E) or post-birth (P).

Prenatal Mice Postnatal Mice
Stage # Specimens Age # Specimens Age # Specimens
E10 3 P0 1 P26 3
E11 1 P3 3 P28 1
E12 3 P6 3 P30 2
E13 1 P8 2 P32 3
E14 2 P12 3
E15 3 P15 2
E16 1 P18 2
E17 3 P21 3
E18 3 P23 2

At the Canadian Light Source synchrotron (Saskatoon, SK, Canada), on the BioMedical
Imaging and Therapy 05B1-1 beamline, we µCT scanned specimens at 8.75–8.9 µm voxel
size using the following parameters: filtered white beam, 4.0 mm aluminum filter, 0.5 mm
tin filter, Hamamatsu C9300 camera combined with beam monitor Hamamatsu AA-60. For
each scan, a dark field was used to correct for electronic noise, in addition to being used
with a flat field to correct for inhomogeneous beam intensity over time.

HCImage software (Hamamatsu) was used to normalize each experimental scan to
the dark and flat fields. These normalized scan files were imported into NRecon software
(Bruker MicroCT). Here images were reconstructed and optimized via standard protocols to
adjust clarity, contrast, and saturation in the region of interest (ROI). Adjustments included
misalignment compensation and ring artefact reduction. Next, the digital-format µCT scan
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files were imported into AMIRA software (Thermo Fisher Scientific, Waltham, MA, USA)
to generate 3D volumes, visualize craniodental developmental morphology and anatomy,
and collect measurements. In preparation to measure specimens, 3D rendered volumes
were aligned as follows. For embryos aged E10-E12, the sagittal plane of view was aligned
to the sagittal midline using the gross structures of the head as reference for symmetry;
the coronal plane of view was aligned to the straightest and most superior part of neural
tube/developing vertebral column. The transverse plane was aligned perpendicular to the
sagittal and coronal planes. Due to the lack of homologous landmarks between youngest
embryos and older specimens, we used a modified orientation protocol for mice aged
E14-P32. For these older specimens, the sagittal plane of view was aligned to the sagittal
midline using the gross structures of the head as reference for external symmetry and the
palatine process as reference for internal symmetry. The coronal plane of view was aligned
to capture upper and lower M1s in the same field of view. The transverse plane of view was
aligned to be as parallel to the maxilla as possible while maintaining optimal alignment of
sagittal and coronal slices. For all stages/ages, anterior-most and posterior-most points
were determined by cross-referencing among coronal, sagittal, and sometimes transverse
slices through each specimen.

In Amira, using sagittal, coronal and transverse virtual planes of view, we measured
in 3D upper and lower molar crypt and crown mesiodistal lengths, and total jaw and retro-
molar space lengths (Figures 1 and 2, Table S1 and Table S2, Video S1) for each quadrant of
the mouth. We also assessed stages of molar development. Jaw length including retromolar
lengths was measured from anterior to posterior extremes along the same transverse and
sagittal planes to avoid artificially inflating the measurement length. Measurement data
were analyzed in Excel (Microsoft, Redmond, WA, USA) and SAS (SAS Institute, Cary, NC,
USA). We focused our measurements on the left side after confirming via pilot analyses of
several pre- and postnatal specimens that left and right side metrics were consistent. For
each stage/age, jaw type (i.e., maxillary/upper, mandibular/lower), and measurement
type, we averaged measurements taken from left- and right-side structures of each mouse
specimen. We used these mean measurements to calculate strengths and directions of
correlations among total jaw length, retromolar space and molar length and day of onset.
Due to the small sample size of one to three specimens per stage, we analyzed the data with
descriptive statistical analyses and graphics. These included plotting for each quadrant
(e.g., upper left) the averaged values of independent and dependent variables, and running
linear regression models to calculate slope estimates and corresponding standard errors
(alpha set to 0.05, two-sided). We also calculated strengths and directions of correlations
between retromolar space and molar onset. We included only ratio or proportion data for
our single E13 specimen which was truly and inexplicably large, and thus we omitted these
raw values from much of our calculation.
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Figure 1. Linear measurements used to define jaw and molar lengths in (A) embryonic (E12) and (B)
perinatal (E18) mice for total jaw length in the upper and lower jaws. Retromolar length is not yet
visible in the embryo (A). Abbreviations: Lwr, lower jaw; M1L, first molar length, M2L, second molar
length, M3L, third molar length; RML, retromolar length; TJL, total jaw length; Upr, upper jaw.
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Figure 2. Linear measurements used to define jaw and molar lengths in postnatal mice for total
jaw length in the upper (A) and lower (B) jaws, retromolar length in the maxilla (C) and dentary
bone (D), and first (E), second (F) and third (G) molar lengths. (H) A summary of all jaw and molar
measurements. Abbreviations: Lwr, lower jaw; M1L, first molar length, M2L, second molar length,
M3L, third molar length; RML, retromolar length; TJL, total jaw length; Upr, upper jaw.

3. Results

We report that initiation time was comparable between upper and lower molars. The
duration of development was similar among M1, M2 and M3. We observed this outcome
even despite size differences among molars, and despite limited retromolar space in the
upper jaw that grew more slowly compared to the lower jaw. Our results do not support
the hypothesis that jaw length and retromolar space dictate the initiation time of molar
development in the mouse. We explain these findings in detail as follows.

3.1. Linear Rates of Jaw and Retromolar Growth Contrast with Non-Linear Molar Onset Times

Although our dataset encompasses root formation and eruption, we focus on molar on-
set (i.e., the earliest radiographically visible thickening of the dental epithelium) and crown
mineralization (Tables 2 and 3). For each molar type (e.g., M1), onset age is synchronous
between upper and lower jaws, and between left and right sides (where left/right data
were available) (Figure 3). M1 initiates by E12 based on evidence of epithelial thickening
and bud stage tissues, then attains cap stage by E14, early bell stage near E16, and crown
mineralization onset by E17. M2 initiates by E14 based on evidence of epithelial thickening,
then achieves bud stage by E16, cap stage by E17, and starts mineralizing by E18. For M3,
at P3 the crypts of M3 are not yet visible, but at P6 empty-looking crypts are visible as tiny
structures in the upper jaw only; and at P8 crypts are visible as larger empty-looking spaces
in both jaws. Crown mineralization of M3 starts after P8 and by P12. The M1 crown is
complete about 2–4 days (P6–P8) before the M2 crown (P8–P12): the crown mineralization
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period for each molar is about 2 weeks. For the M3, its crown is complete near P21, closer
to 2.5 weeks after initiation (by P4–P6) and about 2 weeks after M3 crown mineralization
begins (P8<). Root onset follows shortly after crown completion (Table 2). M1, M2 and M3
are all fully emerged into occlusion around the time that the roots are fully formed with
apices closing. By P26 all molars are in occlusion with complete root formation.

Table 2. Stages of earliest radiographically visible tooth organ onset, crown completion, root onset and completion, and
tooth emergence for the first (M1), second (M2) and third (M3) molars of both the upper and lower jaws. Abbreviations:
–, to/between; <, earlier than; >, later than; ≤, earlier or at.

Molar Organ Onset Crown Complete Root Onset Root Complete Emergence

M1 E12 <P6–P8 P8 P21–P23 >P18–P21
M2 E14 >P8–P12 >P8, <P15 P23–P26 >P18–P21
M3 ≤P4–P6 P21 >P21–P23 P28–P30 P23–P26

Assuming birth around E20 [32], the duration of molar organ morphogenesis and
crown mineralization is about 17–19 days for all three molar types in upper and lower
jaws. The periods of M1 and M2 formation almost entirely overlap with each other, and
overlap with M3 onset and morphogenesis, but barely overlap with the period of M3 crown
mineralization (Table 3). Compared to M1 and M2, later M3 emergence is consistent and
proportionate to later M3 onset. The duration of crown morphogenesis and mineralization
is constant among M1, M2 and M3 and consistent between homologous upper and lower
molars. However, the absolute sizes and the relative sizes of mesiodistal crown lengths
differ between upper and lower molars (Tables 4 and 5). Mean absolute lengths of upper M1
and upper M2 generally exceed those of lower M1 and lower M2, respectively (i.e., M1 > M1
in 15 of 20 stages/ages, and M2 > M2 in 12 of 18 stages/ages) (Table 4). Conversely, lower
M3 length always exceeds that of the upper M3 (i.e., M3 > M3 in 9/9 stages/ages) (Table 4).
In the upper jaw, among fully formed molar crowns (P18 and older) we see smaller ratios
of M2 and M3 lengths relative to M1 length (Table 5). These M2:M1 and M3:M1 ratios
average 61% (range of 60–64%) and 37.3% (36–39%), respectively (Table 5). In contrast, in
the lower jaw, M2 and M3 are on average 68.3% (65–72%) and 58.5% (57–62%) larger than
M1, respectively (Table 5). Consistently smaller M3:M1 ratios in the upper jaw reflect both
an absolutely shorter upper M3 crown and an absolutely longer upper M1 crown. Our
findings of jaw-specific differences in M1, M2 and M3 sizes despite comparable durations
of development indicate that mesiodistal molar crown length is not solely incumbent on
the molar crown formation period.

Table 3. Bar chart of prenatal and postnatal stages of onset (leftmost end of each row). This chart indicates the start (*)
and completion (ˆ) of crown mineralization, and emergence (e) of first (M1), second (M2) and third molar (M3) teeth in
C57BL/6J mice. Staging is based on our image data from embryonic (E) stage E10 to postnatal (P) age 26. Total duration
of development is comparable among all three molars (M1, M2, M3). Periods of M1 and M2 morphogenesis and crown
formation largely overlap with each other but do not overlap with those of M3 because of its later onset by about 10 days
after birth. * = start of crown mineralization, ˆ = crown completion, e = emergence into occlusion.

E12 E14 E16 E18 P0 P2 P4 P6 P8 P10 P12- -P18 P20 P22 P24 P26

M1 * E17 ˆ P6–8 eP18–21

M2 * ˆ P8–12 e/P21

M3 * P8< ˆ P21 eP23–26

3.2. Molar Initiation Proceeds Regardless of Jaw Length, Growth Rate, and Retromolar
Space Creation

At least one molar must be initiated and present before bona fide retromolar (RM)
length is present. As such, our study of RM length focuses on ages after M1 onset (E12
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onwards), at M2 onset (E14), near M3 onset (P3), and at early M3 mineralization (P12)
(Figure 3, Table 4). In the upper jaw, at E14 there is no visible RM length. At P3, upper
RM length is 27.8% of M2 length and 5% of upper total jaw (TJ) length. At P12, upper RM
length is about 94% of M3 length and 5.5% of upper TJ length. Generally, from P0 to P32,
upper RM length ranges from about 4% to 11% of TJ length, with a mean of almost 6%
(Table S3). In the lower jaw, at E14, RM length is about 90% of M2 length and almost 10%
of TJ length. At P3, lower RM length is almost 84% of M2 length and 14% of TJ length. At
P12, lower RM length is about 250% of M3 length and 19% of TJ length. From P0 to P32,
lower RM length ranges from about 14% to 28% of TJ length, with a mean of almost 22%
(Table S4). When it could be measured, RM space is consistently greatest in the lower jaw
across all seventeen stages/ages (Table 4). Similarly, TJ length is greatest in the lower jaw,
with only three exceptions: E10, E12 and E17 (Table 4). In sum, M2 initiates with at least
200 µm of RM space distal to M1, while M2 initiates either with 0 µm of RM space distal to
the dental lamina tail or with up to 121 µm of RM space. Overall, compared to the upper
jaw, the lower jaw has about 3 to 6 times more retromolar space for M2 and M3 at their
respective ages of initiation.

Table 4. Upper (Mx/Upr) and lower (Mx/Lwr) first (M1), second (M2) and third (M3) molar, total jaw and retromolar
mean mesiodistal lengths in micrometers (µm) for each prenatal (E) and postnatal (P) stage studied here. Per stage, all
measurements for left and right sides were averaged. Typically, M1 > M1 (15/20 stages) and M2 > M2 (12/18 stages), while
M3 > M3 for 9/9 stages (italicized values = Upr > Lwr). Total jaw length was longer in the lower jaw with three exceptions
(italicized) at E10, E12 and E17. Retromolar space was always longer in the lower jaw. “-” indicates that at least one molar
was not yet forming and no value could be measured for that stage/age group. * The inexplicably large absolute metrics for
E13 are excluded from all analyses, only some data for E13 ratios and proportions are included.

M1 Length µm M2 Length µm M3 Length µm Total Jaw µm Retromolar µm
Stage Upr Lwr Upr Lwr Upr Lwr Upr Lwr Upr Lwr

E10 - - - - - - 560.8 450.5 - -
E11 - - - - - - 685.2 702.7 - -
E12 362.3 424.6 - - - - 1117.4 1070.8 - -

E13 * 1886.1 999.6 - - - - 3646.2 4799.4 85.2 1193.8
E14 657.1 588.3 388.5 250.0 - - 1809.1 2304.3 - 226.0
E15 750.1 808.3 431.8 223.9 - - 2436.7 3493.5 120.8 651.2
E16 865.8 883.6 322.8 226.3 - - 2519.1 3612.3 - 527.5
E17 861.6 917.9 564.1 484.9 - - 3643.9 3576.9 183.5 408.3
E18 1219.8 1027.0 512.6 539.7 - - 3663.6 3827.6 351.6 545.8
P0 1195.4 1229.2 662.0 524.7 - - 4109.7 5057.1 258.0 739.7
P3 1437.4 1300.0 828.9 864.6 - - 4590.2 5171.8 230.3 724.9
P6 1160.5 938.8 617.0 620.3 - - 3715.1 4431.4 216.1 790.3
P8 1188.7 1009.4 679.0 696.2 - - 4158.4 4721.3 451.7 1075.0

P12 1231.1 1018.5 641.7 710.3 276.6 385.9 4712.0 5102.3 259.0 966.3
P15 1246.8 1033.2 723.8 739.1 402.6 485.7 4992.5 5570.4 199.0 1258.3
P18 1247.3 1002.0 744.9 685.4 431.1 492.4 5109.3 5603.9 215.1 1241.5
P21 1734.1 1457.4 1046.1 993.3 658.6 827.5 8102.8 8447.0 416.4 1880.8
P23 1816.3 1471.5 1104.4 1054.1 654.4 847.4 8646.6 8955.3 553.3 2137.3
P26 1819.2 1478.1 1089.9 957.0 658.7 911.5 8355.2 9138.0 449.1 2220.5
P28 1781.9 1423.2 1085.2 1015.7 660.4 822.2 9071.2 9472.0 481.6 2370.5
P30 1622.8 1446.9 1036.8 975.8 631.1 824.8 8328.7 8688.8 426.3 2198.7
P32 1720.6 1462.4 1048.3 980.0 657.3 865.5 9045.5 9292.9 721.9 2579.3

In both upper and lower jaws, TJ and RM lengths steadily increase from E10 to P3
without spurts of growth before, during, or after the onset time of M1, M2 or M3. Over time,
jaw elongation generally shows steepest slopes (fastest growth) from E10 to P3 (Table S5),
and gentler slopes (slower growth) from P6 to P32 (Table S6). However, between P18 and
P21, in both jaws TJ length increases by about 3000 µm, reaching close to its final maximum
length at P32 (Table 4, Figure 3). At all stages, rates of growth for upper and lower TJ
lengths are similar (E10-P3: upper left (UL) slope=380 [standard error (SE) = 37], lower left
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(LL) slope = 441 [SE = 42]; P6-P32: UL = 240 [SE = 31], LL = 221.5 [SE = 27]), with faster
rates from E10 to P3 (and possibly up to P5 (Table S3 and Table S4)).
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lower jaw (~10–28% of total jaw length), and 2) upper molars are longer than lower molars. In both 
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Assuming birth around E20 [32], the duration of molar organ morphogenesis and 
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Figure 3. For the (A) maxillary prominence (embryos E10–E18) or upper jaw (postnatal mice, P0–P32),
and the (B) mandibular prominence (E10–E18) and lower jaw (P0–P32), this histogram shows mean
mesiodistal lengths of the first (M1L, green), second (M2L, orange) and third (M3L, gold) molar,
retromolar space (RML, blue) and entire jaw (TJL, grey). Measurements are averaged among the
specimens available for each stage/age. In both jaw types: at E10–E11, no molars have started to
form; M1 appears by E12, M2 by E14, and M3 by P12; jaw growth is rapid until E18, after which
growth slows, spikes at P21, and slows again (P23–P32). The main differences in the upper jaw are: 1)
a much shorter retromolar length (~2–10% of total jaw length) compared to the lower jaw (~10–28%
of total jaw length), and 2) upper molars are longer than lower molars. In both jaw types, molars
follow a trend of M1 > M2 > M3, but lower molar proportions are closer to M1 > M2 >/= M3. In the
upper jaw, the M2 initiates despite very little (~100 µm) of retromolar space.
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Table 5. Ratios of averaged first (M1), second (M2) and third (M3) molar mesiodistal lengths from
stages/ages E14 to P32, for left and right sides of each jaw type (upper; lower). The closer a value is
to 100, the greater the parity of M2 or M3 length relative to M1. Ratios tend to increase with stage
because, relative to M1 (which is crown complete by P8), the M2 and M3 elongate until about P12
and P21, respectively. We saw a trend of smaller M2:M1 ratios in the lower jaw until about birth (P0),
after which M2:M1 ratio was smaller in the upper jaw. Conversely, M3:M1 ratios were consistently
smaller in the upper jaw. “-” = a molar was not yet forming and could not be measured thus the ratio
is absent for that stage/age group.

Upper Jaw Lower Jaw
Stage M2:M1 M3:M1 M2:M1 M3:M1

E14 59 - 43 -
E15 58 - 28 -
E16 37 - 26 -
E17 66 - 53 -
E18 42 - 53 -
P0 55 - 43 -
P3 58 - 67 -
P6 53 - 66 -
P8 57 - 69 -

P12 52 23 70 38
P15 58 32 72 47
P18 60 35 68 49
P21 60 38 68 57
P23 61 36 72 58
P26 60 36 65 62
P28 61 37 71 58
P30 64 39 67 57
P32 61 38 67 59

Conversely, in each jaw type, RM length increases at rates that generally remain
constant before and after birth (E10-P3: UL = 11 [SE = 19], LL = 57 [SE = 18]; P6-P32:
UL = 14 [SE = 5], LL = 69 [SE = 8]). Compared to TJ lengths, RM lengths show greater
variation, with much higher standard error and more low to non-significant p-values
(Tables S5 and S6). Additionally unlike TJ lengths, RM length growth rates are slow in the
upper jaw (UL = 11 [SE = 20] to 14 [SE = 5]) and noticeably faster in the lower jaw (LL = 57
[SE = 18] to 69 [SE = 8] (Tables S5 and S6)). These slower rates of upper RM growth were
seen despite that the upper M1 and M2 are absolutely larger than their lower counterparts,
as reported above and elsewhere [25].

Lastly, plots of molar length over time for each molar type (e.g., M1/M2) show similar
patterns of growth. These patterns are typified by faster increases in size from molar onset
to about 7 days later (slope values for left side averages are as follows: E10-P3: M1 = 106
[SE = 9.6], M1 = 93 [SE = 10], M2 = 56 [SE = 15], M2 = 76 [SE = 12], (no M3 data before P3);
P6-P32: M1 = 24 [SE = 5.3], M1 = 24 [SE = 4], M2 = 22 [SE = 3], M2 = 16 [SE = 3]), M3 = 18
[SE = 5], M3 = 25 [SE = 5.6]) (Table S7 and Table S8).

3.3. Total Jaw, Retromolar, and Molar Lengths Are Strongly, Positively Correlated with Each Other

Here we report for upper and lower jaws the Pearson Correlation Coefficients (r)
among TJ length, RM length, and M1, M2 and M3 lengths (Table 6). For TJ length, correla-
tions with the other four types of metrics are very strong (r = 0.82 to 0.99) and statistically
significant (p < 0.01 to p < 0.0001). Correlation between TJ length and RM length was
weaker in the upper jaw (r = 0.82, 0.83) versus the lower jaw (r = 0.97, 0.99), indicating
weaker integration of these two variables in the upper jaw.

In the lower jaw, M1, M2 and M3 lengths correlated strongly (r = 0.90 to 0.99) with
TJ length, indicating that lower jaw length accurately accounts for lower molar length.
Among the three lower molars, correlation with TJ length was weakest with M2 (Right
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(R) M2 r = 0.90, Left (L) M2 r = 0.91) and strongest with M3 (RM3 r = 0.99, LM3 r = 0.98).
The strengths of these correlations can be summarized as M2 < M1 < M3. Among upper
molars, correlation with TJ length was similar (RM1 r = 0.96, RM2 r = 0.96, RM3 r = 0.998;
LM1 r = 0.95, LM2 r = 0.97, LM3 r = 0.95) (p ≤ 0.0001). The strengths of these correlations
can be summarized as M2 ≈ M1 ≈ M3.

Table 6. Pearson’s Correlation Coefficient (r) of total jaw length (TJL) with retromolar length (RML),
and molar lengths (M1, M2, M3), showing strong and significant correlations in all four quadrants
among upper and lower jaws. Strength of correlation between TJL and RML was highest in the
mandible (0.97–0.99) versus the maxilla (0.82–0.83).

Upper Left TJL vs. Upper Right TJL vs.

RML 0.83, p < 0.0001, n = 16 RML 0.82, p < 0.01, n = 9
M1 0.95, p < 0.0001, n = 19 M1 0.96, p < 0.0001, n = 12
M2 0.97, p < 0.0001, n = 18 M2 0.96, p < 0.0001, n = 11
M3 0.95, p = 0.0001, n = 9 M3 0.998, p < 0.0001, n = 5

Lower Left TJL vs. Lower Right TJL vs.

RML 0.99, p < 0.0001, n = 18 RML 0.97, p < 0.0001, n = 11
M1 0.94, p < 0.0001, n = 19 M1 0.96, p < 0.0001, n = 12
M2 0.91, p < 0.0001, n = 18 M2 0.90, p = 0.0002, n = 11

M3 0.98, p < 0.001, n = 9 M3 0.99, p = 0.001, n = 5

Next, we explored correlations between RM length and molar lengths (Table 7). In
neither jaw did one particular molar type correlate more strongly with RM length. In the
lower jaw, correlation strengths were strong (r = 0.79 to 0.97) and, in general, statistically
significant (p = 0.06 to p < 0.0001). Conversely, in the upper jaw, correlation was weaker
(0.66 to 0.79; p = 0.1 to p < 0.001). This outcome indicates weaker integration of upper molars
with retromolar space, akin to the results for TJ length showing its weaker correlation with
upper molars compared to lower molars.

Table 7. Pearson’s Correlation Coefficient (r) of retromolar length (RML) with molar lengths (M1, M2,
M3), showing strong and significant correlations (*) for most but not all molars all four quadrants
among upper and lower jaws. In all four quadrants, significance of correlation was lowest for M3
with RML. There is no clear pattern where one molar type correlates most strongly with RML.

Upper Left RML vs. Upper Right RML vs.

M1 0.79, p < 0.001 *, n = 16 M1 0.76, p = 0.02, n = 9
M2 0.78, p < 0.001 *, n = 16 M2 0.66, p = 0.05, n = 9

M3 0.75, p = 0.02, n = 9 M3 0.78, p = 0.1, n = 5

Lower Left RML vs. Lower Right RML vs.

M1 0.87, p < 0.0001 *, n = 18 M1 0.85, p < 0.001 *, n = 11
M2 0.89, p < 0.0001 *, n = 18 M2 0.79, p < 0.01 *, n = 11

M3 0.97, p < 0.001 *, n = 9 M3 0.85, p = 0.06, n = 5

3.4. Dental Lamina Structure Is Comparable in Upper/Lower Jaws, and Shows Constant Contact
with Surface Epithelium

Lastly, we explored the structure and orientation of molar organs and the dental
lamina from before M1 onset (E10) and onwards. At E14 and E16 (Figure 4, Video S2),
the upper and lower M1s were tilted lingually (as seen in the coronal plane of section)
with the dental stalk located buccal to the rest of the M1 organ. Additionally at E14, M1

was located buccal to M1 (Figure 4A). The different appearance of the upper versus lower
dental lamina in the same sagittal section (Figure 5A–C, Video S2) reflects in part that the
upper lamina is buccal to the lower lamina (Video S2). By E16, the upper and lower M1
and M2 organs were positioned directly atop each other (Figure 4B). A lingual incline of
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M1 and M2 persisted at E17 and E18, but was not seen in the lower molar counterparts,
which were positioned along a straight axis (in coronal plane). Although we also saw this
arrangement of upper molars positioned lateral (or buccal) to lower counterparts (also
reported by Peterka et al. [25]), buccolateral position varied according to the depth of the
coronal plane at which the embryo/molars were viewed.
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that aligns with the Current Model [11] of dental lamina structure, the appearance of the dental 
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Figure 4. Molar morphogenesis in embryonic wild-type mouse. Coronal view of embryos aged (A)
E14 and (B) E16 showing the lingual tilting (short yellow dotted line, right) of upper and lower M1
organs, and the buccal location of the upper M1 organs at E14. The M1 dental stalks (yellow dashed
lines, left, and arrows, right) of the upper molar organs are laterally positioned relative to lower
molar organs. By E16 the upper molar organs are wider than the lower organs (yellow dashed lines,
left). Mineralizing dentary bone (bright white, arrowhead) is located buccal to the molar and the
incisor (i). Long thin arrow (B) points to the wall of the dental follicle (crypt). Abbreviations: e, eye;
i, incisor; t, tongue.

In coronal view, the molar lamina resembles a spherical structure of peripheral and
inner epithelium surrounded by condensed mesenchyme on its aboral aspect (Figure 4,
Video S2). At E14 and E16, the dental stalk, which is derived from an epithelial invagination
of mesenchyme, is clearly visible as a continuous structure that anchors the M1 and
M2 organs to the adjacent dental epithelium along the mesiodistal length of the dental
lamina (Figure 4, thick arrows; Figure 5G,H, “ds”). Each molar forms on either side of
its invagination site. This site is located at about the midpoint along each molar organ’s
length. In the sagittal view, only along the midline of the mass of the dental lamina was it in
continuous contact with the overlying surface epithelium (Figure 5G,H). Further buccally
or lingually, only the dental stalks of M1 and M2 connect with the surface epithelium.
At the time of M2 onset, a virtual section through the midline of the M1 shows that the
enamel organ, which is located near the surface epithelium buds, off the tail end of the M1
(Figure 5G,H). This budding is accompanied by an epithelial invagination at the position
of M2 (Figure 5A,C,D,F).

Depending on the angle of the virtual section in the sagittal plane, the lamina has two
appearances. In the same plane of view, the lower lamina looks like an elongate structure
that runs parallel to and maintains contact with the surface epithelium (Figure 5G,H).
Conversely, the upper lamina looks like an arched structure that contacts the surface
epithelium only at its mesial and distal ends (upper jaw) (Figure 5C,D,F). For the more
lingually-tilted (as well as more buccally located) upper lamina, the section plane is at an
angle to the perfect midsagittal plane (Video S3). When reoriented in a perfect cranial–
caudal axis along the sagittal plane, the upper dental lamina looks comparable to its lower
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counterpart. We contend that the arched structure is an artefact of the plane of section.
Lastly, in a transverse plane of section, the posterior tail of the lower dental lamina merges
with the lingual oral epithelium of the mandible. In this same plane, the posterior tail of
the upper dental lamina merges with the epithelium along the buccal aspect of each palatal
shelf (Video S4). At E16 the lamina between M1 and M2 was clearly continuous. As early
as E17–E18, we detected a bony septum starting to form between M1 and M2, similar to
reports by an earlier study [21] of this septum at birth (P0).
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Figure 5. Sagittal plane of embryos aged E14 (A–E) and E16 (F–H). In the same plane of section, the
upper and lower M1 organs and dental lamina are at different depths. Versus the lower jaw that
aligns with the Current Model [11] of dental lamina structure, the appearance of the dental lamina in
the upper jaw conforms to the Classical Model [11] (black star: contact of anterior end of upper dental
lamina with surface epithelium; grey star, contact of posterior end of dental epithelium with surface
epithelium). However, this conformity is actually an artefact of the more steeply bucco-lingual
inclination of the upper molar organ. The onset of M2 is just visible as a small epithelial invagination
in the lower jaw (arrows/labels, panels A,D,F), which even at E14 and clearly by E16 is visible an
extension of the M1 organ and dental epithelium (arrows, G,H). Abbreviations: ds, dental stalk; Ldl,
lower dental lamina; M, molar; Udl, upper dental lamina.

4. Discussion
4.1. Enabling Molar Initiation Does Not Appear to Be the Main Impetus for Jaw Growth and
Space Creation

In our sample of mouse specimens aged E10 to P32, the initiation times and durations
of M1, M2 and M3 development were consistent regardless of differences in retromolar
(RM) space between upper and lower jaws. For both the upper and lower jaws, growth
rates were faster up until shortly after birth, around P3. After P3, jaw growth rates were
slower. We did not see bursts of jaw growth around the time of the earliest visible molar
thickening or crypt [20]. Retromolar space was available about one week prior to M3
onset, negating the idea that the pause between M2 and M3 onset is to allow sufficient jaw
growth [19]. Faster jaw growth during embryonic stages may reflect rapid change related
not to molar development but instead to factors including secondary palate formation
(E13–E16) [25]. Comparable rates of upper and lower total jaw (TJ) growth contrasted with
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staccato molar onset times. Successive molars initiated with progressively longer pauses
between them, despite that the M3 was the shortest molar. Collectively, these findings
undermine the idea that space creation through jaw growth triggers molar initiation.

The strong and significant correlations that we saw between TJ length and RM length,
as well as molar lengths, indicate strong integration of these structures during morpho-
genesis and growth. However, RM length was consistently the weakest and most variable
correlate with TJ and molar lengths, particularly in the upper jaw, which had the least RM
space. These findings suggest that RM length is a minor influence on developing molars.
The retromolar length was also not reliably predicted by stage/age (Tables S3 and S4),
despite that molar length was accurately estimated by developmental day. In the face of
equivalent upper and lower molar onset times, weaker correlations of RM length with
molar and TJ lengths underscore that retromolar space does not dictate when molar devel-
opment begins.

The primary impetus for (postnatal) jaw growth does not appear to be enabling molar
initiation. Rather, this impetus appears to be to maintain the symmetry of the mandible
and midfacial skeleton, and ensure proper occlusion of the upper and lower dentitions [33].
Counter to past reports of faster lower jaw growth, specifically of the lower diastema,
from E14 to E18 [25] we did not see faster growth of the lower jaw compared to its upper
counterpart; although in the lower jaw, retromolar length grew about five times faster.
We suspect that these different results between studies are due to different measurement
protocols designed to target distinct research aims.

4.2. Molar Crown Length Does Not Appear to Influence Molar Development Duration

Our observations that M1 was generally longer than M1, and M2 was longer than M2,
while M3 was always shorter than M3, are consistent with earlier work [25]. Our results for
the onset times and durations of molar development align well with past reports based
on other inbred wild-type laboratory mouse strains, e.g., ICR/Jcl [32] and CD1 [19,21]
(reviewed in [19]). Differences among our collective findings likely reflect technical vari-
ation in data collection methodologies, as well as biological variation within and among
genetic backgrounds and breeding colonies [34]. Our results also agree with past work [19]
reporting that different molar types (e.g., M1, M3) develop through homologous stages
at comparable tempos and durations. To paraphrase Chlastakova and colleagues [19], we
report a constant period of mouse molar crown formation despite that the M3 is consider-
ably smaller than the M1 and, to which we would add, despite size differences between
upper and lower molars.

4.3. Molar Initiation Is Preceded by Minimal Dental Lamina Growth

Our results support past work [35] indicating that in the mouse mandibular molar,
the tooth organ grows into the surrounding mesenchyme, i.e., away from the oral cavity,
and maintains contact with surface epithelium via the dental stalk. Chlastakova et al. [19]
describe that M3 arises from folding on the lingual side of the M2/dental lamina. Unfortu-
nately, we could not see the M3 extension clearly enough to comment. However, our scans
at E14 and E16 show M2 as a distinct invagination of dental epithelium that, towards its
midline, is connected to the mass of the M1 organ and dental lamina. This structure of the
initiating M2 is akin to what we saw for M1 (i.e., a direct outgrowth of the dental lamina
with clear epithelial invagination into underlying mesenchyme).

Our results also concur with recent work defining the structure and process by which
new molars arise from the distal part of the outer epithelium of the preceding molar.
This origin includes a dual contribution of superficial dental epithelium and molar tail
epithelium from the preceding molar organ [11]. Gaete and colleagues [11] proposed this
structure as a new “Current Model” of the shape and progression of the dental lamina,
and as an alternative to the “Classical Model” of successional molar formation. The
Classical Model defines the dental lamina as diving beneath the oral epithelium, with
mesenchyme separating the lamina from epithelium, while the lamina grows parallel
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to the surface. The Current Model describes the dental lamina as a structure that runs
beneath but in continuous contact with the oral epithelium. Our own 3D scan datasets
(Videos S2 and S3, Figure 5) generally conform to the Current Model. Along the lateral
margins of the dental lamina, we saw a gap between the lamina and oral epithelium; but
along the lamina’s midline, the dental stalk tethered the epithelium of each molar organ to
the surface epithelium. The dental lamina appeared to extend backward at the same time
as the invagination of the dental epithelium at the location of the next initiating molar. This
observation emphasizes that molar initiation is not contingent on much if any retromolar
space.

4.4. A Role for the Propagation of Dental Epithelium in the Timing of Molar Onset: A Hypothesis

Based on our findings, we suggest that molar onset is not constrained by jaw length
sensu stricto but instead by oral epithelium length. Epithelial folding happens across areas as
brief as 10 to 100 micrometers, possibly with inputs from condensing mesenchyme [36–38].
We propose that while molar onset is impartial to the jaw and retromolar length, the tail of
the dental lamina must be able to extend at least marginally in order to birth a successive
molar. In this regard, we suggest that the propagation of oral and subsequently dental
epithelium is most vital to molar initiation. We hypothesize that only marginal elongation
of the jaw primordium and, later, the jawbone, is important for molar initiation. We propose
that this marginal growth allows the oral/dental epithelium and dental lamina to achieve
a minimum length required for the ribbon of tissue to buckle, catalyzing invagination of
the epithelium into the underlying mesenchyme [39].

This hypothesis is supported by recent biophysical modeling of molar organogenesis,
particularly epithelial folding. The lingual tilting of the upper and lower molar organs that
we observed was also reported by Takigawa-Imamura et al. [36]. The tilt of the enamel ep-
ithelium supports a biomechanical model [36] of asymmetrical epithelial dynamics at early
molar morphogenesis (bud stage) (E14), and suggests that this tilt is less important at later
stages (cap stage) (E16). In this biomechanical modeling of mouse molar odontogenesis,
during bud-to-cap transition, this tilting levels out somewhat [36]. In our dataset, at E16
the upper M2 organs were not only tilted lingually but also positioned more lingually than
were the lower M2 organs (Video S2). At the same time, bone was mineralizing inferolin-
gually and inferobucally to the lower M1, and inferolingually (and slightly inferobucally)
to the upper M1. We wonder if this lingual tilt of the tooth organ also helps facilitate
the local alveolar bone formation, where shearing forces created by mesenchymal tissues
growing at varying speeds trigger cell differentiation and subsequent intramembranous
ossification [20,40]. The idea that dental tissue intrinsically regulates molar initiation is sup-
ported by findings that the dental follicle produces its own adjacent alveolar bone [41–43]
and then instructs this bone to remodel at the tooth–bone interface (TBI) during molar
histogenesis and eruption [20,23,44]. Although the activities of osteoclasts and osteoblasts
at the TBI appear to influence molar organ growth [26], at the time of initiation, molar
primordia are free from surrounding bone. Only at the bell stage does bone gradually begin
to encapsulate each molar within a bony socket ([19] and reviewed in [21]). These studies
bolster our conjecture that initiation time manifests via the progression and organization of
the molar lamina, not via the progression of jawbone growth and space creation.

4.5. Implications for Human Dental Development and Dental Health

Increasingly longer latency between successively initiating molars, particularly M2
and M3, is seen in mice as well as humans and other primates. Some African apes and
monkeys present with extended pauses of months or years between the initiation of
adjacent molars while also showing constant jaw growth rates [45,46]. In these primates,
space also does not appear to constrain molar initiation [47]. Additionally seen in primates
including humans and in rodents, initiation times are equivalent between upper and lower
molars even while the maxilla shows much less retromolar space than the dentary bone.
We also observed in mice that spurts of jaw growth occur only after the onset of M1, M2
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and M3, near the emergence times of M1 and M2. Together, these results indicate that in at
least some mammalian groups, jaw space and length do not trigger molar initiation. Rather,
these findings emphasize the distinction that jaw length and space are vital for proper
molar eruption and emergence into occlusion, but do not seem essential for timely molar
initiation and morphogenesis. Applying our findings to human wisdom teeth: earlier
M3 development increases the likelihood of proper M3 eruption [48], but the size of total
jaw length and retromolar space may not explain earlier or later M3 development. To
explain the etiology of other misfits between human dentitions and jawbones, such as
dental crowding and malocclusion, our findings imply that it is more informative to study
variables acting during late stages of tooth development (i.e., eruption) that help properly
integrate teeth within the jawbone and the dental arcade.

4.6. Notes on Future Studies of Dental Lamina and Molar Developmental Morphologies

Based on our findings, we offer some recommendations for future studies of tooth
development. First, our dataset shows that the structure of the dental lamina can look very
different depending on how a virtual section is angled relative to the sagittal plane. Thus
how exactly the dental lamina is viewed is integral to defining its structure and explaining
its development. Depth of section is also important in terms of defining the positions of
upper and lower molar organs relative to each other. In our experience with 3D scan data
of E14 specimens, the buccolingual laterality of the M1 organ is more or less exaggerated
depending on the anteroposterior section in the coronal plane of view (Video S2): as the
dental lamina lengthens (e.g., E14–E17) it gently angles buccolaterally, as alluded to by
others during E13.5–E15 [25]. This variation in buccolingual positions of upper and lower
molar primordia may help explain different observations among studies.

Next, desktop µCT [49] in complement with tissue contrast agents (e.g., [50]) is in-
creasing the accessibility and speed with which developmental morphology can be imaged
and studied in 3D. As such, the jaw and tooth measurements that we defined here using
synchrotron µCT are a potential foundation and template for future quantitative studies of
craniodental morphogenesis. Limitations of our technique include difficulty distinguishing
soft from hard tissue in older specimens aged E18 and later, and thus addressing questions
about dental lamina extension and the organization of M2 and M3 outgrowths. Other
study limitations are small sample sizes per stage/age group, and potential bias due to
measurement definitions.

Lastly, for sound reasons including ease of access, past studies have favored the
mandibular jaw primordium and thus the lower molar row for experimental work includ-
ing in vitro organ cultures (e.g., [11,30]). Our work suggests that aside from jaw-specific
variation in molar lengths and proportions, the basic structure of the dental lamina is con-
served between upper and lower molar rows. Thus, the mandibular prominence remains a
good proxy to model molar development in general. However, because mouse/permanent
molars are additional teeth [13], our findings may differ from those based on permanent
teeth that replace deciduous precursors. Despite its synapomorphies, the mouse model
system remains invaluable for understanding fundamental deeply conserved processes
in mammalian early tooth morphogenesis. An ongoing issue with using mice to model
mammalian craniodental development and growth is that the mouse jawbone is so under-
mineralized compared to humans and other primates, in which permanent molars initiate
and form within fully mineralized jawbones. Studying diphyodont animal models such as
wallaby [50] is an excellent complementary approach to address this question.

5. Conclusions

Despite jaw-specific differences in crown size and retromolar growth, the age and
duration of initiation, morphogenesis and mineralization are comparable between up-
per and lower molars. Proportions and correlation strengths of retromolar space with
molar length differ between upper and lower jaws, and among M1, M2 and M3, likely
reflecting morphological and ontogenetic variation among these bones and teeth. Thus
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molar initiation time does not appear to be modulated by jaw growth and subsequent
retromolar space creation. Our results support that conditions within the dental lamina
exert greater influence on molar initiation than surrounding external jaw tissues, including
space. We propose that triggers of successive molar initiation are instead biomechanical
and developmental–genetic cues intrinsic to the dental lamina, and contingent on the
progression and physical restructuring of the dental epithelium to enable its invagination
into underlying mesenchyme.
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